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Want an Equilateral Triangle

Def A mono eq-tri is an equilateral triangle where all the
vertices are the same color.

Vote
1) ∀ COL : R2 → [2] ∃ a mono eq-tri.

2) ∃ COL : R2 → [2] such that there are no mono eq-tri.

3) Unknown to Science!
Answer on next slide
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∃COL : R2→ [2] No Mono Eq-Tri

Thm ∃ COL : R2 → [2] with no mono Eq-Tri.

Leave as an exercise.

So we can’t always get a mono Eq-Tri. :-(

How about a 2− 2− 2 triangle? :-)

Thats stupid! Just scale the coloring. :-(

New Question either a mono 1− 1− 1 or mono 2− 2− 2 or · · · .
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Three Equilateral Triangles Theorem

Let Tα be the α− α− α Eq Triangle.

Tα is mono if all of the vertices are the same color.

Thm ∀COL : R2 → [2] either
∃ a mono T2, or

∃ a mono T2
√
3, or

∃ a mono T4.

We prove this rather than T1 − T√
3 − T2 since this makes the

figures easier to draw.
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Begin Proof of Three Equilateral Triangles Theorem

Thm ∀COL : R2 → [2] either
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√
3, or
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Assume by way of contradiction that there is a COL : R2 → [2]
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√
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There are Two R Points Two Apart

By Thm from last lecture ∃ two points, an inch apart, same color.
We can assume that (0,0) and (2,0) are R.

0, 0 2, 0

On the next slide we add four more points of interest.
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√

3)− (2, 0) is a T2 so COL(1,
√

3) = B.
(0, 0)− (1,−

√
3)− (2, 0) is a T2 so COL(1,−

√
3) = B.

Next picture has this information.
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