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Is The Proof of Ramsey’s Thm Constructive?

Thm ∀COL :
(N
2

)
→ [2] ∃ inf homog set.

If someone gave you a coloring COL :
(N
2

)
→ [2] could you give

them the set H?

Using the proof I showed you, no. You need to ask questions like
∃∞xCOL(x) = R. These are hard to ask.

Furthore, the question is not rigorous. To make this question
rigorous we need a notion of give.

Is there a program with the following behaviour:
Input A program M that computes a 0-1-valued function on

(N
2

)
.

(so a 2-coloring).
Output A program N that computes a 0-1-valued function on N
(so a set) such that the set {x : N(x) = 1} is homog.
We will refine and ask this question later.
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And The Answer Is

No.
We will define terms and see what we can say.
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Concepts From Computability Theory: Turing
Machines

M1,M2, . . . is a standard list of Turing Machines (TMs). You can
think of them as all Java programs.

Me,s(x) means that we run Me for s steps.

M(x) ↓= a means that M(x) halts and outputs a.

M(x) = a means that M(x) halts and outputs a (we use the ↓
when we want to emphasize that M(x) halts).

M(x) ↑ means that M(x) does not halt.
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Computable and C.E. and . . .

A set A is computable if there is a TM M such that

x ∈ A =⇒ M(x) ↓= 1
x /∈ A =⇒ M(x) ↓= 0

(Older books use the term recursive instead of computable.)

If M is a TM such that on every input x , M(x) ↓∈ {0, 1} (so M
computes some set) then L(M) = {x : M(x) = 1}
A set A is computably enumerable (c.e.) if there is a TM M:

x ∈ A =⇒ M(x) ↓
x /∈ A =⇒ M(x) ↑

(Older books use the term recursively enumerable (r.e.) instead of
computably enumerable (c.e.).)
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The Arithmetic Hierarchy (AH)

Sets are classified in the Arithmetic hierarchy.
comp means computable.

A ∈ Σ0 if A is comp.
A ∈ Π0 if A is comp.

A ∈ Σ1 is there exists comp B such that
A = {x : (∃y)[(x , y) ∈ B]}.
A ∈ Π1 is there exists comp B such that
A = {x : (∀y)[(x , y) ∈ B]}.

A ∈ Σ2 is there exists comp B such that
A = {x : (∃y)(∀z)[(x , y , z) ∈ B]}.
A ∈ Π2 is there exists comp B such that
A = {x : (∀y)(∃z)[(x , y , z) ∈ B]}.

One can define Σi , Πi .
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Examples of Sets In the Arithmetic Hierarchy

HALT = {(e, x) : (∃s)[Me,s(x) ↓} ∈ Σ1 − Σ0

FIN is all e such that Me halts on finite numb of inputs.
FIN = {e : (∃x)(∀y , s)[y > x =⇒ Me,s(y) ↑} ∈ Σ2 − Π2.
(Proof that FIN /∈ Π2 is hard. So proof that FIN is hard, is hrd.)
INF is all e such that Me halts on infinite numb of inputs.
INF ∈ Π2 − Σ2.
(The proof that INF /∈ Σ2 is hard.)
COF is all e such that Me halts on almost all inputs.
COF ∈ Σ3 − Π3. (The proof that COF /∈ Π3 is not easy.)
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Facts About the Arithmetic Hierarchy

Σ0 ⊂ Σ1 ⊂ Σ2 ⊂ · · · .
Π0 ⊂ Π1 ⊂ Π2 ⊂ · · · .
For all i ≥ 1, Σi and Πi are incomparable.
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Back to Ramsey Theory

Vote on how to finish the theorem.

Thm Let COL be computable 2-coloring of
(N
2

)
. Then there exists

an infinite homog H such that
1) H ∈ Σ1.
2) H ∈ Π1.
3) H ∈ Σ2.
4) H ∈ Π2.
5) H is not in the arithmetic hierarchy.
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Known

Thm
1) ∀ computable COL :

(N
2

)
→ [2] ∃ a Π2 homog set.

2) ∃ computable COL :
(N
2

)
→ [2] with no Σ2 homog set.

What about 3-ary Ramsey?
1) ∀ computable COL :

(N
3

)
→ [2] ∃ a Π3 homog set.

2) ∃ computable COL :
(N
3

)
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Computable Combinatorics

Question Given a proof that is non-constructive one can ask the
following:
Is there an alternative proof that is constructive? (usually not)
If the input is computable then is the output on some level of AH?
Is there a weaker version that is constructive?

The study of these questions in field X is called Computable X.

There is a 131 page survey of computable combinatorics here:
https://www.cs.umd.edu/~gasarch/papers/rcombsur.pdf

I had more energy back then.

https://www.cs.umd.edu/~gasarch/papers/rcombsur.pdf
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