
BILL, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!



Computable Ramsey
Theory

Exposition by William Gasarch

February 18, 2025



Is The Proof of Ramsey’s Thm Constructive?

Thm ∀COL :
(N
2

)
→ [2] ∃ inf homog set.

If someone gave you a coloring COL :
(N
2

)
→ [2] could you give

them the set H?

Using the proof I showed you, no. You need to ask questions like
∃∞xCOL(x) = R. These are hard to ask.

Furthore, the question is not rigorous. To make this question
rigorous we need a notion of give.

Is there a program with the following behaviour:
Input A program M that computes a 0-1-valued function on

(N
2

)
.

(so a 2-coloring).
Output A program N that computes a 0-1-valued function on N
(so a set) such that the set {x : N(x) = 1} is homog.
We will refine and ask this question later.



Is The Proof of Ramsey’s Thm Constructive?

Thm ∀COL :
(N
2

)
→ [2] ∃ inf homog set.

If someone gave you a coloring COL :
(N
2

)
→ [2] could you give

them the set H?

Using the proof I showed you, no. You need to ask questions like
∃∞xCOL(x) = R. These are hard to ask.

Furthore, the question is not rigorous. To make this question
rigorous we need a notion of give.

Is there a program with the following behaviour:
Input A program M that computes a 0-1-valued function on

(N
2

)
.

(so a 2-coloring).
Output A program N that computes a 0-1-valued function on N
(so a set) such that the set {x : N(x) = 1} is homog.
We will refine and ask this question later.



Is The Proof of Ramsey’s Thm Constructive?

Thm ∀COL :
(N
2

)
→ [2] ∃ inf homog set.

If someone gave you a coloring COL :
(N
2

)
→ [2] could you give

them the set H?

Using the proof I showed you, no. You need to ask questions like
∃∞xCOL(x) = R. These are hard to ask.

Furthore, the question is not rigorous. To make this question
rigorous we need a notion of give.

Is there a program with the following behaviour:
Input A program M that computes a 0-1-valued function on

(N
2

)
.

(so a 2-coloring).
Output A program N that computes a 0-1-valued function on N
(so a set) such that the set {x : N(x) = 1} is homog.
We will refine and ask this question later.



Is The Proof of Ramsey’s Thm Constructive?

Thm ∀COL :
(N
2

)
→ [2] ∃ inf homog set.

If someone gave you a coloring COL :
(N
2

)
→ [2] could you give

them the set H?

Using the proof I showed you, no. You need to ask questions like
∃∞xCOL(x) = R. These are hard to ask.

Furthore, the question is not rigorous. To make this question
rigorous we need a notion of give.

Is there a program with the following behaviour:
Input A program M that computes a 0-1-valued function on

(N
2

)
.

(so a 2-coloring).
Output A program N that computes a 0-1-valued function on N
(so a set) such that the set {x : N(x) = 1} is homog.
We will refine and ask this question later.



Is The Proof of Ramsey’s Thm Constructive?

Thm ∀COL :
(N
2

)
→ [2] ∃ inf homog set.

If someone gave you a coloring COL :
(N
2

)
→ [2] could you give

them the set H?

Using the proof I showed you, no. You need to ask questions like
∃∞xCOL(x) = R. These are hard to ask.

Furthore, the question is not rigorous. To make this question
rigorous we need a notion of give.

Is there a program with the following behaviour:

Input A program M that computes a 0-1-valued function on
(N
2

)
.

(so a 2-coloring).
Output A program N that computes a 0-1-valued function on N
(so a set) such that the set {x : N(x) = 1} is homog.
We will refine and ask this question later.



Is The Proof of Ramsey’s Thm Constructive?

Thm ∀COL :
(N
2

)
→ [2] ∃ inf homog set.

If someone gave you a coloring COL :
(N
2

)
→ [2] could you give

them the set H?

Using the proof I showed you, no. You need to ask questions like
∃∞xCOL(x) = R. These are hard to ask.

Furthore, the question is not rigorous. To make this question
rigorous we need a notion of give.

Is there a program with the following behaviour:
Input A program M that computes a 0-1-valued function on

(N
2

)
.

(so a 2-coloring).

Output A program N that computes a 0-1-valued function on N
(so a set) such that the set {x : N(x) = 1} is homog.
We will refine and ask this question later.



Is The Proof of Ramsey’s Thm Constructive?

Thm ∀COL :
(N
2

)
→ [2] ∃ inf homog set.

If someone gave you a coloring COL :
(N
2

)
→ [2] could you give

them the set H?

Using the proof I showed you, no. You need to ask questions like
∃∞xCOL(x) = R. These are hard to ask.

Furthore, the question is not rigorous. To make this question
rigorous we need a notion of give.

Is there a program with the following behaviour:
Input A program M that computes a 0-1-valued function on

(N
2

)
.

(so a 2-coloring).
Output A program N that computes a 0-1-valued function on N
(so a set) such that the set {x : N(x) = 1} is homog.

We will refine and ask this question later.



Is The Proof of Ramsey’s Thm Constructive?

Thm ∀COL :
(N
2

)
→ [2] ∃ inf homog set.

If someone gave you a coloring COL :
(N
2

)
→ [2] could you give

them the set H?

Using the proof I showed you, no. You need to ask questions like
∃∞xCOL(x) = R. These are hard to ask.

Furthore, the question is not rigorous. To make this question
rigorous we need a notion of give.

Is there a program with the following behaviour:
Input A program M that computes a 0-1-valued function on

(N
2

)
.

(so a 2-coloring).
Output A program N that computes a 0-1-valued function on N
(so a set) such that the set {x : N(x) = 1} is homog.
We will refine and ask this question later.



And The Answer Is

No.
We will define terms and see what we can say.



And The Answer Is

No.

We will define terms and see what we can say.



And The Answer Is

No.
We will define terms and see what we can say.



Concepts From Computability Theory: Turing
Machines

M1,M2, . . . is a standard list of Turing Machines (TMs). You can
think of them as all Java programs.

Me,s(x) means that we run Me for s steps.

M(x) ↓= a means that M(x) halts and outputs a.

M(x) = a means that M(x) halts and outputs a (we use the ↓
when we want to emphasize that M(x) halts).

M(x) ↑ means that M(x) does not halt.



Concepts From Computability Theory: Turing
Machines

M1,M2, . . . is a standard list of Turing Machines (TMs). You can
think of them as all Java programs.

Me,s(x) means that we run Me for s steps.

M(x) ↓= a means that M(x) halts and outputs a.

M(x) = a means that M(x) halts and outputs a (we use the ↓
when we want to emphasize that M(x) halts).

M(x) ↑ means that M(x) does not halt.



Concepts From Computability Theory: Turing
Machines

M1,M2, . . . is a standard list of Turing Machines (TMs). You can
think of them as all Java programs.

Me,s(x) means that we run Me for s steps.

M(x) ↓= a means that M(x) halts and outputs a.

M(x) = a means that M(x) halts and outputs a (we use the ↓
when we want to emphasize that M(x) halts).

M(x) ↑ means that M(x) does not halt.



Concepts From Computability Theory: Turing
Machines

M1,M2, . . . is a standard list of Turing Machines (TMs). You can
think of them as all Java programs.

Me,s(x) means that we run Me for s steps.

M(x) ↓= a means that M(x) halts and outputs a.

M(x) = a means that M(x) halts and outputs a (we use the ↓
when we want to emphasize that M(x) halts).

M(x) ↑ means that M(x) does not halt.



Concepts From Computability Theory: Turing
Machines

M1,M2, . . . is a standard list of Turing Machines (TMs). You can
think of them as all Java programs.

Me,s(x) means that we run Me for s steps.

M(x) ↓= a means that M(x) halts and outputs a.

M(x) = a means that M(x) halts and outputs a (we use the ↓
when we want to emphasize that M(x) halts).

M(x) ↑ means that M(x) does not halt.



Concepts From Computability Theory: Turing
Machines

M1,M2, . . . is a standard list of Turing Machines (TMs). You can
think of them as all Java programs.

Me,s(x) means that we run Me for s steps.

M(x) ↓= a means that M(x) halts and outputs a.

M(x) = a means that M(x) halts and outputs a (we use the ↓
when we want to emphasize that M(x) halts).

M(x) ↑ means that M(x) does not halt.



Computable and C.E. and . . .

A set A is computable if there is a TM M such that

x ∈ A =⇒ M(x) ↓= 1
x /∈ A =⇒ M(x) ↓= 0

(Older books use the term recursive instead of computable.)

If M is a TM such that on every input x , M(x) ↓∈ {0, 1} (so M
computes some set) then L(M) = {x : M(x) = 1}
A set A is computably enumerable (c.e.) if there is a TM M:

x ∈ A =⇒ M(x) ↓
x /∈ A =⇒ M(x) ↑

(Older books use the term recursively enumerable (r.e.) instead of
computably enumerable (c.e.).)



Computable and C.E. and . . .

A set A is computable if there is a TM M such that

x ∈ A =⇒ M(x) ↓= 1
x /∈ A =⇒ M(x) ↓= 0

(Older books use the term recursive instead of computable.)

If M is a TM such that on every input x , M(x) ↓∈ {0, 1} (so M
computes some set) then L(M) = {x : M(x) = 1}
A set A is computably enumerable (c.e.) if there is a TM M:

x ∈ A =⇒ M(x) ↓
x /∈ A =⇒ M(x) ↑

(Older books use the term recursively enumerable (r.e.) instead of
computably enumerable (c.e.).)



Computable and C.E. and . . .

A set A is computable if there is a TM M such that

x ∈ A =⇒ M(x) ↓= 1
x /∈ A =⇒ M(x) ↓= 0

(Older books use the term recursive instead of computable.)

If M is a TM such that on every input x , M(x) ↓∈ {0, 1} (so M
computes some set) then L(M) = {x : M(x) = 1}
A set A is computably enumerable (c.e.) if there is a TM M:

x ∈ A =⇒ M(x) ↓
x /∈ A =⇒ M(x) ↑

(Older books use the term recursively enumerable (r.e.) instead of
computably enumerable (c.e.).)



Computable and C.E. and . . .

A set A is computable if there is a TM M such that

x ∈ A =⇒ M(x) ↓= 1
x /∈ A =⇒ M(x) ↓= 0

(Older books use the term recursive instead of computable.)

If M is a TM such that on every input x , M(x) ↓∈ {0, 1} (so M
computes some set) then L(M) = {x : M(x) = 1}

A set A is computably enumerable (c.e.) if there is a TM M:

x ∈ A =⇒ M(x) ↓
x /∈ A =⇒ M(x) ↑

(Older books use the term recursively enumerable (r.e.) instead of
computably enumerable (c.e.).)



Computable and C.E. and . . .

A set A is computable if there is a TM M such that

x ∈ A =⇒ M(x) ↓= 1
x /∈ A =⇒ M(x) ↓= 0

(Older books use the term recursive instead of computable.)

If M is a TM such that on every input x , M(x) ↓∈ {0, 1} (so M
computes some set) then L(M) = {x : M(x) = 1}
A set A is computably enumerable (c.e.) if there is a TM M:

x ∈ A =⇒ M(x) ↓
x /∈ A =⇒ M(x) ↑

(Older books use the term recursively enumerable (r.e.) instead of
computably enumerable (c.e.).)



Computable and C.E. and . . .

A set A is computable if there is a TM M such that

x ∈ A =⇒ M(x) ↓= 1
x /∈ A =⇒ M(x) ↓= 0

(Older books use the term recursive instead of computable.)

If M is a TM such that on every input x , M(x) ↓∈ {0, 1} (so M
computes some set) then L(M) = {x : M(x) = 1}
A set A is computably enumerable (c.e.) if there is a TM M:

x ∈ A =⇒ M(x) ↓
x /∈ A =⇒ M(x) ↑

(Older books use the term recursively enumerable (r.e.) instead of
computably enumerable (c.e.).)



The Arithmetic Hierarchy (AH)

Sets are classified in the Arithmetic hierarchy.
comp means computable.

A ∈ Σ0 if A is comp.
A ∈ Π0 if A is comp.

A ∈ Σ1 is there exists comp B such that
A = {x : (∃y)[(x , y) ∈ B]}.
A ∈ Π1 is there exists comp B such that
A = {x : (∀y)[(x , y) ∈ B]}.

A ∈ Σ2 is there exists comp B such that
A = {x : (∃y)(∀z)[(x , y , z) ∈ B]}.
A ∈ Π2 is there exists comp B such that
A = {x : (∀y)(∃z)[(x , y , z) ∈ B]}.

One can define Σi , Πi .



The Arithmetic Hierarchy (AH)

Sets are classified in the Arithmetic hierarchy.
comp means computable.
A ∈ Σ0 if A is comp.

A ∈ Π0 if A is comp.

A ∈ Σ1 is there exists comp B such that
A = {x : (∃y)[(x , y) ∈ B]}.
A ∈ Π1 is there exists comp B such that
A = {x : (∀y)[(x , y) ∈ B]}.

A ∈ Σ2 is there exists comp B such that
A = {x : (∃y)(∀z)[(x , y , z) ∈ B]}.
A ∈ Π2 is there exists comp B such that
A = {x : (∀y)(∃z)[(x , y , z) ∈ B]}.

One can define Σi , Πi .



The Arithmetic Hierarchy (AH)

Sets are classified in the Arithmetic hierarchy.
comp means computable.
A ∈ Σ0 if A is comp.
A ∈ Π0 if A is comp.

A ∈ Σ1 is there exists comp B such that
A = {x : (∃y)[(x , y) ∈ B]}.
A ∈ Π1 is there exists comp B such that
A = {x : (∀y)[(x , y) ∈ B]}.

A ∈ Σ2 is there exists comp B such that
A = {x : (∃y)(∀z)[(x , y , z) ∈ B]}.
A ∈ Π2 is there exists comp B such that
A = {x : (∀y)(∃z)[(x , y , z) ∈ B]}.

One can define Σi , Πi .



The Arithmetic Hierarchy (AH)

Sets are classified in the Arithmetic hierarchy.
comp means computable.
A ∈ Σ0 if A is comp.
A ∈ Π0 if A is comp.

A ∈ Σ1 is there exists comp B such that
A = {x : (∃y)[(x , y) ∈ B]}.

A ∈ Π1 is there exists comp B such that
A = {x : (∀y)[(x , y) ∈ B]}.

A ∈ Σ2 is there exists comp B such that
A = {x : (∃y)(∀z)[(x , y , z) ∈ B]}.
A ∈ Π2 is there exists comp B such that
A = {x : (∀y)(∃z)[(x , y , z) ∈ B]}.

One can define Σi , Πi .



The Arithmetic Hierarchy (AH)

Sets are classified in the Arithmetic hierarchy.
comp means computable.
A ∈ Σ0 if A is comp.
A ∈ Π0 if A is comp.

A ∈ Σ1 is there exists comp B such that
A = {x : (∃y)[(x , y) ∈ B]}.
A ∈ Π1 is there exists comp B such that
A = {x : (∀y)[(x , y) ∈ B]}.

A ∈ Σ2 is there exists comp B such that
A = {x : (∃y)(∀z)[(x , y , z) ∈ B]}.
A ∈ Π2 is there exists comp B such that
A = {x : (∀y)(∃z)[(x , y , z) ∈ B]}.

One can define Σi , Πi .



The Arithmetic Hierarchy (AH)

Sets are classified in the Arithmetic hierarchy.
comp means computable.
A ∈ Σ0 if A is comp.
A ∈ Π0 if A is comp.

A ∈ Σ1 is there exists comp B such that
A = {x : (∃y)[(x , y) ∈ B]}.
A ∈ Π1 is there exists comp B such that
A = {x : (∀y)[(x , y) ∈ B]}.

A ∈ Σ2 is there exists comp B such that
A = {x : (∃y)(∀z)[(x , y , z) ∈ B]}.

A ∈ Π2 is there exists comp B such that
A = {x : (∀y)(∃z)[(x , y , z) ∈ B]}.

One can define Σi , Πi .



The Arithmetic Hierarchy (AH)

Sets are classified in the Arithmetic hierarchy.
comp means computable.
A ∈ Σ0 if A is comp.
A ∈ Π0 if A is comp.

A ∈ Σ1 is there exists comp B such that
A = {x : (∃y)[(x , y) ∈ B]}.
A ∈ Π1 is there exists comp B such that
A = {x : (∀y)[(x , y) ∈ B]}.

A ∈ Σ2 is there exists comp B such that
A = {x : (∃y)(∀z)[(x , y , z) ∈ B]}.
A ∈ Π2 is there exists comp B such that
A = {x : (∀y)(∃z)[(x , y , z) ∈ B]}.

One can define Σi , Πi .



The Arithmetic Hierarchy (AH)

Sets are classified in the Arithmetic hierarchy.
comp means computable.
A ∈ Σ0 if A is comp.
A ∈ Π0 if A is comp.

A ∈ Σ1 is there exists comp B such that
A = {x : (∃y)[(x , y) ∈ B]}.
A ∈ Π1 is there exists comp B such that
A = {x : (∀y)[(x , y) ∈ B]}.

A ∈ Σ2 is there exists comp B such that
A = {x : (∃y)(∀z)[(x , y , z) ∈ B]}.
A ∈ Π2 is there exists comp B such that
A = {x : (∀y)(∃z)[(x , y , z) ∈ B]}.

One can define Σi , Πi .



Examples of Sets In the Arithmetic Hierarchy

HALT = {(e, x) : (∃s)[Me,s(x) ↓} ∈ Σ1 − Σ0

FIN is all e such that Me halts on finite numb of inputs.
FIN = {e : (∃x)(∀y , s)[y > x =⇒ Me,s(y) ↑} ∈ Σ2 − Π2.
(Proof that FIN /∈ Π2 is hard. So proof that FIN is hard, is hrd.)
INF is all e such that Me halts on infinite numb of inputs.
INF ∈ Π2 − Σ2.
(The proof that INF /∈ Σ2 is hard.)
COF is all e such that Me halts on almost all inputs.
COF ∈ Σ3 − Π3. (The proof that COF /∈ Π3 is not easy.)



Examples of Sets In the Arithmetic Hierarchy

HALT = {(e, x) : (∃s)[Me,s(x) ↓} ∈ Σ1 − Σ0

FIN is all e such that Me halts on finite numb of inputs.

FIN = {e : (∃x)(∀y , s)[y > x =⇒ Me,s(y) ↑} ∈ Σ2 − Π2.
(Proof that FIN /∈ Π2 is hard. So proof that FIN is hard, is hrd.)
INF is all e such that Me halts on infinite numb of inputs.
INF ∈ Π2 − Σ2.
(The proof that INF /∈ Σ2 is hard.)
COF is all e such that Me halts on almost all inputs.
COF ∈ Σ3 − Π3. (The proof that COF /∈ Π3 is not easy.)



Examples of Sets In the Arithmetic Hierarchy

HALT = {(e, x) : (∃s)[Me,s(x) ↓} ∈ Σ1 − Σ0

FIN is all e such that Me halts on finite numb of inputs.
FIN = {e : (∃x)(∀y , s)[y > x =⇒ Me,s(y) ↑} ∈ Σ2 − Π2.
(Proof that FIN /∈ Π2 is hard. So proof that FIN is hard, is hrd.)

INF is all e such that Me halts on infinite numb of inputs.
INF ∈ Π2 − Σ2.
(The proof that INF /∈ Σ2 is hard.)
COF is all e such that Me halts on almost all inputs.
COF ∈ Σ3 − Π3. (The proof that COF /∈ Π3 is not easy.)



Examples of Sets In the Arithmetic Hierarchy

HALT = {(e, x) : (∃s)[Me,s(x) ↓} ∈ Σ1 − Σ0

FIN is all e such that Me halts on finite numb of inputs.
FIN = {e : (∃x)(∀y , s)[y > x =⇒ Me,s(y) ↑} ∈ Σ2 − Π2.
(Proof that FIN /∈ Π2 is hard. So proof that FIN is hard, is hrd.)
INF is all e such that Me halts on infinite numb of inputs.
INF ∈ Π2 − Σ2.
(The proof that INF /∈ Σ2 is hard.)

COF is all e such that Me halts on almost all inputs.
COF ∈ Σ3 − Π3. (The proof that COF /∈ Π3 is not easy.)



Examples of Sets In the Arithmetic Hierarchy

HALT = {(e, x) : (∃s)[Me,s(x) ↓} ∈ Σ1 − Σ0

FIN is all e such that Me halts on finite numb of inputs.
FIN = {e : (∃x)(∀y , s)[y > x =⇒ Me,s(y) ↑} ∈ Σ2 − Π2.
(Proof that FIN /∈ Π2 is hard. So proof that FIN is hard, is hrd.)
INF is all e such that Me halts on infinite numb of inputs.
INF ∈ Π2 − Σ2.
(The proof that INF /∈ Σ2 is hard.)
COF is all e such that Me halts on almost all inputs.
COF ∈ Σ3 − Π3. (The proof that COF /∈ Π3 is not easy.)



Facts About the Arithmetic Hierarchy

Σ0 ⊂ Σ1 ⊂ Σ2 ⊂ · · · .
Π0 ⊂ Π1 ⊂ Π2 ⊂ · · · .
For all i ≥ 1, Σi and Πi are incomparable.



Facts About the Arithmetic Hierarchy

Σ0 ⊂ Σ1 ⊂ Σ2 ⊂ · · · .

Π0 ⊂ Π1 ⊂ Π2 ⊂ · · · .
For all i ≥ 1, Σi and Πi are incomparable.



Facts About the Arithmetic Hierarchy

Σ0 ⊂ Σ1 ⊂ Σ2 ⊂ · · · .
Π0 ⊂ Π1 ⊂ Π2 ⊂ · · · .

For all i ≥ 1, Σi and Πi are incomparable.



Facts About the Arithmetic Hierarchy

Σ0 ⊂ Σ1 ⊂ Σ2 ⊂ · · · .
Π0 ⊂ Π1 ⊂ Π2 ⊂ · · · .
For all i ≥ 1, Σi and Πi are incomparable.



Back to Ramsey Theory

Vote on how to finish the theorem.

Thm Let COL be computable 2-coloring of
(N
2

)
. Then there exists

an infinite homog H such that
1) H ∈ Σ1.
2) H ∈ Π1.
3) H ∈ Σ2.
4) H ∈ Π2.
5) H is not in the arithmetic hierarchy.



Back to Ramsey Theory

Vote on how to finish the theorem.

Thm Let COL be computable 2-coloring of
(N
2

)
. Then there exists

an infinite homog H such that
1) H ∈ Σ1.
2) H ∈ Π1.
3) H ∈ Σ2.
4) H ∈ Π2.
5) H is not in the arithmetic hierarchy.



Back to Ramsey Theory

Vote on how to finish the theorem.

Thm Let COL be computable 2-coloring of
(N
2

)
. Then there exists

an infinite homog H such that

1) H ∈ Σ1.
2) H ∈ Π1.
3) H ∈ Σ2.
4) H ∈ Π2.
5) H is not in the arithmetic hierarchy.



Back to Ramsey Theory

Vote on how to finish the theorem.

Thm Let COL be computable 2-coloring of
(N
2

)
. Then there exists

an infinite homog H such that
1) H ∈ Σ1.

2) H ∈ Π1.
3) H ∈ Σ2.
4) H ∈ Π2.
5) H is not in the arithmetic hierarchy.



Back to Ramsey Theory

Vote on how to finish the theorem.

Thm Let COL be computable 2-coloring of
(N
2

)
. Then there exists

an infinite homog H such that
1) H ∈ Σ1.
2) H ∈ Π1.

3) H ∈ Σ2.
4) H ∈ Π2.
5) H is not in the arithmetic hierarchy.



Back to Ramsey Theory

Vote on how to finish the theorem.

Thm Let COL be computable 2-coloring of
(N
2

)
. Then there exists

an infinite homog H such that
1) H ∈ Σ1.
2) H ∈ Π1.
3) H ∈ Σ2.

4) H ∈ Π2.
5) H is not in the arithmetic hierarchy.



Back to Ramsey Theory

Vote on how to finish the theorem.

Thm Let COL be computable 2-coloring of
(N
2

)
. Then there exists

an infinite homog H such that
1) H ∈ Σ1.
2) H ∈ Π1.
3) H ∈ Σ2.
4) H ∈ Π2.

5) H is not in the arithmetic hierarchy.



Back to Ramsey Theory

Vote on how to finish the theorem.

Thm Let COL be computable 2-coloring of
(N
2

)
. Then there exists

an infinite homog H such that
1) H ∈ Σ1.
2) H ∈ Π1.
3) H ∈ Σ2.
4) H ∈ Π2.
5) H is not in the arithmetic hierarchy.



Known

Thm
1) ∀ computable COL :

(N
2

)
→ [2] ∃ a Π2 homog set.

2) ∃ computable COL :
(N
2

)
→ [2] with no Σ2 homog set.

What about 3-ary Ramsey?
1) ∀ computable COL :

(N
3

)
→ [2] ∃ a Π3 homog set.

2) ∃ computable COL :
(N
3

)
→ [2] with no Σ3 homog set.

What about a-ary Ramsey?
1) ∀ computable COL :

(N
a

)
→ [2] ∃ a Πa homog set.

2) ∃ computable COL :
(N
a

)
→ [2] with no Σa homog set.



Known

Thm

1) ∀ computable COL :
(N
2

)
→ [2] ∃ a Π2 homog set.

2) ∃ computable COL :
(N
2

)
→ [2] with no Σ2 homog set.

What about 3-ary Ramsey?
1) ∀ computable COL :

(N
3

)
→ [2] ∃ a Π3 homog set.

2) ∃ computable COL :
(N
3

)
→ [2] with no Σ3 homog set.

What about a-ary Ramsey?
1) ∀ computable COL :

(N
a

)
→ [2] ∃ a Πa homog set.

2) ∃ computable COL :
(N
a

)
→ [2] with no Σa homog set.



Known

Thm
1) ∀ computable COL :

(N
2

)
→ [2] ∃ a Π2 homog set.

2) ∃ computable COL :
(N
2

)
→ [2] with no Σ2 homog set.

What about 3-ary Ramsey?
1) ∀ computable COL :

(N
3

)
→ [2] ∃ a Π3 homog set.

2) ∃ computable COL :
(N
3

)
→ [2] with no Σ3 homog set.

What about a-ary Ramsey?
1) ∀ computable COL :

(N
a

)
→ [2] ∃ a Πa homog set.

2) ∃ computable COL :
(N
a

)
→ [2] with no Σa homog set.



Known

Thm
1) ∀ computable COL :

(N
2

)
→ [2] ∃ a Π2 homog set.

2) ∃ computable COL :
(N
2

)
→ [2] with no Σ2 homog set.

What about 3-ary Ramsey?
1) ∀ computable COL :

(N
3

)
→ [2] ∃ a Π3 homog set.

2) ∃ computable COL :
(N
3

)
→ [2] with no Σ3 homog set.

What about a-ary Ramsey?
1) ∀ computable COL :

(N
a

)
→ [2] ∃ a Πa homog set.

2) ∃ computable COL :
(N
a

)
→ [2] with no Σa homog set.



Known

Thm
1) ∀ computable COL :

(N
2

)
→ [2] ∃ a Π2 homog set.

2) ∃ computable COL :
(N
2

)
→ [2] with no Σ2 homog set.

What about 3-ary Ramsey?

1) ∀ computable COL :
(N
3

)
→ [2] ∃ a Π3 homog set.

2) ∃ computable COL :
(N
3

)
→ [2] with no Σ3 homog set.

What about a-ary Ramsey?
1) ∀ computable COL :

(N
a

)
→ [2] ∃ a Πa homog set.

2) ∃ computable COL :
(N
a

)
→ [2] with no Σa homog set.



Known

Thm
1) ∀ computable COL :

(N
2

)
→ [2] ∃ a Π2 homog set.

2) ∃ computable COL :
(N
2

)
→ [2] with no Σ2 homog set.

What about 3-ary Ramsey?
1) ∀ computable COL :

(N
3

)
→ [2] ∃ a Π3 homog set.

2) ∃ computable COL :
(N
3

)
→ [2] with no Σ3 homog set.

What about a-ary Ramsey?
1) ∀ computable COL :

(N
a

)
→ [2] ∃ a Πa homog set.

2) ∃ computable COL :
(N
a

)
→ [2] with no Σa homog set.



Known

Thm
1) ∀ computable COL :

(N
2

)
→ [2] ∃ a Π2 homog set.

2) ∃ computable COL :
(N
2

)
→ [2] with no Σ2 homog set.

What about 3-ary Ramsey?
1) ∀ computable COL :

(N
3

)
→ [2] ∃ a Π3 homog set.

2) ∃ computable COL :
(N
3

)
→ [2] with no Σ3 homog set.

What about a-ary Ramsey?
1) ∀ computable COL :

(N
a

)
→ [2] ∃ a Πa homog set.

2) ∃ computable COL :
(N
a

)
→ [2] with no Σa homog set.



Known

Thm
1) ∀ computable COL :

(N
2

)
→ [2] ∃ a Π2 homog set.

2) ∃ computable COL :
(N
2

)
→ [2] with no Σ2 homog set.

What about 3-ary Ramsey?
1) ∀ computable COL :

(N
3

)
→ [2] ∃ a Π3 homog set.

2) ∃ computable COL :
(N
3

)
→ [2] with no Σ3 homog set.

What about a-ary Ramsey?

1) ∀ computable COL :
(N
a

)
→ [2] ∃ a Πa homog set.

2) ∃ computable COL :
(N
a

)
→ [2] with no Σa homog set.



Known

Thm
1) ∀ computable COL :

(N
2

)
→ [2] ∃ a Π2 homog set.

2) ∃ computable COL :
(N
2

)
→ [2] with no Σ2 homog set.

What about 3-ary Ramsey?
1) ∀ computable COL :

(N
3

)
→ [2] ∃ a Π3 homog set.

2) ∃ computable COL :
(N
3

)
→ [2] with no Σ3 homog set.

What about a-ary Ramsey?
1) ∀ computable COL :

(N
a

)
→ [2] ∃ a Πa homog set.

2) ∃ computable COL :
(N
a

)
→ [2] with no Σa homog set.



Known

Thm
1) ∀ computable COL :

(N
2

)
→ [2] ∃ a Π2 homog set.

2) ∃ computable COL :
(N
2

)
→ [2] with no Σ2 homog set.

What about 3-ary Ramsey?
1) ∀ computable COL :

(N
3

)
→ [2] ∃ a Π3 homog set.

2) ∃ computable COL :
(N
3

)
→ [2] with no Σ3 homog set.

What about a-ary Ramsey?
1) ∀ computable COL :

(N
a

)
→ [2] ∃ a Πa homog set.

2) ∃ computable COL :
(N
a

)
→ [2] with no Σa homog set.



Computable Combinatorics

Question Given a proof that is non-constructive one can ask the
following:
Is there an alternative proof that is constructive? (usually not)
If the input is computable then is the output on some level of AH?
Is there a weaker version that is constructive?

The study of these questions in field X is called Computable X.

There is a 131 page survey of computable combinatorics here:
https://www.cs.umd.edu/~gasarch/papers/rcombsur.pdf

I had more energy back then.

https://www.cs.umd.edu/~gasarch/papers/rcombsur.pdf


Computable Combinatorics

Question Given a proof that is non-constructive one can ask the
following:

Is there an alternative proof that is constructive? (usually not)
If the input is computable then is the output on some level of AH?
Is there a weaker version that is constructive?

The study of these questions in field X is called Computable X.

There is a 131 page survey of computable combinatorics here:
https://www.cs.umd.edu/~gasarch/papers/rcombsur.pdf

I had more energy back then.

https://www.cs.umd.edu/~gasarch/papers/rcombsur.pdf


Computable Combinatorics

Question Given a proof that is non-constructive one can ask the
following:
Is there an alternative proof that is constructive? (usually not)

If the input is computable then is the output on some level of AH?
Is there a weaker version that is constructive?

The study of these questions in field X is called Computable X.

There is a 131 page survey of computable combinatorics here:
https://www.cs.umd.edu/~gasarch/papers/rcombsur.pdf

I had more energy back then.

https://www.cs.umd.edu/~gasarch/papers/rcombsur.pdf


Computable Combinatorics

Question Given a proof that is non-constructive one can ask the
following:
Is there an alternative proof that is constructive? (usually not)
If the input is computable then is the output on some level of AH?

Is there a weaker version that is constructive?

The study of these questions in field X is called Computable X.

There is a 131 page survey of computable combinatorics here:
https://www.cs.umd.edu/~gasarch/papers/rcombsur.pdf

I had more energy back then.

https://www.cs.umd.edu/~gasarch/papers/rcombsur.pdf


Computable Combinatorics

Question Given a proof that is non-constructive one can ask the
following:
Is there an alternative proof that is constructive? (usually not)
If the input is computable then is the output on some level of AH?
Is there a weaker version that is constructive?

The study of these questions in field X is called Computable X.

There is a 131 page survey of computable combinatorics here:
https://www.cs.umd.edu/~gasarch/papers/rcombsur.pdf

I had more energy back then.

https://www.cs.umd.edu/~gasarch/papers/rcombsur.pdf


Computable Combinatorics

Question Given a proof that is non-constructive one can ask the
following:
Is there an alternative proof that is constructive? (usually not)
If the input is computable then is the output on some level of AH?
Is there a weaker version that is constructive?

The study of these questions in field X is called Computable X.

There is a 131 page survey of computable combinatorics here:
https://www.cs.umd.edu/~gasarch/papers/rcombsur.pdf

I had more energy back then.

https://www.cs.umd.edu/~gasarch/papers/rcombsur.pdf


Computable Combinatorics

Question Given a proof that is non-constructive one can ask the
following:
Is there an alternative proof that is constructive? (usually not)
If the input is computable then is the output on some level of AH?
Is there a weaker version that is constructive?

The study of these questions in field X is called Computable X.

There is a 131 page survey of computable combinatorics here:
https://www.cs.umd.edu/~gasarch/papers/rcombsur.pdf

I had more energy back then.

https://www.cs.umd.edu/~gasarch/papers/rcombsur.pdf


Computable Combinatorics

Question Given a proof that is non-constructive one can ask the
following:
Is there an alternative proof that is constructive? (usually not)
If the input is computable then is the output on some level of AH?
Is there a weaker version that is constructive?

The study of these questions in field X is called Computable X.

There is a 131 page survey of computable combinatorics here:
https://www.cs.umd.edu/~gasarch/papers/rcombsur.pdf

I had more energy back then.

https://www.cs.umd.edu/~gasarch/papers/rcombsur.pdf

