BILL, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!

Computable Ramsey Theory

Exposition by William Gasarch

February 18, 2025

Thm $\forall \operatorname{COL}: \binom{\mathbb{N}}{2} \rightarrow [2] \exists \text{ inf homog set.}$

Thm $\forall \text{COL}: \binom{\mathbb{N}}{2} \rightarrow [2] \exists \text{ inf homog set.}$ If someone gave you a coloring $\text{COL}: \binom{\mathbb{N}}{2} \rightarrow [2]$ could you give them the set H?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

Thm $\forall \text{COL}: \binom{\mathbb{N}}{2} \rightarrow [2] \exists \text{ inf homog set.}$

If someone gave you a coloring COL: $\binom{\mathbb{N}}{2} \rightarrow [2]$ could you give them the set *H*?

Using the proof I showed you, no. You need to ask questions like $\exists^{\infty} x \text{COL}(x) = \mathbb{R}$. These are hard to ask.

Thm $\forall \text{COL}: \binom{\mathbb{N}}{2} \rightarrow [2] \exists \text{ inf homog set.}$

If someone gave you a coloring COL: $\binom{\mathbb{N}}{2} \to [2]$ could you give them the set *H*?

Using the proof I showed you, no. You need to ask questions like $\exists^{\infty} x \text{COL}(x) = \mathbb{R}$. These are hard to ask.

Furthore, the question is not rigorous. To make this question rigorous we need a notion of **give**.

Thm $\forall \text{COL}: \binom{\mathbb{N}}{2} \rightarrow [2] \exists \text{ inf homog set.}$

If someone gave you a coloring COL: $\binom{\mathbb{N}}{2} \to [2]$ could you give them the set H?

Using the proof I showed you, no. You need to ask questions like $\exists^{\infty} x \text{COL}(x) = \mathbb{R}$. These are hard to ask.

Furthore, the question is not rigorous. To make this question rigorous we need a notion of **give**.

Is there a program with the following behaviour:

Thm $\forall \text{COL}: \binom{\mathbb{N}}{2} \rightarrow [2] \exists \text{ inf homog set.}$

If someone gave you a coloring COL: $\binom{\mathbb{N}}{2} \rightarrow [2]$ could you give them the set *H*?

Using the proof I showed you, no. You need to ask questions like $\exists^{\infty} x \text{COL}(x) = \mathbb{R}$. These are hard to ask.

Furthore, the question is not rigorous. To make this question rigorous we need a notion of **give**.

Is there a program with the following behaviour: Input A program *M* that computes a 0-1-valued function on $\binom{\mathbb{N}}{2}$. (so a 2-coloring).

Thm $\forall \text{COL}: \binom{\mathbb{N}}{2} \rightarrow [2] \exists \text{ inf homog set.}$

If someone gave you a coloring COL: $\binom{\mathbb{N}}{2} \rightarrow [2]$ could you give them the set *H*?

Using the proof I showed you, no. You need to ask questions like $\exists^{\infty} x \text{COL}(x) = \mathbb{R}$. These are hard to ask.

Furthore, the question is not rigorous. To make this question rigorous we need a notion of **give**.

Is there a program with the following behaviour: **Input** A program *M* that computes a 0-1-valued function on $\binom{\mathbb{N}}{2}$. (so a 2-coloring). **Output** A program *N* that computes a 0-1-valued function on \mathbb{N} (so a set) such that the set $\{x : N(x) = 1\}$ is homog.

Thm $\forall \text{COL}: \binom{\mathbb{N}}{2} \rightarrow [2] \exists \text{ inf homog set.}$

If someone gave you a coloring COL: $\binom{\mathbb{N}}{2} \rightarrow [2]$ could you give them the set *H*?

Using the proof I showed you, no. You need to ask questions like $\exists^{\infty} x \text{COL}(x) = \mathbb{R}$. These are hard to ask.

Furthore, the question is not rigorous. To make this question rigorous we need a notion of **give**.

Is there a program with the following behaviour: Input A program *M* that computes a 0-1-valued function on $\binom{\mathbb{N}}{2}$. (so a 2-coloring). Output A program *N* that computes a 0-1-valued function on \mathbb{N} (so a set) such that the set $\{x : N(x) = 1\}$ is homog. We will refine and ask this question later.

And The Answer Is

<ロト < 置 > < 置 > < 置 > < 置 > の < @</p>

And The Answer Is

▲□▶▲□▶▲臣▶▲臣▶ 臣 の�?

No.

And The Answer Is

No. We will define terms and see what we can say.

 M_1, M_2, \ldots is a standard list of Turing Machines (TMs). You can think of them as all Java programs.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

 M_1, M_2, \ldots is a standard list of Turing Machines (TMs). You can think of them as all Java programs.

 $M_{e,s}(x)$ means that we run M_e for s steps.

 M_1, M_2, \ldots is a standard list of Turing Machines (TMs). You can think of them as all Java programs.

 $M_{e,s}(x)$ means that we run M_e for s steps. $M(x) \downarrow = a$ means that M(x) halts and outputs a.

 M_1, M_2, \ldots is a standard list of Turing Machines (TMs). You can think of them as all Java programs.

 $M_{e,s}(x)$ means that we run M_e for *s* steps. $M(x) \downarrow = a$ means that M(x) halts and outputs *a*. M(x) = a means that M(x) halts and outputs *a* (we use the \downarrow when we want to emphasize that M(x) halts).

 M_1, M_2, \ldots is a standard list of Turing Machines (TMs). You can think of them as all Java programs.

 $M_{e,s}(x)$ means that we run M_e for *s* steps. $M(x) \downarrow = a$ means that M(x) halts and outputs *a*. M(x) = a means that M(x) halts and outputs *a* (we use the \downarrow when we want to emphasize that M(x) halts).

M(x) \uparrow means that M(x) does not halt.

A set A is *computable* if there is a TM M such that

$$\begin{array}{rcl} x \in A & \Longrightarrow & M(x) \downarrow = 1 \\ x \notin A & \Longrightarrow & M(x) \downarrow = 0 \end{array}$$

(ロト (個) (E) (E) (E) (E) のへの

A set A is *computable* if there is a TM M such that

$$\begin{array}{rcl} x \in A & \Longrightarrow & M(x) \downarrow = 1 \\ x \notin A & \Longrightarrow & M(x) \downarrow = 0 \end{array}$$

(ロト (個) (E) (E) (E) (E) のへの

(Older books use the term *recursive* instead of *computable*.)

A set A is *computable* if there is a TM M such that

$$\begin{array}{rcl} x \in A & \Longrightarrow & M(x) \downarrow = 1 \\ x \notin A & \Longrightarrow & M(x) \downarrow = 0 \end{array}$$

(Older books use the term *recursive* instead of *computable*.)

If *M* is a TM such that on every input *x*, $M(x) \downarrow \in \{0, 1\}$ (so *M* computes some set) then $L(M) = \{x \colon M(x) = 1\}$

ション ふゆ アメリア メリア しょうくしゃ

A set A is *computable* if there is a TM M such that

$$\begin{array}{rcl} x \in A & \Longrightarrow & M(x) \downarrow = 1 \\ x \notin A & \Longrightarrow & M(x) \downarrow = 0 \end{array}$$

(Older books use the term *recursive* instead of *computable*.)

If *M* is a TM such that on every input *x*, $M(x) \downarrow \in \{0, 1\}$ (so *M* computes some set) then $L(M) = \{x : M(x) = 1\}$

A set A is computably enumerable (c.e.) if there is a TM M:

$$\begin{array}{rcl} x \in A & \Longrightarrow & M(x) \downarrow \\ x \notin A & \Longrightarrow & M(x) \uparrow \end{array}$$

A set A is *computable* if there is a TM M such that

$$\begin{array}{rcl} x \in A & \Longrightarrow & M(x) \downarrow = 1 \\ x \notin A & \Longrightarrow & M(x) \downarrow = 0 \end{array}$$

(Older books use the term recursive instead of computable.)

If *M* is a TM such that on every input *x*, $M(x) \downarrow \in \{0, 1\}$ (so *M* computes some set) then $L(M) = \{x : M(x) = 1\}$

A set A is computably enumerable (c.e.) if there is a TM M:

$$\begin{array}{rcl} x \in A & \Longrightarrow & M(x) \downarrow \\ x \notin A & \Longrightarrow & M(x) \uparrow \end{array}$$

(Older books use the term *recursively enumerable* (*r.e.*) instead of *computably enumerable* (*c.e.*).)

Sets are classified in the Arithmetic hierarchy. **comp** means **computable**.

Sets are classified in the Arithmetic hierarchy. **comp** means **computable**. $A \in \Sigma_0$ if A is comp.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

Sets are classified in the Arithmetic hierarchy. **comp** means **computable**.

- $A \in \Sigma_0$ if A is comp.
- $A \in \Pi_0$ if A is comp.

Sets are classified in the Arithmetic hierarchy. **comp** means **computable**.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- $A \in \Sigma_0$ if A is comp.
- $A \in \Pi_0$ if A is comp.

 $A \in \Sigma_1$ is there exists comp *B* such that $A = \{x : (\exists y) | (x, y) \in B\}$.

Sets are classified in the Arithmetic hierarchy. **comp** means **computable**.

- $A \in \Sigma_0$ if A is comp.
- $A \in \Pi_0$ if A is comp.

 $A \in \Sigma_1 \text{ is there exists comp } B \text{ such that} \\ A = \{x \colon (\exists y)[(x, y) \in B]\}. \\ A \in \Pi_1 \text{ is there exists comp } B \text{ such that} \\ A = \{x \colon (\forall y)[(x, y) \in B]\}. \end{cases}$

ション ふぼう メリン メリン しょうくしゃ

Sets are classified in the Arithmetic hierarchy. **comp** means **computable**.

- $A \in \Sigma_0$ if A is comp.
- $A \in \Pi_0$ if A is comp.

$$A \in \Sigma_1 \text{ is there exists comp } B \text{ such that} \\ A = \{x \colon (\exists y)[(x, y) \in B]\}. \\ A \in \Pi_1 \text{ is there exists comp } B \text{ such that} \\ A = \{x \colon (\forall y)[(x, y) \in B]\}.$$

 $A \in \Sigma_2$ is there exists comp B such that $A = \{x : (\exists y)(\forall z) [(x, y, z) \in B]\}.$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Sets are classified in the Arithmetic hierarchy. **comp** means **computable**.

 $A \in \Sigma_0$ if A is comp.

 $A \in \Pi_0$ if A is comp.

$$A \in \Sigma_1$$
 is there exists comp B such that
 $A = \{x : (\exists y) [(x, y) \in B]\}.$
 $A \in \Pi_1$ is there exists comp B such that
 $A = \{x : (\forall y) [(x, y) \in B]\}.$

 $A \in \Sigma_2 \text{ is there exists comp } B \text{ such that} \\ A = \{x : (\exists y)(\forall z)[(x, y, z) \in B]\}. \\ A \in \Pi_2 \text{ is there exists comp } B \text{ such that} \\ A = \{x : (\forall y)(\exists z)[(x, y, z) \in B]\}.$

ション ふぼう メリン メリン しょうくしゃ

Sets are classified in the Arithmetic hierarchy. **comp** means **computable**.

 $A \in \Sigma_0$ if A is comp.

 $A \in \Pi_0$ if A is comp.

$$A \in \Sigma_1 \text{ is there exists comp } B \text{ such that} \\ A = \{x \colon (\exists y)[(x, y) \in B]\}. \\ A \in \Pi_1 \text{ is there exists comp } B \text{ such that} \\ A = \{x \colon (\forall y)[(x, y) \in B]\}.$$

 $A \in \Sigma_2 \text{ is there exists comp } B \text{ such that} \\ A = \{x : (\exists y)(\forall z)[(x, y, z) \in B]\}. \\ A \in \Pi_2 \text{ is there exists comp } B \text{ such that} \\ A = \{x : (\forall y)(\exists z)[(x, y, z) \in B]\}.$

ション ふぼう メリン メリン しょうくしゃ

One can define Σ_i , Π_i .

Examples of Sets In the Arithmetic Hierarchy

$$\text{HALT} = \{(e, x) \colon (\exists s) [M_{e,s}(x) \downarrow\} \in \Sigma_1 - \Sigma_0$$

Examples of Sets In the Arithmetic Hierarchy

HALT = {(*e*, *x*): (∃*s*)[*M*_{*e*,*s*}(*x*) ↓} ∈ Σ₁ − Σ₀ FIN is all *e* such that *M*_{*e*} halts on finite numb of inputs.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Examples of Sets In the Arithmetic Hierarchy

HALT = {(e, x): (∃s)[$M_{e,s}(x) \downarrow$ } ∈ $\Sigma_1 - \Sigma_0$ FIN is all e such that M_e halts on finite numb of inputs. FIN = {e: (∃x)(∀y, s)[$y > x \implies M_{e,s}(y) \uparrow$ } ∈ $\Sigma_2 - \Pi_2$. (Proof that FIN $\notin \Pi_2$ is hard. So proof that FIN is hard, is hrd.)

Examples of Sets In the Arithmetic Hierarchy

$$\begin{split} &\mathrm{HALT} = \{(e,x) \colon (\exists s) [M_{e,s}(x) \downarrow\} \in \Sigma_1 - \Sigma_0 \\ &\mathrm{FIN} \text{ is all } e \text{ such that } M_e \text{ halts on finite numb of inputs.} \\ &\mathrm{FIN} = \{e \colon (\exists x) (\forall y, s) [y > x \implies M_{e,s}(y) \uparrow\} \in \Sigma_2 - \Pi_2. \\ &(\text{Proof that FIN } \notin \Pi_2 \text{ is hard. So proof that FIN is hard, is hrd.}) \\ &\mathrm{INF} \text{ is all } e \text{ such that } M_e \text{ halts on infinite numb of inputs.} \\ &\mathrm{INF} \in \Pi_2 - \Sigma_2. \\ &(\text{The proof that INF} \notin \Sigma_2 \text{ is hard.}) \end{split}$$

Examples of Sets In the Arithmetic Hierarchy

HALT = { $(e, x): (\exists s)[M_{e,s}(x) \downarrow$ } $\in \Sigma_1 - \Sigma_0$ FIN is all *e* such that M_e halts on finite numb of inputs. FIN = { $e: (\exists x)(\forall y, s)[y > x \implies M_{e,s}(y) \uparrow$ } $\in \Sigma_2 - \Pi_2$. (Proof that FIN $\notin \Pi_2$ is hard. So proof that FIN is hard, is hrd.) INF is all *e* such that M_e halts on infinite numb of inputs. INF $\in \Pi_2 - \Sigma_2$. (The proof that INF $\notin \Sigma_2$ is hard.) COF is all *e* such that M_e halts on almost all inputs. COF $\in \Sigma_3 - \Pi_3$. (The proof that COF $\notin \Pi_3$ is not easy.)

・ロト・個ト・モト・モト・ ヨー りゅぐ

 $\Sigma_0\subset \Sigma_1\subset \Sigma_2\subset \cdots.$

(4日) (個) (主) (主) (主) の(の)

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

$$\begin{split} \Sigma_0 \subset \Sigma_1 \subset \Sigma_2 \subset \cdots . \\ \Pi_0 \subset \Pi_1 \subset \Pi_2 \subset \cdots . \end{split}$$

 $\Sigma_0 \subset \Sigma_1 \subset \Sigma_2 \subset \cdots$. $\Pi_0 \subset \Pi_1 \subset \Pi_2 \subset \cdots$. For all $i \ge 1$, Σ_i and Π_i are incomparable.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Back to Ramsey Theory

▲□▶▲圖▶▲≣▶▲≣▶ ■ のへの

Back to Ramsey Theory

Vote on how to finish the theorem.

Thm Let COL be computable 2-coloring of $\binom{\mathbb{N}}{2}$. Then there exists an infinite homog *H* such that

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Thm Let COL be computable 2-coloring of $\binom{\mathbb{N}}{2}$. Then there exists an infinite homog H such that 1) $H \in \Sigma_1$.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Thm Let COL be computable 2-coloring of $\binom{\mathbb{N}}{2}$. Then there exists an infinite homog H such that 1) $H \in \Sigma_1$. 2) $H \in \Pi_1$.

Thm Let COL be computable 2-coloring of $\binom{\mathbb{N}}{2}$. Then there exists an infinite homog *H* such that

- 1) $H \in \Sigma_1$.
- 2) $H \in \Pi_1$.
- 3) $H \in \Sigma_2$.

Thm Let COL be computable 2-coloring of $\binom{\mathbb{N}}{2}$. Then there exists an infinite homog *H* such that

- 1) $H \in \Sigma_1$.
- 2) $H \in \Pi_1$.
- 3) $H \in \Sigma_2$.
- 4) $H \in \Pi_2$.

Thm Let COL be computable 2-coloring of $\binom{\mathbb{N}}{2}$. Then there exists an infinite homog *H* such that

- 1) $H \in \Sigma_1$.
- 2) $H \in \Pi_1$.
- 3) $H \in \Sigma_2$.
- 4) $H \in \Pi_2$.
- 5) H is not in the arithmetic hierarchy.

<ロト < 団 > < 臣 > < 臣 > 三 の < で</p>

Thm

・ロト・日本・モート ヨー うくぐ

Thm

1) \forall computable $\mathrm{COL}\colon \binom{\mathbb{N}}{2} \to [2] \exists$ a Π_2 homog set.

Thm

- 1) \forall computable COL: $\binom{\mathbb{N}}{2} \rightarrow [2] \exists a \Pi_2 \text{ homog set.}$
- 2) \exists computable COL: $(\tilde{\mathbb{N}}) \to [2]$ with no Σ_2 homog set.

Thm

- 1) \forall computable COL: $\binom{\mathbb{N}}{2} \rightarrow [2] \exists a \Pi_2 \text{ homog set.}$
- 2) \exists computable $\operatorname{COL}: \binom{\mathbb{N}}{2} \to [2]$ with no Σ_2 homog set.

What about 3-ary Ramsey?

Thm

- 1) \forall computable COL: $\binom{\mathbb{N}}{\mathbb{N}} \rightarrow [2] \exists a \Pi_2 \text{ homog set.}$
- 2) \exists computable COL: $(\overline{\mathbb{N}}) \to [2]$ with no Σ_2 homog set.

ション ふゆ アメリア メリア しょうくしゃ

What about 3-ary Ramsey? 1) \forall computable COL: $\binom{\mathbb{N}}{3} \rightarrow [2] \exists a \Pi_3$ homog set.

Thm

- 1) \forall computable COL: $\binom{\mathbb{N}}{2} \rightarrow [2] \exists a \Pi_2 \text{ homog set.}$
- 2) \exists computable $\operatorname{COL}: \binom{\mathbb{N}}{2} \to [2]$ with no Σ_2 homog set.

What about 3-ary Ramsey? 1) \forall computable COL: $\binom{\mathbb{N}}{3} \rightarrow [2] \exists a \Pi_3 \text{ homog set.}$ 2) \exists computable COL: $\binom{\mathbb{N}}{3} \rightarrow [2]$ with no Σ_3 homog set.

Thm

- 1) \forall computable COL: $\binom{\mathbb{N}}{\mathbb{N}} \rightarrow [2] \exists a \Pi_2 \text{ homog set.}$
- 2) \exists computable $\operatorname{COL}: \binom{\mathbb{N}}{2} \to [2]$ with no Σ_2 homog set.

What about 3-ary Ramsey? 1) \forall computable COL: $\binom{\mathbb{N}}{3} \rightarrow [2] \exists a \Pi_3 \text{ homog set.}$ 2) \exists computable COL: $\binom{\mathbb{N}}{3} \rightarrow [2]$ with no Σ_3 homog set.

What about *a*-ary Ramsey?

Thm

- 1) \forall computable COL: $\binom{\mathbb{N}}{2} \rightarrow [2] \exists a \Pi_2 \text{ homog set.}$
- 2) \exists computable COL: $\binom{\mathbb{N}}{2} \rightarrow [2]$ with no Σ_2 homog set.

What about 3-ary Ramsey? 1) \forall computable COL: $\binom{\mathbb{N}}{3} \rightarrow [2] \exists a \Pi_3 \text{ homog set.}$ 2) \exists computable COL: $\binom{\mathbb{N}}{3} \rightarrow [2]$ with no Σ_3 homog set.

What about *a*-ary Ramsey? 1) \forall computable COL: $\binom{\mathbb{N}}{a} \rightarrow [2] \exists a \Pi_a$ homog set.

Thm

- 1) \forall computable COL: $\binom{\mathbb{N}}{\mathbb{N}} \rightarrow [2] \exists a \Pi_2 \text{ homog set.}$
- 2) \exists computable COL: $\binom{\mathbb{N}}{2} \rightarrow [2]$ with no Σ_2 homog set.

What about 3-ary Ramsey? 1) \forall computable COL: $\binom{\mathbb{N}}{3} \rightarrow [2] \exists a \Pi_3$ homog set. 2) \exists computable COL: $\binom{\mathbb{N}}{3} \rightarrow [2]$ with no Σ_3 homog set.

What about *a*-ary Ramsey? 1) \forall computable COL: $\binom{\mathbb{N}}{a} \rightarrow [2] \exists a \prod_{a} \text{homog set.}$ 2) \exists computable COL: $\binom{\mathbb{N}}{a} \rightarrow [2]$ with no Σ_{a} homog set.

・ロト・御ト・ヨト・ヨト ヨー わへぐ

Question Given a proof that is non-constructive one can ask the following:

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Question Given a proof that is non-constructive one can ask the following:

Is there an alternative proof that is constructive? (usually not)

Question Given a proof that is non-constructive one can ask the following:

Is there an alternative proof that is constructive? (usually not)

If the input is computable then is the output on some level of AH?

Question Given a proof that is non-constructive one can ask the following:

Is there an alternative proof that is constructive? (usually not) If the input is computable then is the output on some level of AH?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

Is there a weaker version that is constructive?

Question Given a proof that is non-constructive one can ask the following:

Is there an alternative proof that is constructive? (usually not) If the input is computable then is the output on some level of AH? Is there a weaker version that is constructive?

The study of these questions in field X is called **Computable X**.

Question Given a proof that is non-constructive one can ask the following:

Is there an alternative proof that is constructive? (usually not) If the input is computable then is the output on some level of AH? Is there a weaker version that is constructive?

The study of these questions in field X is called **Computable X**. There is a 131 page survey of computable combinatorics here: https://www.cs.umd.edu/~gasarch/papers/rcombsur.pdf

Question Given a proof that is non-constructive one can ask the following:

Is there an alternative proof that is constructive? (usually not) If the input is computable then is the output on some level of AH? Is there a weaker version that is constructive?

The study of these questions in field X is called **Computable X**. There is a 131 page survey of computable combinatorics here: https://www.cs.umd.edu/~gasarch/papers/rcombsur.pdf I had more energy back then.