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Abstract

Let Cn denote the cycle of length n. The generalized Ramsey number of the pair (Cn; Ck);
denoted by R(Cn; Ck); is the smallest positive integer R such that any complete graph with
R vertices whose edges are coloured with two di/erent colours contains either a monochro-
matic cycle of length n in the 1rst colour or a monochromatic cycle of length k in the second
colour. Generalized Ramsey numbers for cycles were completely determined by Faudree–Schelp
and Rosta, based on earlier works of Bondy, Erdős and Gallai. Unfortunately, both proofs are
quite involved and di9cult to follow. In the present paper we treat this problem in a uni1ed,
self-contained and simpli1ed way. We also extend this study to a related geometric problem,
where we colour the straight-line segments determined by a 1nite number of points in the plane.
In this case, the monochromatic subgraphs are required to satisfy an additional (non-crossing)
geometric condition. c© 2001 Elsevier Science B.V. All rights reserved.

1. Introduction

Let n be a positive integer. The Ramsey number R(n) is the smallest integer R with
the property that any complete graph of at least R vertices whose edges are partitioned
into two colour classes contains a monochromatic complete subgraph with n vertices.
This purely graph theoretic concept has its roots in di/erent branches of mathematics,
and the theory developed from it in=uenced such diverse areas as number theory,
ergodic theory, or theoretical computer science.

The existence of R(n) was proved in a more general setting and applied to formal
logic by Ramsey [19]. Even earlier Schur [21] obtained a result of similar =avour in
number theory, in connection with Fermat’s Last Theorem. Dilworth’s classical theorem
[6] is another typical example in the same spirit. The notion and existence of R(n);
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together with an e/ective upper bound, were rediscovered and applied to geometry
by Erdős and Szekeres [9]. The probabilistic proof technique, introduced by Erdős
[7] to establish a lower bound on R(n); is often the starting point in the analysis
of randomized algorithms. For more on Ramsey theory in general, we refer to the
monograph of Graham et al. [13].

For a pair of (simple, undirected) graphs (G;H); the generalized Ramsey number
R(G;H) is the smallest integer R with the property that any complete graph of at least R
vertices whose edges are coloured with two colours (red and blue, say) contains either
a subgraph isomorphic to G all of whose edges are red or a subgraph isomorphic to
H all of whose edges are blue.

It is very di9cult to determine the Ramsey numbers for complete graphs. Even their
order of magnitude is unknown in general. It is easier to deal with paths, trees and
cycles. See the survey paper on generalized Ramsey numbers by Burr [3] and the
regularly updated unnotated bibliography by Radziszowski [18]. In this paper we study
R(G;H) in the case when both graphs G and H are cycles.

The results concerning (generalized) Ramsey numbers for cycles were established
by Chartrand and Schuster [4] (for k¡7), by Bondy and Erdős [2] (for n = k odd, and
for the case when k is much smaller than n), and for all the remaining values by the
second author [20] and by Faudree and Schelp [10] independently. These results are
summarized in the following theorem.

Theorem 1.1. Let 36 k6 n be integers. Then

R(Cn; Ck) =




6 if k = n = 3 or 4;
n + k=2 − 1 if n; k are even;
max{n + k=2 − 1; 2k − 1} if n is odd; k is even;
2n − 1 otherwise (i:e:; if k is odd):

(1)

(For convenience, we use the notation Kn; Cn and Pn for complete graphs, cycles
and paths with n vertices, respectively. Pn and Cn are often referred to as the path of
length n − 1 (resp. the cycle of length n). The vertex set of a graph G is denoted by
V (G).)

All existing proofs of this theorem depend on Tur*an-type results due to Bondy [1]
(resp. Erdős and Gallai [8]). Tur*an-type theorems, often referred to as density results,
assert that any graph whose edge set is dense enough contains certain subgraphs: a
large complete subgraph or a large cycle, for example. They can be used in a natural
way to obtain upper bounds on Ramsey numbers. This phenomenon is studied in detail
in a recent work by Faudree and Simonovits [11].

The above-mentioned results, however, have a certain weakness in the sense that
they only can be applied to determine the generalized Ramsey numbers for cycles if
the length of the smaller cycle is an odd number. Thus, instead of using these theorems
we present a proof scheme which works without parity restrictions. We brie=y sketch
the proof in the case when k is even; the other case can be treated with some slight
modi1cations.
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Let G be a complete graph with at least as many vertices as indicated in the the-
orem. Assume that its edges are coloured with red and blue. If G contains a large
monochromatic cycle (that is, one whose length is at least n) then it is easy to prove,
based on Lemma 2.1, that there is either a blue Ck or a monochromatic Cn in G. If
there is a blue Cn but no blue Ck then the vertex set of the blue Cn can be partitioned
into red cycles that are connected with appropriate red edges such that a red Cn can
be formed from the vertex set of the blue Cn switching from one red cycle to an other
along a connecting red edge. This is worked out in Lemma 3.3. The same idea works
if the largest monochromatic cycle is a blue CL with k6L¡n: either there is a blue
Ck or we can construct a red CL. On the other hand, if the largest monochromatic
cycle is a red CL; L¡n; then it is shown in the proof of Lemma 3.1, how to construct
a blue path of length k − 4 which alternates between the vertex set of the red cycle
and the rest of G; and how to close it to form a blue Ck . The very same argument
yields a contradiction if k¿L; making the proof complete.

In the remaining part of this section we mention a geometric analogue of the problem
we studied so far. A geometric graph is a graph drawn in the plane so that every vertex
corresponds to a point, and every edge is a closed straight-line segment connecting two
vertices but not passing through a third. The

(N
2

)
segments determined by N points in

the plane, no three of which are collinear, form a complete geometric graph with N
vertices. A subgraph of a geometric graph is said to be non-crossing, if no two of its
edges have an interior point in common.

For a pair of (planar) graphs (G;H); the geometric Ramsey number Rg(G;H) is the
smallest integer R with the property that any complete geometric graph with at least
R vertices whose edges are coloured with red and blue contains either a non-crossing
subgraph isomorphic to G all of whose edges are red or a non-crossing subgraph
isomorphic to H all of whose edges are blue. This concept was initiated, in a more
general framework, by K*arolyi et al. [16].

Partial results on geometric Ramsey numbers for cycles and paths were found re-
cently by K*arolyi et al. [17]. Note that they only focused on the symmetrical case
(that is, when G = H). They also used a Tur*an-type result which asserts the existence
of a large non-crossing path in any dense geometric graph whose vertex set is a con-
vex polygon. We feel that there is a close relationship between the abstract and the
geometric problems which still has to be revealed. See Conjecture 5:1; for example.

With a minor modi1cation in the proof, a result of [17] can be extended to obtain
some bounds on asymmetrical geometric Ramsey numbers, as follows.

Theorem 1.2. Let k and l be integers greater than 2. Then

(k − 1)(l − 1) + 1 = Rg(Ck; Pl)6Rg(Ck; Cl)

6 (k − 1)(l − 2) + (k − 2)(l − 1) + 2:

This paper is organized as follows. Section 2 contains a collection of standard obser-
vations which we refer to frequently throughout the paper. Section 3 contains the proof



90 G. K)arolyi, V. Rosta / Theoretical Computer Science 263 (2001) 87–98

of Theorem 1:1 based on two main lemmas which we prove separately in Section 4.
Finally, we prove Theorem 1.2 and raise an open problem in Section 5.

2. Preliminary results

In this section we gather a few simple observations that go back to Bondy and Erdős
[2]. For the purpose of our proof of Theorem 1:1, some of the original results of [2]
are presented in a slightly extended form in the following lemma.

Lemma 2.1. Let G be any complete graph whose edges are coloured with red and
blue.
(1) Suppose that G contains a monochromatic C2l+1 for some l¿ 3. Then G also

contains a monochromatic C2l.
(2) Suppose that G contains a monochromatic C2l for some l¿ 3. Then G also

contains a monochromatic C2l−2.
(3) Suppose that G contains a (monochromatic) blue cycle C = x1x2 : : : x2lx1; but does

not contain any monochromatic C2l−1. Then each of the complete subgraphs G1

and G2; induced on the vertex sets {x1; x3; : : : ; x2l−1} (resp. {x2; x4; : : : ; x2l}); is a
red Kl.

(4) Suppose that G contains a blue cycle C = x1x2 : : : x2lx1 such that G1 = {x1; x3; : : : ;
x2l−1} and G2 = {x2; x4; : : : ; x2l} are red complete subgraphs with l vertices. Then
one of the following 3 possibilities occur.

(i) G contains a red Cm for each 36m6 2l.
(ii) G contains a blue Ck for each 3¡k6 2l+ 1 resp. for each 36 k6 2l+ 1;

according to the cases l¿ 3 and l = 2; respectively.
(iii) G contains a blue Ck for each even number 46 k6 2l and a red Cm for

each 36m6 min{�|V (G)|=2�; 2l}.

We include the full proof of this lemma for convenience. Before turning to the actual
proof, let us make a useful note 1rst. Let C = x1x2 : : : xtx1 denote any cycle. An edge
of the form xixi+j will be referred to as a chord of length j; or simply as a j-chord,
of C. (Here, and throughout the paper, indices are always meant modulo the length of
the cycle we consider.)

Proposition 2.2. Let C = x1x2 : : : xtx1 be a monochromatic blue (red) cycle in G. Then
either G contains a blue (red) Ct−1 or every 2-chord of C is red (blue).

Proof of Lemma 2.1.
(1) Suppose that C = x1x2 : : : x2l+1x1 is a monochromatic cycle, say blue, and there is

no monochromatic C2l. A repeated application of Proposition 2.2 yields that every
2-chord of C is red, and every 4-chord of C is blue. Were some 3-chord, say x1x4;
blue, the cycle x1x4x3x2x6x7 : : : x2l+1x1 would be a blue C2l. Thus, we may conclude
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that every 3-chord of C is red, hence the cycle x1x4x7x9 : : : x2l+1x2x2lx2l−2 : : : x6x3x1

is a red C2l; a contradiction.
(2) If l = 3; then the statement follows from the fact that R(C4; C4) = 6; whose proof

is left to the reader. Thus, assume that l¿ 4; and let C = x1x2 : : : x2lx1 be a
monochromatic cycle, say blue. If there is a monochromatic C2l−1 then we are
done in view of (1). Otherwise, it follows from Proposition 2.2 that every 2-chord
of C is red. Were there no blue C2l−2; every 3-chord of C would be red, in
which case x1x2l−1 : : : x3x2lx2l−2 : : : x4x1 would be a red cycle of length 2l − 1; a
contradiction.

(3) We have to prove that all 2j-chords of C are red for 16 j6 l=2. This is immedi-
ate from Proposition 2:2; if j = 1. Consider any 2j-chord, say x1x2j+1. In each of the
cycles x1x2j+1x2jx2j−1 : : : x2x2j+3x2j+4 : : : x2lx1 and x1x2 : : : x2j−1x2lx2l−1 : : : x2j+1x1; all
edges, except possibly two, are blue. Since these are cycles of length 2l − 1; we
can conclude that either x1x2j+1 is a red edge or both edges x2x2j+3 and x2j−1x2l

are red. The second possibility can be excluded by considering the (2l− 1)-cycle
x2x4 : : : x2lx2j−1x2j−3 : : : x2j+3x2.

(4) If there are two independent red edges connecting G1 and G2; then it is easy to
form a red Cm for each 36m6 2l. Otherwise, all the edges connecting G1 and
G2 are blue with the possible exception of some edges that have a common vertex
x. We may assume that x ∈ G1. Note that x∈C; hence there are at least two blue
edges connecting x to G2. It is obvious then, how to 1nd a blue Ck for any even
number 2¡k6 2l. Let D = V (G)\V (C). If a vertex of D is connected to both G1

and G2 by some blue edges, then it is easy to 1nd a blue Ck for any 3¡k6 2l+1;
and even a blue C3 in the special case when l = 2. Otherwise, there is an i∈{1; 2}
and a set F of at least �|D|=2� vertices in D such that every edge connecting F
with Gi is red. In this case |F ∪Gi|¿ �|V (G)|=2�. It is not di9cult then to 1nd a
red Cm for any 36m6 min{�|V (G)|=2�; 2l}; making the proof complete.

Finally, note that in parts (3) and (4) of Lemma 2.1, the roles played by the two
colours can be interchanged, just like in Proposition 2.2.

3. Proof of Theorem 1.1

The proof of R(C3; C3) = R(C4; C4; ) = 6 is an easy and well-known exercise, which
is left to the reader. In the sequel we only consider the remaining cases.

Let us indicate the lower bounds 1rst. In K2n−2; colour the edges of a complete
bipartite graph Kn−1; n−1 with blue and all the remaining edges with red. Then it does
not contain a red Cn. Moreover, it does not contain a blue Ck either, if k is odd.
Similar constructions, based on the complete bipartite graphs Kk−1; k−1 and Kn−1; k=2−1;
respectively, provide examples for lower bounds when n is odd (resp. when k is even).

Turning to the upper bounds, 1rst we will assume that k 
= 3 if n¿4 is an even
number. This assumption will also be made tacitly throughout Lemmas 3:2 and 3:3.
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The main technical details of the proof are contained in Lemmas 3.1 and 3.3, whose
proofs we postpone until the next section.

Lemma 3.1. Let G be a complete graph with n + k=2 − 1 vertices; where k is even
and n¿4. If we colour the edges of G with red and blue; then either there exists a
monochromatic cycle of length at least n or there is a blue Ck in G. In particular;
if m¿4 is an even number; then any complete graph with (3=2)m− 1 vertices; whose
edges are coloured with two colours; contains a monochromatic cycle of length at
least m.

This lemma can be combined with Lemma 2.1 to obtain the following result.

Lemma 3.2. Let G be any complete graph with (at least) as many vertices as it is
indicated in Theorem 1:1. If we colour the edges of G with red and blue; then G
contains either a monochromatic Cn or a blue Ck .

Proof. Assume that there is no blue Ck in G. According to Lemma 3.1, there exists
a monochromatic cycle of length at least n. This follows immediately from the 1rst
part of the lemma, if k is even. On the other hand, if k is odd, then |V (G)|¿ 2n −
1¿ (3=2)(n + 1) − 1. In this case we can apply the second part of the lemma with
either m = n or m = n + 1; according to the parity of n.

Assume now, by way of contradiction, that G does not contain any monochromatic
Cn. It follows from Lemma 2.1(1) and (2) that n is odd and G contains a monochro-
matic cycle C of length n + 1. Suppose 1rst that C is blue, and apply Lemma 2.1(3)
and (4) with l = �n=2�. It follows, in each possible case, that G contains either a red
Cn or a blue Ck; a contradiction. We can arrive at a contradiction in a similar way
if C is red: we only need to reverse the roles of the two colours when applying the
lemma.

Now the upper bounds of the theorem follow immediately from the following lemma.

Lemma 3.3. Let G be a complete graph such that |V (G)|¿ 2n − 1 if n is even and
k is odd. Consider any two-colouring of its edges with red and blue. If G contains a
blue Cn; then it also contains either a red Cn or a blue Ck .

Consider 1nally the case when k = 3 and n¿4 is an even number. Let G be any
complete graph with at least 2n − 1 vertices whose edges are coloured with red and
blue. We have already proved that R(Cn; Cn−1) = 2n − 1. Assume that there is no red
Cn and let C = x1x2 : : : xn−1x1 be a blue Cn−1. If the edge xixi+2 is blue for some
16 i6 n − 1; then xixi+1xi+2xi is a blue triangle and we are done. Thus, we may
assume that all edges xixi+2 are red. Choose a vertex v∈V (G)\V (C). If both edges
vxi−1 and vxi+1 were red for some i; then xi−1vxi+1xi+3 : : : xi−3xi−1 would be a red Cn.
Thus, we can conclude that there is an i such that vxi and vxi+1 are blue edges, and
then vxixi+1v is a blue triangle. This completes the proof of the theorem.
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4. Proof of the main lemmas

The proof of Lemma 3.1 depends on Lemma 3.3, so we prove this second lemma
1rst.

4.1. Proof of Lemma 3.3

Let C = x1x2 : : : xnx1 be a blue cycle. If C has a blue chord of length k − 1; then G
contains a blue Ck . Thus, we will assume that all (k − 1)-chords of C are red.

First, we prove the lemma under the assumption that all 2-chords of C are red, too.
If n is odd, then they form a red Cn; and we are done. If both n and k are even, then
the cycle x3x5 : : : x1xkxk−2xk−4 : : : xk+2x3 is a red Cn. Otherwise, n is even and k is odd.

If G1 = {x1; x3; : : : ; xn−1} and G2 = {x2; x4; : : : ; xn} are complete red subgraphs (this
is the case if, for example, n6 6; in particular, if k = 3 and n = 4), then we are done
on account of Lemma 2.1(4). If not, then there exists a blue 2j-chord, say x1x1+2j; for
some 2¡2j6 n=2; 2j 
= k − 1. We may assume that n¿ 8 and k¿3.

If there are indices #; $ of di/erent parity such that both edges x#x$ and x#−2x$+2 are
red, then the cycle x#x#+2 : : : x#−2x$+2x$+4 : : : x$x# is a red Cn. In the sequel we assume
that this is not the case.

Suppose 1rst that k¡2j + 1 and choose # = k − 2; $ = 2j + 2. Either the edge x#x$

is blue, in which case x1x2 : : : x#x$x2j+1x1 is a blue Ck; or the edge x#−2x$+2 is blue, in
which case x1x2 : : : x#−2x$+2x$+1x$x2j+1x1 is a blue cycle of length k.

Assume next that 2j + 1¡k¡n − 1. Choose # = 2j; $ = k. Again, either x#x$ or
x#−2x$+2 is a blue edge, and it is easy to 1nd a blue cycle of length k.

Suppose 1nally that k = n−1. Either there is a blue Ck or, as in the proof of Lemma
2.1(3), the edges xnx2j−1; x2x2j+3; xn−1x2j and x3x2j+2 are red. Consider now any vertex
v ∈ D = V (G)\V (C). If both edges vx1 and vx2 are blue, then either xixi+3 is a blue
edge for some 26 i6 n− 2; in which case x1vx2x3 : : : xixi+3xi+4 : : : x1 is a blue Ck; or
the cycle x2xn : : : x4x7x9 : : : x5x2 is a red Cn. Thus, we may assume that one of the edges
vxi and vxi+1 is red for any v∈D and 16 i6 n. Note that |D|¿ n=2. Thus, if every
edge that connects C and D is red, then it is straightforward to 1nd a red cycle of
length n; alternating between C and D. Otherwise, there is a vertex v∈D and an index
16 i6 n such that vxi is a blue edge. In this case, vxi−1 and vxi+1 are red edges. If
i 
= 1; 2j; 2j + 2; then v can be inserted, between xi−1 and xi+1; in the red (n− 1)-cycle
x2x4 : : : xnx2j−1x2j−3 : : : x2j+3x2; and a red Cn is obtained this way. Otherwise, we can
do the same with the (n − 1)-cycle x3x5 : : : xn−1x2jx2j−2 : : : x2j+2x3. This completes the
proof of the lemma in the case when all 2-chords of C are red.

For the remaining part of the proof we assume that there is a blue 2-chord, say x1x3.

Proposition 4.1. If xixi+2 is a blue edge; then either G contains a blue Ck or the
edges xi+1xi+k−1; xi+1xi−k+3 and xjxj+k are red for i − k + 26 j6 i.

Introduce d = gcd(n; k−1); n′ = n=d and the red paths P+
j = xjxj+(k−1) : : : xj+(n′−1)(k−1)

and P−
j = xjxj−(k−1) : : : xj−(n′−1)(k−1). Each of the cycles P+

j xj and P−
j xj is a red Cn′ .
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These cycles are formed by (k − 1)-chords of C; and they de1ne a partition of the
vertex set of C into d parts. In particular, if d = 1 then P+

1 x1 is a red Cn. Thus, assume
that d¿1 and there is no blue Ck in G. We have to make a slight distinction.

Suppose 1rst that d = k −1. Let P∗ denote the path obtained from P+
k+1; omitting its

last vertex x2 and the edge incident to it. It follows from Proposition 4:1, that either
P+

4 P+
5 : : : P+

k P∗P+
3 x2x4 is a red Cn or the edge x2x4 is blue. If we repeat this argument,

then we eventually 1nd a red Cn; unless all 2-chords of C are blue. In the second
case, every edge of the cycle x3x4x6 : : : x2kx3 is blue, except x3x2k ; which must then be
red. We can apply Proposition 4.1 again to show that P+

3 P+
4 : : : P+

k P−
k+1x3 is a red Cn

in this case.
Assume 1nally that 1¡d¡k − 1. Write % = (k − 1) − (d − 1). It follows from

Proposition 4.1, that either one of the cycles P+
j P+

j+1 : : : P+
j+d−1xj is a red Cn or the

%-chords xj−%xj are blue for every 26 j6 k + 1− (d− 1). In the second case, de1ne
the blue paths Qi = xixi−%xi−%+1xi+1 and Ri = xixi+1 : : : xnx1. If d is odd, then the cycle
Q3Q5 : : : Qdxd+2Rd+2−%x2x3 is a blue Ck; which is impossible according to the above
made assumption. We arrive at a similar contradiction in the case when d is even
if we consider the cycle Q3Q5 : : : Qd+1xd+3Rd+3−%x3. This means that we can always
prove the existence of a red Cn if G does not contain any blue Ck; and the proof is
complete.

4.2. Proof of Lemma 3.1

First, we prove the 1rst part of the lemma. Assume that the largest monochromatic
cycle in G has L6 n − 1 vertices. It follows from R(C4; C4) = 6 that L¿ 4 if n¿4.
Note that it is enough to establish the existence of a blue Ck under the assumption
that G contains a red CL. Indeed, assume that G contains a blue CL. If we exchange
the roles of the two colours, we obtain that G contains a red Ck; which is only
possible if k6L. We can then apply Lemma 3.3 to prove that G contains either a
red CL or a blue Ck . Thus, from now on we will assume that G contains a red cycle
C = x1x2 : : : xLx1.

Let D = V (G)\V (C); then |D|¿ k=2. The following simple observation is an easy
consequence of the fact that G contains no red cycle longer than L. Note that if the
edge uxi is red for some u∈D then uxi−1 and uxi+1 are blue edges.

Proposition 4.2. Let u; v∈D and consider 4 consecutive vertices xi; xi+1; xi+2; xi+3 of
C. There is an i6 j6 i + 3 such that both edges uxj and vxj are blue.

If k = 4 then the existence of a blue C4 follows from Proposition 4.2 with an easy
case analysis. Thus, in the sequel we assume that n¿ k¿ 6. The central notion of the
proof is the following. A blue path P = u1z1u2z2 : : : us−1zs−1us is said to be alternating
if (i) u1; : : : ; us ∈D; (ii) z1; : : : ; zs−1 ∈V (C) and if zi = xj then zi+1 ∈{xj+1; xj+2}; (iii)
s6 k=2− 1; and (iv) if zi = xji then

∑s−2
i = 1{(ji+1 − ji) mod L}6L− 4. (For an integer

N; N mod L denotes the smallest non-negative integer congruent modulo L to N .)
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Let P = u1z1u2z2 : : : us−1zs−1us be any maximal alternating path, that is, an alternating
(blue) path of maximum length. It follows from Proposition 4:2 that s¿ 2. For nota-
tional simplicity, we will assume that z1 = x1; then P can be written as P = u1x1u2 : : :
us−1xtus; where t6L − 3. For 16 i6 2s − 2; denote by P−i the path obtained from
P by deleting its last i vertices and the corresponding edges.

Lemma 4.3. Let P = u1x1u2 : : : us−1xtus be a maximal alternating path. Then either
s = k=2− 1 or L− 56 t6L− 3. Moreover; if s¡k=2− 1 and t = L− 5; then xt−1 ∈P.

Proof. Assume that t6L− 5 and s¡k=2− 1; then there exist y1; y2 ∈D\P. It follows
from the maximality of P that usxt+myj is not a blue path for 16 j; m6 2. Were
the edge usxt+1 blue, yjxt+1 would be red, yjxt and yjxt+2 would be blue and the
path P−1y1xt+2y2 would be an alternating (blue) path longer than P. Thus, usxt+1 is
red, usxt+2 is blue, and the edges yjxt+2 are red. Moreover, yjxt are also red edges,
otherwise P−1y1xt+1y2 would be blue. Now it follows from the maximality of L that
the edges usxt+m are blue for m =−1;−2; 3; 4. In particular, P−3usxtus−1 is a (blue)
alternating path as long as P; for which the whole argument can be repeated. This
indicates that us−1xt+m are also blue edges for m =−1;−2; 3; 4.

It follows that xt−1 ∈P; otherwise the blue path P−2xt−1y1xt+1y2 would be an alter-
nating path longer than P. Moreover, were t6L−6; the blue path P−3y1xt+1y2xt+3us−1

would be an alternating path longer than P. This completes the proof of the
lemma.

Now the proof can be completed easily based on the following lemma.

Lemma 4.4. Let P = u1x1u2 : : : us−1xtus be a maximal alternating path. If t6L − 4
then P can be altered to a blue C2s+2. Similarly, if t = L − 3; then P can be altered
to either a blue C2s+2 or to a blue C2s+1.

Indeed, let P = u1x1u2 : : : us−1xtus be a maximal alternating path. Note that it follows
from property (ii) that t6 2s − 3. Thus, were t = L − 3 or t = L − 4; we would have
L6 2s resp. L6 2s + 1. Given that G does not contain any cycle longer than L; this
would then contradict to Lemma 4:4. Similarly, were t = L− 5 and xt−1 ∈ P; property
(ii) would imply that t−16 2(s−1)−3; that is, L6 2s+1; and again we would arrive
at a contradiction. Thus, it follows from Lemma 4.3 that t6L− 5 and s = k=2− 1. In
view of Lemma 4.4, P can be altered to a blue cycle of length 2s + 2 = k and we are
done. To complete the proof of the 1rst part of Lemma 3.1 it only remains to prove
Lemma 4.4.

Proof of Lemma 4.4. Let u∈D\P and j∈{1; s}. If the edge uju is red then it follows
from the maximality of L that there is a blue path ujxiu for some t + 16 i6L.
Moreover, if t6L− 4 then there is such a blue path, even if uju is blue, according to
Proposition 4.2. Thus, let Qj be one of those blue path if such a blue path exists, and



96 G. K)arolyi, V. Rosta / Theoretical Computer Science 263 (2001) 87–98

let Qj be the blue ‘path’ uju otherwise. We have to distinguish 4 cases, according to
the sizes of Q1 and Qs. In the particular case when |Q1|= |Qs|= 3; the union of these
two paths may have either 4 or 5 vertices. In this case it is important that Q1 and Qs

are chosen so that |Q1 ∪Qs| is as large as possible. For convenience, we denote by Q′
1

the (blue) path obtained from Q1 by reversing the order of its vertices.
If |Q1|= |Qs|= 3 and |Q1 ∪Qs|= 5 then PQsQ′

1 is a blue C2s+2. Similarly, if either
|Q1|= 3; |Qs|= 2 or |Q1|= 2; |Qs|= 3 then t = L − 3 and PQsQ′

1 is a blue C2s+1.
Suppose next that |Q1|= |Qs|= 2; in this case t = L − 3 and the path usuu1 is blue.

From the maximality of |L| and |Qj| it follows that either uxt+1; uxt+3; usxt+2 are red
edges or usxt+1; usxt+3; uxt+2 are red edges. If xtxt+2 were red then it would be easy
to construct, in either case, a red cycle which is longer than L. Thus, we can conclude
that either P−1xt+2usuu1 is a blue C2s+1 or P−1xt+2uusxt+3u1 is a blue C2s+2; completing
the proof in this case.

The only remaining case, when |Q1|= |Qs|= 3 and |Q1 ∪Qs|= 4; can be treated with
similar arguments. However, it requires a short case analysis whose details we leave
to the reader.

The second part of Lemma 3.1 follows immediately from the 1rst part if we choose
n = k = m. Note that it implies a result of Gerencs*er and Gy*arf*as [12], namely that for
any 2-colouring of the edges of a complete graph with 3n − 1 vertices, there exists a
monochromatic path of length 2n− 1. In fact, our proof of Lemma 3.1 can be viewed
as an extension of the original idea of [12] adopted to this more di9cult problem, and
it is not likely that the length of the proof can essentially be reduced.

5. Geometric Ramsey numbers

Proof of Theorem 1.2. First we prove that Rg(Ck; Pl)¿ (k−1)(l−1)+1. Indeed, take
(k − 1)(l− 1) points on a circle and partition them into k − 1 groups, each containing
l− 1 consecutive points. Colour with red all edges between points in di/erent groups,
and colour with blue all edges between points belonging to the same group. Any red
non-crossing cycle contains at most one point from each group, hence it can not have
more than k − 1 points. On the other hand, all vertices of a blue connected subgraph
are from the same group, so there is no blue path with more than l − 1 points.

Next, we show that Rg(Ck; Pl)6 (k − 1)(l − 1) + 1. Let p1; p2; : : : ; p(k−1)(l−1)+1

be vertices of a complete geometric graph G of at least (k − 1)(l − 1) + 1 vertices
whose edges are coloured with red and blue. Suppose that they are listed in increas-
ing order of their x-coordinates, which are all distinct. A path pi1pi2 : : : pij is said to
be monotone if i1¡i2¡ · · ·¡ij. De1ne a partial ordering of the vertices, as follows.
Let pi¡pj if i¡j and there is a monotone blue path connecting pi to pj. By Dil-
worth’s theorem [6], one can 1nd either l elements that form a totally ordered subset
Q⊆{p1; p2; : : : ; p(k−1)(l−1)+1} or k elements that are pairwise incomparable. In the 1rst
case, there is a monotone blue path visiting every vertex of Q. In the second case,
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there is a complete red subgraph of k vertices, because any two incomparable ele-
ments are connected by a red edge. By a result of Gritzmann et al. [14], this contains
a non-crossing cycle of length k.

To establish the last inequality, let P denote the vertex set of a complete geometric
graph G of at least (k − 1)(l − 2) + (l − 1)(k − 2) + 2 vertices, whose edges are
coloured with red and blue. Let p be a vertex of the convex hull of P. Consider the
edges incident to p; either at least (k − 1)(l − 2) + 1 of them are blue, or at least
(l − 1)(k − 2) + 1 of them are red. Suppose, without loss of generality, that the 1rst
possibility is the case. Let p1; p2; : : : ; p(k−1)(l−2)+1 be vertices of G; listed in clockwise
order of visibility from p; such that each edge ppi is blue. As in the previous proof, we
say that a path pi1pi2 : : : pij is monotone if i1¡i2¡ · · ·¡ij. De1ne a partial ordering
of the vertices p1; p2; : : : ; p(k−1)(l−2)+1; as follows. Let pi¡pj if i¡j and there is a
monotone blue path connecting pi to pj. Applying Dilworth’s theorem again, there
are either l − 1 elements that form a totally ordered subset, or k elements that are
pairwise incomparable. In the 1rst case, there is a monotone blue path q1q2 : : : ql−1;
and we can complete it to a non-crossing blue cycle pq1q2 : : : ql−1p of length ‘. In
the second case, there is a complete red subgraph of k vertices, and we can argue as
in the previous proof.

In fact, it is inherent in the 1rst part of the proof, that Rg(Ck; Gl)¿ (k−1)(l−1)+1
for any connected graph Gl with l vertices. On the other hand, a result of Chv*atal
[5] states that R(Kk; Tl) = (k − 1)(l − 1) + 1 for every 1xed tree Tl on l vertices.
This means, in the view of [14], that any complete geometric graph with at least
(k − 1)(l− 1) + 1 vertices whose edges are coloured with red and blue contains either
a red non-crossing Ck or a blue Tl (whose edges may possibly cross). In particular,
we have Rg(Ck; Sl) = (k−1)(l−1)+1; where Sl denotes the star with l vertices. Since
Pl and Sl represents the two extremes among trees with l vertices, we have a good
reason to believe that the following conjecture is true.

Conjecture 5.1. Let Tl denote any (<xed) tree with l vertices. Is it true that
Rg(Ck; Tl) = (k − 1)(l − 1) + 1?

Since completing this paper, it has been communicated to us that H. Harborth and
H. Lefmann [15], has obtained similar results about geometric Ramsey numbers, though
they restrict their study for points in convex position.
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