CMSC 752 Homework 9 Morally Due Tue April 8, 2025 Dead Cat April 10

1. (50 points) In class we proved the following:

Thm Let $A \subseteq \mathbb{R}$, |A| = n. Let L, R be such that for all $x \in A$, $L \leq x \leq R$. There exists a real $a \in [L, R]$ such that the following set has size roughly n/3:

$$B_a = \{ x \in A \colon \operatorname{frac}(ax) \in (1/3, 2/3) \}.$$

The proof is nonconstructive, so we don't actually find the a. In this problem we find the a.

We will consider the following subcase and restatement of the theorem. **Thm** Let $n, N \in \mathbb{N}$. Let $A \subseteq \{1, \ldots, N\}$ such that |A| = n. There exists $1 \leq a \leq N$ such that

$$B_a = \{x \in A : \operatorname{frac}(ax) \in (1/3, 2/3)\}.$$

has cardinality $\sim \frac{n}{3}$

And now (finally) for the question.

- (a) (Nothing to hand in for this step.) Write a program that will, on input $n, N \in \mathbb{N}$ (with n < N) and $a \in [1, N]$ (a rational) do the following.
 - i. Produce a set $A \subseteq \{1, ..., N\}$ as follows: For i = 1 to N pick i to be in A with probability $\frac{n}{N}$. Note that A will be of size close to n.
 - ii. Find the size of

$$B_a = \{ x \in A \colon \operatorname{frac}(ax) \in (1/3, 2/3) \}.$$

For future reference let the output of this program be denoted f(n, N, a).

(When debugging your code you should also output B_a itself.)

(b) (Nothing to hand in for this step.)

Write a program that will, given n, find

 $f(n, n^2, \frac{1}{n}), f(n, n^2, \frac{2}{n}), f(n, n^2, \frac{3}{n}), \ldots, f(n, n^2, \frac{n-1}{n}).$

Our interest is when $f(n, n^2, a)$ is large. In particular, we are curious when it is

- between n/4 and n/3
- over n/3

With that in mind, output a table of the following form (the numbers are made up and we only go 5 rows).

n = 36

a	f(36, 1296, a)	$9 \le f(36, 1296, a) \le 11?$	$f(36, 1296, a) \ge 12?$
$\frac{1}{36}$	13	Y	Y
$\frac{2}{36}$	7	N	N
$\frac{3}{36}$	10	Y	N
$\frac{30}{26}$	5	N	N
$\frac{50}{36}$	18	Y	Y

Call this program PROG.

- (c) (This part you don't hand in.) Write a program that, given n, runs the program in the last part BUT only outputs the rows with the top 10 sizes of B_a .
- (d) (20 points) (This part you hand in.) Run PROG(100) and hand in the table. What percent of the rows had sum free sets of size between 25 and 33? Above 34?
- (e) (20 points) Run PROG(200) but don't hand in the table. What percent of the rows had sum free sets of size between 50 and 66? Above 67?
- (f) (10 points) Based on the answers to the last two question, make a conjecture about what happens as n increases (e.g., the fraction of rows that are sum free sets of size above n/3 increases).
- (g) (On your own) Play with the program by varying n and N. Raise questions and get empirical evidence for them. The key question is: do most sets have a sum-free set larger than n/3 and if so how much larger?

- 2. (50 points) Prove of disprove: $\forall \text{COL}: \binom{Q}{2} \rightarrow [2], \exists H \text{ homog, } H \equiv \mathbb{Q}.$
- 3. (Extra Credit)
 - (a) STATE YOUR NAME.
 - (b) Prove of disprove: $\forall \text{COL} \colon \mathsf{R} \rightarrow [2], \exists H \text{ homog, } H \equiv \mathsf{R}.$