\documentclass[12pt,ifthen]{article} \usepackage{amsmath} \usepackage{amssymb} \usepackage{html} \usepackage{hyperref} \newcommand{\D}{{\sf D}} \newcommand{\N}{{\sf N}} \newcommand{\Z}{{\sf Z}} \newcommand{\Q}{{\sf Q}} \newcommand{\R}{{\sf R}} \newcommand{\into}{{\rightarrow}} \newcommand{\ceil}[1]{\lceil #1 \rceil} \newcommand{\COL}{{\rm COL}} \usepackage{amsthm} \newtheorem{theorem}{Theorem} \begin{document} \centerline{\bf CMSC 752 Homework 8} \centerline{\bf Morally Due Tue April 1, 2025} \centerline{\bf Dead Cat April 3} \bigskip \newif{\ifshowsoln} \showsolntrue % comment out to NOT show solution inside \ifshowsoln and \fi blocks. \smallskip {\bf IMPORTANT} In this HW when we refer to {\it Coloring $K_n$} we mean coloring the EDGES of $K_n$. \smallskip {\bf IMPORTANT} In this HW when we ask for a table of numbers or for a number, if its a REAL number we want it to just 2 places. So for us EVERY DAY IS $\pi$-DAY, since we would use 3.14 for $\pi$. \smallskip \begin{enumerate} \item (50 points) In class we proved the following two theorems. {\bf GP Theorem:} $\forall m\ge 1$ $\forall $ 2-col of $K_{f(m)}$ $\exists$ $m$ mono $K_4$'s where $f(m)=m+17$. {\bf ST Theorem:} $\forall m\ge 2$ $\forall$ 2-col of $K_{g(m)}$ $\exists$ $m$ mono $K_4$'s where $g(m)$ be the least $n$ such that $$n\times (n-1)\times (n-2)\times (n-3) > 73440 (m-1).$$ Note that $g(m)\sim m^{1/4}$. {\bf Ratio Version} $\forall $ 2-col of $K_{n}$, $\exists$ $\ge \frac{1}{3060}\binom{n}{4}$ mono $K_4$'s. (We won't need the Ratio Version for this problem, but we will have an analog of it in Problem 2, and it will be discussed in the Extra Credit Problem.) \begin{enumerate} \item Make a table with five columns: $m$, $f(m)$, $g(m)$, $m^{1/4}$, $g(m)/m^{1/4}$, for $m=2$ to $m=100$. It should look like this (the numbers are fake and I only go out two rows). \[ \begin{array}{|c|c|c|c|c|} \hline m & f(m) & g(m) & m^{1/4} & g(m)/m^{1/4} \cr \hline 2 & 19 & 22 & 1.18 & 18.64 \cr 3 & 20 & 24 & 2.21 & 10.86 \cr \hline \end{array} \] \item What is the least $m$ such that $g(m)