CMSC 752 Homework 8 Morally Due Tue April 1, 2025 Dead Cat April 3

IMPORTANT In this HW when we refer to *Coloring* K_n we mean coloring the EDGES of K_n .

IMPORTANT In this HW when we ask for a table of numbers or for a number, if its a REAL number we want it to just 2 places. So for us EVERY DAY IS π -DAY, since we would use 3.14 for π .

1. (50 points) In class we proved the following two theorems.

GP Theorem: $\forall m \geq 1 \forall 2\text{-col of } K_{f(m)} \exists m \text{ mono } K_4$'s

where f(m) = m + 17.

ST Theorem: $\forall m \geq 2 \forall 2$ -col of $K_{g(m)} \exists m \mod K_4$'s

where g(m) be the least n such that

$$n \times (n-1) \times (n-2) \times (n-3) > 73440(m-1).$$

Note that $g(m) \sim m^{1/4}$.

Ratio Version \forall 2-col of K_n , $\exists \geq \frac{1}{3060} \binom{n}{4}$ mono K_4 's. (We won't need the Ratio Version for this problem, but we will have an analog of it in Problem 2, and it will be discussed in the Extra Credit Problem.)

(a) Make a table with five columns: $m, f(m), g(m), m^{1/4}, g(m)/m^{1/4}$, for m = 2 to m = 100. It should look like this (the numbers are fake and I only go out two rows).

m	f(m)	g(m)	$m^{1/4}$	$g(m)/m^{1/4}$
2	19	22	1.18	18.64
3	20	24	2.21	10.86

- (b) What is the least m such that g(m) < f(m).
- (c) Make the table up to 1000 (do not hand that in). Find a constant A such that $g(m) = Am^{1/4}$ is a good approximation for g(m). (I am assuming that the last column in your table has a limit. I have not done this problem so I could be wrong.)

2. Fill in W, X, Y, Z and prove the following Theorems. W, Y, Z are numbers. X is a statement.

GP Theorem: $\forall m \geq 1 \forall 2\text{-col of } K_{f(m)} \exists m \text{ mono } K_5$'s where f(m) = m + W.

ST Theorem: $\forall m \geq 2 \forall 2$ -col of $K_{g(m)} \exists m \mod K_5$'s

where g(m) be the least n such that X.

Note that $g(m) \sim m^Y$.

Ratio Version \forall 2-col of K_n , $\exists \geq Z\binom{n}{5}$ mono K_5 's.

- (a) Make a table with five columns: $m, f(m), g(m), m^Y, g(m)/m^Y$. for m = 2 to m = 100.
- (b) What is the least m such that g(m) < f(m). (I have not done this problem so I do not know if $m \le 100$.)
- (c) Make the table up to 1000 (do not hand that in). Find a constant A such that $g(m) = Am^Y$ is a good approximation for g(m). (I am assuming that the last column in your table has a limit. I have not done this problem so I could be wrong.)

- 3. (0 Points, Extra Credit)
 - (a) Type your name here. (This will not get you any extra credit)
 - (b) In class we proved

Ratio Version \forall 2-col of $K_n \exists \geq \frac{1}{3060} \binom{n}{4}$ mono K_4 's.

Improve the constant from $\frac{1}{3060}$ to something larger. (This might be open.)