\documentclass[12pt,ifthen]{article} \usepackage{amsmath} \usepackage{amssymb} \usepackage{html} \usepackage{hyperref} \newcommand{\D}{{\sf D}} \newcommand{\N}{{\sf N}} \newcommand{\Z}{{\sf Z}} \newcommand{\Q}{{\sf Q}} \newcommand{\R}{{\sf R}} \newcommand{\into}{{\rightarrow}} \newcommand{\ceil}[1]{\lceil #1 \rceil} \newcommand{\COL}{{\rm COL}} \usepackage{amsthm} \newtheorem{theorem}{Theorem} \begin{document} \centerline{\bf CMSC 752 Homework 7} \centerline{\bf Morally Due Tue March 25, 2025} \centerline{\bf Dead Cat March 27} \bigskip \newif{\ifshowsoln} \showsolntrue % comment out to NOT show solution inside \ifshowsoln and \fi blocks. \begin{enumerate} \item (50 points) In this problem we guide you through another proof of the Happy ending theorem. {\it For all $k\ge 3$ there exists an $n$ such that for set $X$ of $n$ points in the plane there exists $Y\subseteq X$ with $|Y|=k$ and the points in $Y$ are the vertices of a convex hull of size $k$.} We show that $n=R_3(k)$ suffices (for all $\COL\colon \binom{[n]}{3}\into [2]$ there is a homog set of size $k$). Let $X= \{p_1,\ldots,p_n\}$. Let $\COL\colon \binom{[n]}{3}$ be defined as follows: $\COL(i