CMSC 752 Homework 6 Morally Due Tue March 11, 2025 Dead Cat March 13

- 1. (50 points) Show that the following is a well-quasi-ordering
 - The set is $\{a, b\}^*$, so all strings over a, b.
 - The ordering is subsequence:

 $x \leq y$ if there is a way to remove letters from y and obtain x. Examples $aabba \leq abbbabbbaa$ $baaa \leq abbbabbbaa$ $baaaa \not\leq abbbabbbaa$

Obvious Hint Use a Minimal Bad Sequence Argument.

2. (50 points) Here is some background on this problem to tell you why it is interesting:

Let \leq_m be the graph minor ordering.

- Kruskal showed that the set of *rooted trees* under \leq_m is a wqo. I did this in class.
- Robertson & Seymour showed that the set of graphs under \leq_m is a wqo. (This was very hard.)
- Look at the set of planar graphs. Note that if G is planar and $H \leq G$ then H is planar. Hence the set of planar graph is *closed* downward under \leq_m .
- Wagner's Theorem: A graph is planar iff it does not have K₅ or K_{3,3} as a minor. We rewrite that:
 G is planar iff (K₅ ∠_m G ∧ K_{3,3} ∠_m G).
- Wagner's theorem can also be seen as a consequence of the Graph Minor Theorem and THIS HW assignment.

Let (X, \preceq) be a well quasi order. ADDED LATER: X is countable. Let $Y \subseteq X$

Assume Y is closed downward: if $a \in Y$ and $b \leq a$ then $b \in Y$. Show that there exists a finite subset of X, $\{o_1, \ldots, o_m\}$ such that $x \in Y$ iff $(o_1 \not\leq x \land \cdots \land o_m \not\leq x)$. 3. (0 points, Extra Credit)

(Note: I do not know how to solve this problem. I do not know if it has been solved.)

- (a) Give your name since Bill is grading it and needs to know your name. (This is not the part thats hard.)
- (b) Prove the following without using Ramsey Theory:

For all n, for all primitive recursive functions $f: \mathbb{N}^n \to \mathbb{N}$, there exists an infinite set $\mathbb{D} \subseteq \mathbb{N}$ such that f restricted to \mathbb{D}^n is not onto.