CMSC 752 Homework 3 Morally Due Tue Feb 18, 2025 Dead Cat Feb 20, 2025

1. (50 points) We proved in class that

If $f: Z \times Z \rightarrow Z$ then there exists $D \subseteq Z$ such that f restricted to $D \times D$ is NOT onto.

But in that proof it was quite possible for f restricted to $D \times D$ to just miss ONE element. So it could be ALMOST onto.

Gary was very mad about that!

A function f is *lazy* if there are an infinite number of elements in the co-domain such that f does not hit (so VERY not-onto).

PROVE the following:

If $f: Z \times Z \rightarrow Z$ then there exists $D \subseteq Z$ such that f restricted to $D \times D$ is lazy.

2. (50 points) Prove that, for all $f: \mathsf{Z} \times \mathsf{Z} \times \mathsf{Z} \to \mathsf{Z}$ there exists $\mathsf{D} \subseteq \mathsf{Z}$ such that f restricted to $\mathsf{D} \times \mathsf{D} \times \mathsf{D}$ is NOT onto.

- 3. (0 points, Extra Credit)
 - (a) (this part gets you no credit) Give your name (this will not get you any extra credit, but since I grade this one by putting the names of who got it right into a file, this makes my life easier.)
 - (b) Find some value c and prove the following: *For all* COL: (^{ω²}₂)→[1,000,000] *there exists a c-homog set.* Some points about this.
 - Your answer had to be well written.
 - The optimal answer is c = 4 though I doubt you can obtain that. I am really looking for a NOT-MESSY proof of a weaker-than-known result.
 - The first step you probably all know: WITHIN each copy of ω 2-ary Ramsey, and then for all of the copies of ω use 1-ary Ramsey. So you can just ASSUME that within each copy of ω , all of the edges are RED. (No extra credit for getting just that far.)
 - Some people tried to use the Infinite Bipartite Ramsey Theorem on all pairs. This won't work since that yields 3-homog which is not true. However, if you can get something like this to work (I couldn't) that would be great.