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Peano Arithmetic

Peano Arithmetic is a finite set of axioms and rules of inference.
Language =,S , 0. S(x) = x + 1. +,×,÷,−, <,> can be defined
in terms of S . Negative numbers can be defined. We also have
symbols ∧, ∨, ¬, ∃, ∀ (they range over N).
Axioms

1) = is symmetric, reflexive, transitive.

2) 0 is a natural number. For all n, S(n) is a natural number.

3) S is 1-1.

4) There is no n such that S(n) = 0.

5) Let φ(x) be a formula. If φ(0) is true and
(∀n)[φ(n) =⇒ φ(n + 1)] then ∀n)[φ(n)].

6) The usual logical rules of inference.
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Peano and Decidability

Lemma The following is decidable:

Given a formula φ which you are promised is provable in PA, find
the proof in PA of φ.
PROMISE ALGORITHM
1) Input φ
2) For n = 1 to ∞

For all strings x of length n
(There are a finite number of x .)

Determine if x encodes a proof of φ in PA.
If it does then output x and STOP.

END OF ALGORITHM
Note If you are given a φ that has no proof in PA then this
algorithm will run forever. Thats fine.
Note All we use about PA is that it has a finite number of axioms
and rules of inference.
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What is True about Peano Arithmetic

1) Virtually all truths about N can be derived from PA.

2) It may have been thought that all truths about N can be
derived from PA.

3) It was definitely thought that some system of axioms would
suffice to prove all theorems about N and with some care all
Theorems in Math.

4) They were wrong.
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Godel’s Incompleteness Theorem

Godel’s Incompleteness Theorem There exists a sentence φ
such that

1) φ is true of the natural numbers.
2) φ is not provable in PA.

This theorem would not be so impressive if it was tied to PA.
However, we will see after the proof that it applies to any proof
system with a finite number of axioms and rules of inference.
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Godel’s Inc Theorem: Then and Now

1) Godel’s Inc Theorem stunned the math world who thought that
there was a proof system that could derive all of math.

2) The Proof of Godel’s Inc Theorem was very hard and very clever

3) We will prove it in TWO slides.
How is that possible?

a) Alot of the proof involves coding math statements into
numbers. Today we just assume that all works out.

b) We will use that Hilbert’s Tenth Problem is undecidable.
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Proof of Godel’s Inc. Thm: SLIDE ONE

We restate Godel’s Theorem in Concrete Terms.

Thm There exists a polynomial p ∈ Z[~x ] such that

1) (∀~a ∈ Z)[p(~a) = 0].

2) Statement 1 cannot be proven in PA.
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Proof of Godel’s Inc. Thm: SLIDE TWO
Assume, BWOC, that for every polynomial p ∈ Z[~x ] such that
(∀~a ∈ Z)[p(~a) = 0], there is a proof in PA of this.

We use this to obtain an algorithm for H10.

ALGORITHM FOR H10
1) Input p ∈ Z[~x ].
2) Do the following simultaneously

a) For all ~a ∈ Z compute p(~a).
If you ever get 0, output YES and STOP.

b)Run PROMISE on the statement (∀~a)[p(~a) 6= 0].
If produces proof that (∀~a)[p(~a) 6= 0], output NO and STOP.

END OF ALGORITHM

Since we are assuming that for every p ∈ Z[~x ] such that
(∀~a)[p(~a) 6= 0]. there is a proof of that in PA, the above algorithm
always halts with the correct answer and hence solves H10. This is
a contradiction.

DONE in two slides!
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