\documentclass[12pt,ifthen]{article} \usepackage{url} \usepackage{comment} \newif{\ifshowsoln} % \showsolntrue \newcommand{\und}{\_\_\_\_\_\_\_\_\_} \newcommand{\N}{\mathbb{N}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\lf}{\left\lfloor} \newcommand{\rf}{\right\rfloor} \newcommand{\lc}{\left\lceil} \newcommand{\rc}{\right\rceil} \newcommand{\Ceil}[1]{\left\lceil {#1}\right\rceil} \newcommand{\ceil}[1]{\left\lceil {#1}\right\rceil} \newcommand{\floor}[1]{\left\lfloor{#1}\right\rfloor} \newcommand{\goes}{\rightarrow} \usepackage{amsmath} \usepackage{amssymb} % for \nmid \begin{document} \centerline{\bf HW 09 CMSC 452} \centerline{\bf Morally Due TUES April 8 11:00AM} \centerline{\bf Dead-Cat Due THU April 10 11:00AM} \begin{enumerate} \item (50 points) A Leo-Grammar is a grammar where each rule is of one of the following forms: $AB\goes CDE$ $AB\goes CD$ $A\goes BC$ $A\goes \sigma$ $A\goes e$ For example, the following is a Leo-Grammar $S\goes AA$ $SS\goes ABB$ $A\goes BB$ $AA \goes AAA$ $A\goes a$ $B\goes b$ I have no idea what this grammar generates, nor do I care. (Note that Leo-Grammars are NOT context free grammars.) We assume $\Sigma=\{a,b\}$. If $G$ is a Leo-Grammar then $L(G)$ is the set of strings in $\{a,b\}^*$ that $G$ generates. \begin{enumerate} \item (15 points) Find a function $f$ such that the following is true: {\it A Leo-Grammar with $t$ nonterminals has $O(f(t))$ rules.} \item (15 points) Find a function $g$ such that the following is true: {\it The number of Leo-Grammars with $t$ nonterminals is $O(g(t))$. } \item (20 points) Find a function $h$ such that the following is true: {\it $\exists w\in\{a,b\}^*$ of length $O(h(t))$ such that there is NO Leo-Grammar $G$ with $t$ nonterminals such that $L(G)=\{w\}$. } \end{enumerate} \newpage \item (50 points) \begin{enumerate} \item (15 points) Let $\Sigma=\{a,b,c,d\}$. Give a Context Sensitive Grammar for the language $$\{ w \colon \#_a(w)=\#_b(w)=\#_c(w)=\#_d(w) \}.$$ How many rules does it have? \item (15 points) Let $\Sigma = \{a_1,a_2,\ldots,a_n\}$. Give a Context Sensitive Grammar for the language $$\{ w \colon \#_{a_1}(w)=\#_{a_2}(w)=\cdots=\#_{a_n}(w) \}.$$ (you may use DOT DOT DOT in your grammar) \item (20 points) Find a function $r$ such that your Context Sensitive Grammar from the last part has $O(r(n))$ rules. \end{enumerate} \end{enumerate} \end{document}