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1 deg ( cos (vπ/n)) & deg ( sin (vπ/n)): Field Theory

1.1 Background Needed

We state well known facts from field theory and use them to prove our results. All fields are
subsets of C.

Definition 1.1 Let F and E be fields. E is a field extension of F if

• F ⊆ E.

• The operations +,× in F are +,× in E restricted to F.

Fact 1.2

1. If E is a field extension of F then E is a vector space over F. We denote the dimension
of this vector space by [E : F].

2. If D is a field extension of E and E is a field extension of F then [D : F] = [D : E][E : F].

Definition 1.3 Let F ⊆ C be a field and let α ∈ C− F.

F(α) =

{
p(α)

q(α)
: p, q ∈ F[x] and q(α) 6= 0

}
.

Definition 1.4 Let E be a field extension of F. Let α ∈ E. The degree of α over F is the
smallest d ∈ N such that α is the root of a degree-d polynomial in F[x]. We denote this by
degF(α). If F = Q then we just use deg which matches the definition of deg we have been
using.

Fact 1.5 F(α) is a field extension of F and [F(α) : F] = degF(α).

Proof:
Clearly F(α) is a field extension of F.
Let degF (α) = d.
We show that The set {1, α, α2, . . . , αd−1} forms a basis for [F(α) : F].

1



• Every element of F(α) is a polynomial in α with coefficients in F. Since degF (α) = d,
the polynomials can be made to be of degree ≤ d.

• Let a0, . . . , ad−1 ∈ F be such that
∑d−1

i=0 aiα
i = 0. Since degF (α) = d, all of the ai are

0.

Note 1.6 Lets say you prove that [Q(α) : Q] = d, so deg(α) = d. Can Fact ?? help find a
polynomial of degree d that has α as a root. No. All you find out is that {1, α, . . . , αd} is
linearly dependent over Q, hence there exists such a polynomial. But the proof of Fact ??
does not say how to find the polynomial.

BEGINNING OF COMMENTS TO AUGUSTE
(I DO NOT KNOW IF THE NOTE ABOVE IS CORRECT.)
We just proved [F(α) : F ] = degF(α)] but for us for now lets just consider [Q(α) : F ] =

degQ(α)]
1) The proof is contructive in one direction: Given α we can get a basis, namely

{1, α, . . . , αd−1}.

(Note- not clear what given means since α is irrational.)
2) Can the following be done: Given α and d where one is told that there is a poly

p ∈ Z[x] of degree d that has α as a root, find that poly?
Actually the answer is yes for a stupid way: enumerate all polys and test each one until

you find one. But even this is not really right since α is irrational so this would need perfect
real arithmetic.

It may be that for our case of cos(vπ/n) this can be dealt with.
So the question is, is there a SANE algorithm.
3) In Lemma ?? below we prove the following:
——-
Let 1 ≤ v ≤ n− 1 be such that gcd(v, n) = 1.
[Q(cos(2πv/n)) : Q] = φ(n)/2.
Hence deg(cos(2πv/n)) = φ(n)/2.
————-
SO here are my questions:
From the proof of this one can one, given v, n (that is an input you CAN be given) find

poly p ∈ Z[x] of degree φ(n)/2 that has α as a root.
If so, then (a) is the algorithm SANE, and (b) does the algorithm need perfect arithmetic

for reals?
Much like Maya’s personal statement, I don’t want our final paper to dwell on this point.

I want to BRIEFLY talk about how the proof using Field theory can or cannot be used to
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find he poly, and if yes then does or does not use real arithmetic. I will then also state this
as probably one of the CONS when I discuss PROS and CONS early in the paper
END OF COMMENTS TO AUGUSTE

Notation 1.7 ζn = e2πi/n. (ζ is the Greek letter zeta.)

Definition 1.8 Let n ∈ N. α is an nth root of unity if αn = 1. α is a primitive root of unity
if (1) αn = 1, and (2) for every n′ < n, αn

′ 6= 1.

Fact 1.9

1. There are n nth roots of unity: ζ1n, . . . , ζ
n
n .

2. There are φ(n) primitive nth roots of unity: {ζvn : gcd(v, n) = 1}.

3. If α is a primitive nth root of unity then deg(α) = φ(n).

1.2 deg ( cos (vπ/n)) Via Field Theory

Lemma 1.10 Let 1 ≤ v ≤ n− 1 be such that gcd(v, n) = 1.

1. [Q(ζvn) : Q] = φ(n).

2. If n ≥ 3 then [Q(ζvn) : Q(cos(2πv/n))] = 2.

3. [Q(cos(2πv/n)) : Q] = φ(n)/2.

4. deg(cos(2πv/n)) = φ(n)/2.

Proof:
1) [Q(ζvn) : Q] = φ(n) follows from Fact ?? and Fact ??.3.

2) [Q(ζvn) : Q(cos(2πv/n))] = degQ(cos(2πv/n))(ζ
v
n). Hence we need to find degQ(cos(2πv/n))(ζ

v
n).

degQ(cos(2πv/n))(ζ
v
n) ≤ 2 since ζvn is a root of x2 − 2 cos(2vπ/n)x+ 1.

degQ(cos(2πv/n))(ζ
v
n) ≥ 2:

Assume, by way of contradiction, that ζvn is the root of a linear polynomial with co-
efficients in Q(cos(2πv/n)). Then ζvn ∈ Q(cos(2πv/n)) and hence ζvn ∈ R. Since n ≥ 3,
ζn ∈ C− R. This is a contradiction.

3) By Fact ??.2

[Q(ζvn) : Q] = [Q(ζvn) : Q(cos(2πv/n))][Q(cos(2πv/n)) : Q]

By Part 1 and Part 2 we have
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φ(n) = 2[Q(cos(2πv/n)) : Q].

Hence [Q(cos(2πv/n)) : Q] = φ(n)/2.

4) By Part 3 [Q(cos(2πv/n)) : Q] = φ(n)/2. By Fact ??

deg(cos(2πv/n))) = [Q(cos(2πv/n)) : Q] = φ(n)/2.

Theorem 1.11 Let 1 ≤ v ≤ n such that gcd(v, n) = 1.

1. If n is odd then deg(cos(vπ/n)) = φ(n)/2.

2. If n is even then deg(cos(vπ/n)) = φ(n).

Proof:
1) n is odd. There are two cases

Case 0: v is even. Then v = 2v′. Hence deg(cos(vπ/n)) = deg(cos(2v′π/n)).
Since gcd(v, n) = 1, gcd(v′, n) = 1. Hence, by Lemma ??.4, deg(cos(2v′π/n)) = φ(n)/2,

so deg(cos(vπ/n)) = φ(n)/2.

Case 1: v is odd. Note that deg(cos(vπ/n)) = deg(cos(2vπ/2n)).
Since v is odd and gcd(v, n) = 1, gcd(v, 2n) = 1. Hence, by Lemma ??.4, deg(cos(2vπ/2n)) =

φ(2n)/2. Since n is odd, φ(2n) = φ(n) so deg(cos(vπ/n)) = φ(n)/2.

2) n is even. Note that deg(cos(vπ/n)) = deg(cos(2vπ/2n)).
Since n is even and gcd(v, n) = 1, gcd(v, 2n) = 1. Hence, by Lemma ??.4, deg(cos(2vπ/2n)) =

φ(2n)/2, Since n is even, φ(2n) = 2φ(n) so deg(cos(vπ/n)) = φ(n).

1.3 deg ( sin (vπ/n)) Via Field Theory

Lemma 1.12 If n = 4m then [Q(ζ4m) : Q(ζm)] = 2.

Proof:
ζ4m = eπi/2m

ζm = e2πi/m

[Q(ζ4m) : Q(ζm)]
BILL: NEED TO PROVE THIS

Lemma 1.13 Let m ≥ 5 be such that m ≡ 1 (mod 4) (NOTE- WE MAY NOT NEED
THIS). Then [Q(ζm) : Q(cos(π/m)] = 2.
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Proof:
By Lemma ??.2 [Q(ζm) : Q(cos(2π/m)] = 2.
CAN WE USE THIS?
ACTUALLY LEMMA ??.2 SAYS THAT IF gcd(v,m) = 1 THEN [Q(ζvm) : Q(cos(2πv/m)] =

2. MIGHT THAT HELP?

Theorem 1.14 Let n ≡ 4 (mod 16) and n ≥ 20. Then

[Q(ζn) : Q(sin(2π/n))] = 4.

Proof: Let n = 16k + 4 = 4(4k + 1). Let m = 4k + 1. Note that m ≡ 1 (mod 4). Let
r = (m− 1)/4. Then

2π

n
+

2πr

m
=

2π

4m
+

2πr

m
=

π

2m
+

4πr

2m
=

π

2m
+

(m− 1)π

2m
=
π

2
.

Hence sin(2π/n) = cos(2πr/m). (We are using the high school fact that cos(θ) =
sin(π/2− θ).) So

[Q(ζn) : Q(sin(2π/n)] = [Q(ζn) : Q(cos(2πr/m)].

So we need to find [Q(ζn) : Q(cos(2πr/m)]. We first look at the angle

2πr

m
=

2(m− 1)π

4m
=

(m− 1)π

m
= π − π

m
.

cos

(
2πr

m

)
= cos

(
π − π

m

)
= − cos

(
π

m

)
.

So

[Q(ζn) : Q(cos(2πr/m)] = [Q(ζn) : Q(− cos(π/m)] = [Q(ζn) : Q(cos(π/m)]

= [Q(ζn) : Q(ζm)][Q(ζm) : Q(cos(π/m))].

By Lemma ??, [Q(ζn) : Q(ζm] = 2. By Lemma ??, [Q(ζm) : Q(cos(π/m)] = 2. Hence we
have

[Q(ζn) : Q(cos(2πr/m)] = [Q(ζn) : Q(− cos(π/m)] = [Q(ζn) : Q(cos(π/m)] = 2× 2 = 4.

IGNORE WHATS BELOW- NOT SURE IF I NEED IT

Lemma 1.15 Let 1 ≤ v ≤ n− 1 be such that gcd(v, n) = 1. Let ζn = e2πi/n.
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1. [Q(ζn) : Q] = φ(n).

2. [Q(sin(2vπ/n, i)) : Q(sin(2vπ/n))] = 2.

Proof:
1) By Fact ?? [Q(ζn) : Q] = deg(ζn). By Fact ??, deg(ζn) = φ(n). Hence [Q(ζn) : Q] = φ(n).

2) By Fact ??,

[Q(sin(2vπ/n, i)) : Q(sin(2vπ/n))] = degQ(sin(2vπ/n))(i)].

Since i /∈ Q(sin(2vπ/n)),

degQ(sin(2vπ/n))(i)] ≥ 2.

Since i is a root of x2 + 1,
degQ(sin(2vπ/n))(i)] ≤ 2.

Hence
degQ(sin(2vπ/n))(i)] = 2.

Lemma 1.16 Let 1 ≤ v ≤ n − 1 be such that n ≡ 0 (mod 4) and gcd(v, n) = 1. Let
ζn = e2πi/n.

1. If n is a power of 2 then [Q(ζn) : Q(sin(2vπ/n, i))] = 1.

2. If n is not a power of 2 then [Q(ζn) : Q(sin(2vπ/n, i))] = 2.

Proof:
1) BILL: NEED PROOF

2) BILL: NEED PROOF

Lemma 1.17 Let 1 ≤ v ≤ n − 1 be such that n ≡ 0 (mod 4) and gcd(v, n) = 1. Let
ζn = e2πi/n.

1. If n is a power of 2 then deg(sin(2vπ/n) = φ(n)/2.

2. If n is not a power of 2 then deg(sin(2vπ/n) = φ(n)/4.

Proof:
1)

[Q(ζn) : Q] = [Q(ζn) : Q(sin(2vπ/n, i))][Q(sin(2vπ/n, i)) : Q(2vπ/n)][Q(2vπ/n) : Q].
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• By Lemma ??.1[Q(ζn) : Q] = φ(n).

• By Lemma ??.1 [Q(ζn) : Q(sin(2vπ/n, i))] = 1.

• By Lemma ??.2 [Q(sin(2vπ/n, i)) : Q(2vπ/n)][Q(2vπ/n) : Q] = 2.

Hence we have

φ(n) = 1× 2× [Q(2vπ/n) : Q]

So

[Q(2vπ/n) : Q] = φ(n)/2.

2)
[Q(ζn) : Q] = [Q(ζn) : Q(sin(2vπ/n, i))][Q(sin(2vπ/n, i)) : Q(sin(2vπ/n))][Q(sin(2vπ/n)) :

Q].

• By Lemma ??.1[Q(ζn) : Q] = φ(n).

• By Lemma ??.2 [Q(ζn) : Q(sin(2vπ/n, i))] = 2.

• By Lemma ??.2 [Q(sin(2vπ/n, i) : Q(sin(2vπ/n))][Q(sin(2vπ/n)) : Q] = 2.

Hence we have

φ(n) = 2× 2× [Q(sin(2vπ/n)) : Q]

So

[Q(sin(2vπ/n)) : Q] =
1

4
φ(n).

Lemma 1.18 Let 0 ≤ v ≤ n such that gcd(v, n) = 1.

1. If n is even then

(a) If n is a power of 2 then deg(sin(vπ/n) = φ(n).

(b) If n is not a power of 2 then deg(sin(vπ/n) = φ(n)/2.

2. If n is odd then BILL FILL IN.
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Proof:
1) Since n ≡ 0 (mod 4), 2n ≡ 0 (mod 4). Since gcd(v, n) = 1, v is odd, so gcd(n, 2n) = 1.
Note that

sin(vπ/n) = sin(2vπ/2n).

If n is a power of 2 then 2n is a power of 2 so, by Lemma ??.1,

deg(sin(vπ/n)) =
1

2
φ(2n).

a) Let n = 2k. Then

1

2
φ(2n) =

1

2
φ(2k+1) =

1

2
2k = 2k−1 = φ(n).

If n is not a power of 2 then 2n is not a power of 2 so, by Lemma ??.2.

deg(sin(vπ/n)) =
1

4
φ(2n).

b) Let n = 2km where m is odd. Then

1

4
φ(2n) =

1

4
φ(2k+1m) =

1

4
2kφ(m) = 2k−2φ(m)

=
1

2
2k−1φ(m) =

1

2
φ(2k)φ(m) =

1

2
φ(2km) =

1

2
φ(n).

2) sin(vπ/n) = sin(2× 2vπ/4n).
BILL: I don’t see how to get this in the form sin(2v′π/n′) where n′ ≡ 0 (mod 4) and

gcd(v′, n′) = 1.
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