
Dosand Don’ts of Client Authentication on the Web

Kevin Fu,Emil Sit, KendraSmith,Nick Feamster�
fubob,sit, kendras,feamster� @mit.edu

MIT Laboratory for ComputerScience
http://cookies.lcs.mit.edu/

Abstract

Client authenticationhasbeena continuoussourceof
problemson theWeb. Althoughmany well-studiedtech-
niquesexist for authentication,Websitescontinueto use
extremely weak authenticationschemes,especiallyin
non-enterpriseenvironmentssuchasstorefronts. These
weaknessesoftenresultfrom carelessuseof authentica-
tors within Web cookies. Of the twenty-seven siteswe
investigated,we weakenedthe client authenticationon
two systems,gainedunauthorizedaccesson eight, and
extractedthesecretkey usedto mint authenticatorsfrom
one.

We provide a descriptionof the limitations, require-
ments,andsecuritymodelsspecificto Webclientauthen-
tication. This includesthe introductionof the interrog-
ative adversary, a surprisinglypowerful adversarythat
canadaptively querya Website.

We proposea setof hintsfor designinga secureclient
authenticationscheme.Usingthesehints,wepresentthe
designand analysisof a simple authenticationscheme
secureagainstforgeriesby the interrogative adversary.
In conjunctionwith SSL, our schemeis secureagainst
forgeriesby theactiveadversary.

1 Intr oduction

Client authenticationis a common requirementfor
modernWeb sitesas more and more personalizedand
access-controlledservicesmove online. Unfortunately,
many sitesuseauthenticationschemesthatareextremely
weakandvulnerableto attack.Theseproblemsaremost
oftendueto carelessuseof authenticatorsstoredon the
client. Weobservedthis in aninformalsurvey of authen-
ticationmechanismsusedby variouspopularWebsites.
Of thetwenty-sevensiteswe investigated,we weakened

Thisresearchwassupportedby aUSENIX scholarsfellowshipandwas
originally publishedin theProceedingsof the 10thUSENIX Security
Symposium.Washington,D.C.,August,2001.

theclientauthenticationof two systems,gainedunautho-
rized accesson eight, andextractedthe secretkey used
to mint authenticatorsfrom one.

This is perhapssurprisinggiven the existing client
authentication mechanismswithin HTTP [16] and
SSL/TLS[11], two well-studiedmechanismsfor provid-
ing authenticationsecureagainsta rangeof adversaries.
However, therearemany reasonsthatthesemechanisms
are not suitablefor useon the Web at large. Lack of
a centralinfrastructuresuchasa public-key infrastruc-
ture or a uniform Kerberos[41] contributesto the pro-
liferation of weak schemes.We also found that many
Websiteswould designtheir own authenticationmecha-
nismto provide a betteruserexperience.Unfortunately,
designersand implementersoften do not have a back-
groundin securityand,asa result,do not have a good
understandingof the tools at their disposal.Becauseof
thislackof controloveruserinterfacesandunavailability
of a client authenticationinfrastructure,Web sitescon-
tinue to reinvent weakhome-brew client authentication
schemes.

Our goal is to provide designersand implementers
with a clearframework within which to think aboutand
build secureWeb client authenticationsystems.A key
contributionof thispaperis to realizethattheWebis par-
ticularly vulnerableto adaptive chosenmessageattacks.
Wecall anadversarycapableof performingtheseattacks
aninterrogativeadversary. It turnsout thatfor mostsys-
tems,everyuseris potentiallyaninterrogativeadversary.
Despitehaving nospecialaccessto thenetwork (in com-
parisonto theeavesdroppingandactiveadversary),anin-
terrogativeadversaryis ableto significantlycompromise
systemsbyadaptivelyqueryingaWebserver. Webelieve
that, at a minimum, Web client authenticationsystems
shoulddefendagainstthis adversary. However, with this
minimumsecurity, sitesmaycontinueto bevulnerableto
attackssuchaseavesdropping,serverimpersonation,and
streamtampering. Currently, the bestdefenseagainst
suchattacksis to useSSLwith someform of client au-
thentication;seeRescorla[37] for moreinformationon
thesecurityandproperusesof SSL.

1

In Section 2, we describethe limitations, require-
ments,andsecuritymodelsto considerin designingWeb
client authentication.Using thesedescriptions,we cod-
ify the principles underlying the strengthsand weak-
nessesof existing systemsasa setof hints in Section3.
As anexample,wedesignasimpleandflexible authenti-
cationschemein Section4. Weimplementedthisscheme
and analyzedits securityand performance;we present
thesefindingsin Sections5 and6. Section7 compares
thework in thispaperto prior andrelatedwork. Wecon-
cludewith a summaryof our resultsin Section8.

2 Security modelsand definitions

Clientswantto ensurethatonly authorizedpeoplecan
accessandmodify personalinformationthat they share
with Websites.Similarly, Websiteswant to ensurethat
only authorizedusershave accessto the servicesand
contentit provides. Client authenticationaddressesthe
needsof bothparties.

Client authenticationinvolvesproving the identity of
a client (or user)to a serveron the Web. We will use
theterm“authentication”to referto thisproblem.Server
authentication,thetaskof authenticatingtheserverto the
client, is alsoimportantbut is not thefocusthis paper.

In this section,we presentanoverview of thesecurity
modelsanddefinitionsrelevant in client authentication.
Webeginby describingthepracticallimitationsof aWeb
authenticationsystem.This is followedby a discussion
of commonrequirements.We thencharacterizetypesof
breaksandadversaries.

2.1 Practical limitations

Webauthenticationis primarily apracticalproblemof
deployability, useracceptability, andperformance.

Deployability

Web authenticationprotocolsdiffer from traditional
authenticationprotocolsin partbecauseof thelimited in-
terfaceofferedby theWeb. Thegoalis to developanau-
thenticationsystemby usingtheprotocolsandtechnolo-
gies commonlyavailable in today’s Web browsersand
servers.Authenticationschemesfor theInternetat large
cannotrely on technologynot widely deployed. For ex-
ample,Internetkioskstodaydonothavesmartcardread-
ers. Similarly, homeconsumerscurrentlyhave little in-
centive to purchasesmartcardreadersor otherhardware
tokensystems.

Theclientgenerallyspeaksto theserverusingtheHy-
pertext TransferProtocol(HTTP[14]). Thismaybespo-
kenover any transportmechanismbut is typically either
TCPor SSL.SinceHTTP is a stateless,sessionlesspro-
tocol, theclient mustprovide anauthenticationtokenor
authenticatorwith eachrequest.

Computationallows the browser to transforminputs
beforesendingthemto theserver. Thiscomputationmay
be in a strictly definedmanner, suchasin HTTP Digest
authentication[16] and SSL, or it may be much more
flexible. Flexible computationis availablevia Javascript,
Java, Tcl, ActiveX, Flash,andShockwave. Depending
on theapplication,thesetechnologiescouldperhapsas-
sistin theauthenticationprocess.However, mostof these
technologieshave high startupoverheadand mediocre
performance.As a result, usersmay chooseto disable
thesetechnologies.Also, theseextensionsmay not be
availableonall operatingsystemsandarchitectures.Any
standardauthenticationschemeshouldbeasportableand
lightweight aspossible,andthereforerequirefew or no
browserextensions.Thusfor today’s use,any authenti-
cationschemeshouldavoid usingclient computationfor
deployability reasons.If absolutelynecessary, Javascript
andJavaarecommonlysupported.

Client stateallows the client’s browser to storeand
reuseauthenticators.However, storagespacemay be
very limited. In the most limited case, the browser
canonly storepasswordsassociatedwith realms(as in
HTTP Basicauthentication[16]). A moreflexible form
of storagewhich is commonlyavailable in browsersis
thecookie[25, 32]. Cookiesallow a serverstorea value
on a client. In subsequentHTTP requests,the client
automaticallyincludesthe cookie value. A numberof
attributescancontrol how long cookiesarekept andto
whichserversthey aresent.In particular, theservermay
requestthat the client discardthe cookie immediately
or keepit until a specifiedtime. The server may also
requestthat the client only return the cookie to certain
hosts,domains,ports,URLs, or only over securetrans-
ports.Cookiesarethemostwidely deployedmechanism
for maintainingclient state.

Useracceptability

Web sitesmustalsoconsideruseracceptability. Be-
causesiteswantto attractmany users,theclientauthenti-
cationmustbeasnon-confrontationalaspossible.Users
will be discouragedby schemesrequiringwork suchas
installingaplug-in or clicking awaydialogboxes.

Performance

Strongersecurityprotocolsgenerallycostmorein per-
formance. Serviceprovidersnaturallywant to respond

2

to asmany requestsaspossible.Cryptographicsolutions
will usuallydegradeserverperformance.Authentication
shouldnotneedlesslyconsumevaluableserverresources
suchasmemoryandclock cycles.With currenttechnol-
ogy, SSLbecomesunattractive becauseof thecomputa-
tional costof its initial handshaking.

2.2 Server security requirements

The goalsof a server’s authenticationsystemdepend
on thestrengthandgranularityof authenticationdesired.
Granularityrefersto the fact that someservers identify
individualusersthroughouta session,while othersiden-
tify usersonly during the first request. A fine-grained
systemis usefulif specificauthorizationor accountabil-
ity of a useris required. A coarse-grainedsystemmay
bepreferredin situationswherepartialuseranonymity is
desired.

A simpleexampleof acoarse-grainedserviceis asub-
scriptionservice[42]. Subscriptionservicesmerelywish
to verify that a userhaspaid for the servicebeforeal-
lowing accessto read-onlycontent. During the initial
request,a usercould authenticatewith a usernameand
password. Unlesstheserviceallowscustomization,sub-
sequentrequestsneedonly verify that a userhasbeen
authenticatedwithout knowing theuser’sactualidentity.
A trustedthird partycouldhandlethe initial authentica-
tion of a user. Somespecificexamplesof sitesthatonly
requirethis level of authenticationarenewspapers(e.g.,
WSJ.com), online libraries(e.g.,acm.org), andadult
entertainment(e.g.,playboy.com).

However, mostsitescustomizethe datasentbackto
users. This naturally requiresa fine-grainedsystem.
Eachusermustbeidentifiedspecificallyto usetheirpref-
erences.Examplesof this includesitesthatallow users
to customize look-and-feel (e.g., slashdot.org),
sitesthat filter information on behalf of the user(e.g.,
infobeat.com), or siteswhich provide onlineidenti-
ties(e.g.,hotmail.com).

2.3 Confidentiality and pri vacy

Confidentialityis not strictly relatedto authentication
but it is worth mentioningaswell, sinceit canbe pro-
vided by cryptographyand since it is often confused
with authentication.A systemthatprovidesconfidential-
ity protectstraffic from disclosureby anyoneexceptthe
senderandrecipient. In contrast,a systemthatprovides
authenticationensuresthatthepersonsendingor receiv-
ing thedatais indeedwho they claim to be.Thismaybe
confusingbecauseSSL,theonly widely deployedmech-
anism for providing confidentiality of HTTP transac-
tions,providesoptionsfor both authenticationandcon-
fidentiality. The distinctionbetweenconfidentialityand

authenticationis furtherblurredby thepracticeof current
browsersof displayinga singlepadlockwhosemeaning
is ambiguous.

Typically, servers chooseto provide confidentiality
for only certainspecialdataby using SSL. For exam-
ple, financialdatarequireconfidentiality. Sitesthatdeal
with suchinformation,online brokerages, may be auc-
tion sites(e.g., ebay.com), banksandotherfinancial
serviceproviders(e.g.,etrade.com), or online mer-
chants(e.g.,FatBrain.com).

Another issuecommonlyassociatedwith authentica-
tion is userprivacy. Privacy refersto protectingthedata
availableon theserver from accessby unauthorizedpar-
ties. While oftenthe informationprovidedby theserver
is not itself secret,onedoesnot usuallywant unknown
partiesdiscovering their personalinterests. For exam-
ple, a usermay sign up to seediscountairfaresto San
Franciscoor selectstocksin aportfolio for updatedstock
quotes.While thefactthatUS Airwaysis offeringa low
fareor thatCiscostockhasshedfour pointsis not in any
waysecret,it maybetelling to find outif aparticularuser
is interestedin that information.Thereforeserversoften
needto provide waysto keeppersonalizeddataprivate.
Privacy canbe achieved by usingsecureauthentication
andproviding confidentiality.

2.4 Breaks

An adversary’s goal is to break an authentication
schemefasterthanby bruteforce.Hereweuseterminol-
ogy looselyborrowedfrom cryptographyto characterize
thekindsof breaksanadversarycanachieve[19, 31].

In an existential forgery, the adversarycan forge an
authenticatorfor at leastoneuser. However, the adver-
sarycannotchoosetheuser. This maybemostinterest-
ing in the casewhereauthenticatorsprotectaccessto a
subscriptionservice.While anexistentialforgerywould
not give anadversaryaccessto a chosenuser’s account,
it would allow the adversaryto accesscontentwithout
payingfor it. This is theleastharmfulkind of forgery.

In a selectiveforgery, the adversarycanforge an au-
thenticatorfor a particularuser. This adversarycanac-
cessany chosenuser’s personalizedcontent,be it Web
e-mailor bankstatements.

Note thata forgery implies theconstructionof a new
authenticator, not onepreviously seen. In a traditional
replayattack, theadversaryis merelyreusinga captured
authenticator.

Finally, a total breakresultsin recovery of the secret
key usedto mint authenticators.This is themostserious

3

breakin that it allows the adversaryto constructvalid
authenticatorsatany time for all users.

2.5 Adversaries

Weconsiderthreekindsof adversariesthatattackWeb
authenticationprotocols: the interrogative adversary,
the eavesdroppingadversary, andthe activeadversary.
Eachsuccessive adversarypossessesall the abilities of
the weaker adversaries.Note that our definitionsdiffer
somewhat from tradition. Our adversariesgatherinfor-
mation and apply this information to achieve a break.
The adversariesdiffer from eachotheronly in their in-
formationgatheringability.

Interr ogative adversary

The interrogative adversary can make a reasonable
numberof queriesof a Web server. It can adaptively
chooseits next query basedon the answerto a previ-
ous query. We namedthis the interrogative adversary
becausetheadversarymakesmany queries,but lacksthe
ability to sniff thenetwork.

The ability to make queriesis surprisingly power-
ful. The adversarycan passattemptedforgeriesto the
server’s verificationroutine. By creatingnew accounts
on a server, the adversarycan obtain the authenticator
for many differentusernames.This is possibleon any
serverthatallowsaccountcreationwithoutsomeform of
out-of-bandauthentication(e.g.,credit cards)to throttle
requests.In thispaperweassumenosuchthrottleexists.

The interrogative adversarycanalsouseinformation
publicly availableon the server. A server may publish
theusernamesof valid accountholders,perhapsin apub-
lic discussionforum. An adversaryattackingthis server
might find this list useful.

In moretheoreticalterms,the interrogative adversary
maytreattheserverasanoracle.An interrogativeadver-
sarycancarryout anadaptivechosenmessage attack by
repeatedlyaskingfor theserver to mint or verify authen-
ticators[19].

Eavesdropping adversary

The eavesdropping adversary can seeall traffic be-
tweenusersandtheserver, but cannotmodify any pack-
etsflowingacrossthenetwork. Thatis, theadversarycan
sniff thenetwork andreplayauthenticators.This adver-
saryalsohasall the abilities of the interrogative adver-
sary.

An eavesdroppingadversarycanapply its sniffed in-
formationto attemptabreak.Computersystemsresearch
would considerthis an active attack; we do not. This
style of definition is morecommonin the theorycom-
munitywhereattacksconsistof aninformationgathering
process,a challenge,anotheroptionalinformationgath-
eringprocess,andthenanattemptedbreak[3].

Active adversary

The activeadversary canin additionseeandmodify
all traffic betweentheuserandtheserver. Thisadversary
canmountman-in-the-middleattacks.In therealworld,
thissituationmightariseif theadversarycontrolsaproxy
servicebetweentheuserandserver.

3 Hints for Webclient authentication

We presentseveralhintsfor designing,implementing,
andselectinga schemefor client authenticationon the
Web. Someof thesehintscomefrom our experiencesin
breakingauthenticationschemesin useon commercial
Websites.Otherscomefrom generalknowledgeor secu-
rity discussionforums[46]. Following thesehintsis nei-
thernecessarynor sufficient for security. However, they
would have preventedus from breakingthe authentica-
tion schemeson severalWebsitesmentionedin thissec-
tion. Most of thesesiteshave subsequentlyrepairedthe
problemswe identified. Theseincidentshelpto demon-
stratethe usefulnessof thesehints. The detailsof our
analysisaredocumentedin our technicalreport[18].

Although we give advice on how to perform client
authenticationon the Web, we certainly do not advo-
catehaving everyonedesigntheir own securitysystems.
Rather, we hopethat thesehints will assistresearchers
and developersof Web client authenticationand dis-
suadepersonsunfamiliarwith securityfrom implement-
ing home-brew solutions.

The hints fall into threecategories. Section3.1 dis-
cussesthe appropriateuseof cryptography. Section3.2
explainswhy passwordsmustbe protected.Section3.3
offerssuggestionson how to protectauthenticators.

3.1 Usecryptography appropriately

Useof cryptographyis critical to providing authenti-
cation. Without the useof cryptography, it is not pos-
sible to protect a systemfrom the weakest of adver-
saries. However, designingcryptographicsystemsis a
difficult and subtle task. We offer somehints to help
guidetheprospectivedesignerin usingthecryptographic
toolsavailable.

4

Usethe appropriate amount of security

An importantgeneraldesignhint is to KeepIt Sim-
ple, Stupid [27]. The more complex the scheme,the
harderit is to developcompellingargumentsthatit is se-
cure. If you aredesigningor selectinga system,choose
one that providesthe right amountof securityfor your
needs.For example,anonlinenewspapercaresaboutre-
ceiving compensationfor content.An onlinebrokerage
caresaboutconfidentiality, integrity, andauthentication
of information. Thesesecurityneedsarevery different
andcanbesatisfiedby differentsystems.Thereareusu-
ally tradeoffs betweenthe userinterface,usability, and
performance.Choosinganoverly complex or featureful
systemwill make managementmore difficult; this can
easilyresultin securitybreaches.

Do not be inventive

It is ageneralrule in cryptographythatsecuresystems
shouldbedesignedby peoplewith experience.Timehas
repeatedlyshown thatsystemsdesignedor implemented
by amateursareweakandeasilybroken.Thus,while we
encourageresearchin developingauthenticationsystems
for theWeb, it is very risky to designyour own authen-
tication system.This is closelyrelatedto our next hint.
If you do chooseto implementyour own scheme,you
shouldmakeyourprotocolpublicly availablefor review.

Do not rely on the secrecyof a protocol

A securitysystemshouldnot rely on the secrecy of
its protocol. A protocol whosesecurity relies on ob-
scurity is vulnerableto an exposureof the protocol. If
thereareany flaws, suchan exposuremay reveal them.
For example,a secretsystemcan be probedby an in-
terrogative adversaryto determineits behavior to valid
and invalid inputs. This techniqueallowed us to re-
verseengineerthe WSJ.com client authenticationpro-
tocol. By creatingseveral valid accountsand compar-
ing the authenticatorsreturnedby the system,we were
able to determinethat the authenticatorwas the output
of crypt (salt,username� secretstring)where � de-
notesconcatenation.Oncewe understoodthe formatof
theauthenticator, wewereableto quickly recoverthese-
cretstring,“March20”, by mountinganadaptivechosen
messageattack. Theprogram,includedin the technical
report [18], runs in �����	�
� queriesratherthan the in-
tended������� . Assumingeachquerytakes1 second,this
programfinishesin 17 minutesinsteadof the intended
�
������� years.This informationconstitutesatotalbreak,
allowing usto mint valid authenticatorsfor all users.

On the otherhand,OpenMarket publishedtheir de-
signandimplementation[29], andYahoo[47] provided

uswith the completedetailsof their authenticationsys-
tem. We believe theseschemesare reasonablystrong;
for moredetailsseetherelevantsectionsof our technical
report[18].

Insteadof relyingonthesecrecy of thescheme,relyon
thesecrecy of awell-selectedsetof keys. Ensurethatthe
protocolis publicsothatit canbereviewedfor flawsand
improved.This will leadto a moresecuresystemthana
privateprotocolwhich appearsundefeatablebut may in
practicebefairly easyto break.If youarehesitantto re-
vealthedetailsof anauthenticationscheme,thenit may
bevulnerableto attackby aninterrogativeadversary.

Understandthepropertiesof cryptographic tools

When designingan authenticationscheme,crypto-
graphic tools are critical. Theseinclude hash func-
tions such as SHA-1 [15], authenticationcodes like
HMAC [24], and higher-level protocolslike SSL [11].
Thepropertieseachtool mustbeunderstood.

For example, SSL alone doesnot provide user au-
thentication.Although SSL canauthenticateuserswith
X.509 client certificates,commercialWeb sites rarely
usethis featurebecauseof PKI deployment problems.
Instead,SSL is usedto provide confidentiality for au-
thenticationtokensand data. However, confidentiality
doesnot ensureauthentication.

Misunderstanding the properties of SSL made
FatBrain.com vulnerableto selective forgeriesby an
interrogative adversary. In an earlierscheme,their au-
thenticatorconsistedof a usernameanda sessionidenti-
fier basedon aglobalsequencenumber. Sincethis num-
ber was global, an interrogative adversarycould guess
the sessionidentifier for a chosenvictim and make an
SSLrequestwith this sessionidentifier. Here,theuseof
SSLdid not makethesystemsecure.

A more detailedexample comesfrom a misuseof
a hash function. One commonly (and often incor-
rectly) usedinput-truncatinghashfunction is the Unix
crypt() function. It takes a string input and a two-
charactersalt to createa thirteen-characterhash[31]; it
is believedto bealmostasstrongastheunderlyingcryp-
tographiccipher, DES [44]. However, crypt() only
considersthefirsteightcharactersof its stringinput. This
truncationpropertymustbetakeninto accountwhenus-
ing it asahash.

TheoriginalWSJ.comauthenticationsystemfailedto
do so, which madeour breakpossible. Sincethe input
to crypt() was the usernameconcatenatedwith the

5

serversecret,thetruncationpropertyof crypt() meant
that thesecretwould not behashedif theusernamewas
at leasteightcharacterslong. This meansauthenticators
for long usernamescan be easily created,merely with
knowledgeof theusername.Additionally, thealgorithm
will produceanidenticalauthenticatorfor all usernames
thatmatchin thefirst eightcharacters.This canbeseen
in Figure1.

It is likely that WSJ.com expectedthis construction
to actlike a securemessageauthenticationcode(MAC).
A messageauthenticationcodeis a one-way functionof
both its input anda secretkey thatcanbeusedto verify
theintegrity of thedata[43]. Theoutputof thefunction
is deterministicand relatively short (usually sixteento
twentybytes). This meansthat it canbe recalculatedto
verify thatthedatahasnot beentamperedwith.

However, the WSJ.com authenticatorwasjust a de-
terministicvaluewhich couldalwaysbecomputedfrom
the first eight charactersof the usernameand a fixed
secret. While HTTP Basic authentication[16] (which
usesno cryptographyat all) is secureagainstan exis-
tential forgeryof aninterrogativeadversary, theoriginal
WSJ.com schemefell to a total breakby the interroga-
tiveadversary.

Thus,whenpossibleyou shouldusea securemessage
authenticationcode.Certaincryptographicconstructions
have subtleweaknesses[31], so you shouldtake great
carein choosingwhich algorithm to employ. We rec-
ommendthe useof HMAC-SHA1[24]. This algorithm
preventsmany attacksknown to defeatsimpleconstruc-
tions.However, aswewill seein Section6, useof secure
messageauthenticationcodeis moreexpensive thanan
input-truncatinghashsuchascrypt() .

Do not composesecurity schemes

It is difficult to determinethe effects of composing
two different securitysystems. Breakingone may al-
low an adversary to break the other. Worse, simply
composingtheschemesmayhaveadversecryptographic
sideeffects,even if theschemesaresecurein isolation.
Menezeset al explain in remark10.40how usinga sin-
glekey pair for multiplepurposescancompromisesecu-
rity [31]. Theuseof a singlekey for authenticationand
confidentialityleadsto compromiseof bothif thatkey is
stolen. On the otherhand,if separatekeys areused,a
breakof the authenticationwill not affect the confiden-
tiality of pastmessagesandviceversa.

FatBrain.com had two separateuserauthentica-
tion systems.To purchasea book,a userentereda user-

nameandpassword at thetime of purchase.Futurepur-
chasesrequiredreauthentication.The accountmanage-
mentWeb pageshada separatesecurityschemewhich
was stateful. After the user entereda usernameand
password,FatBrainestablishedasessionidentifierin the
URL path.In thisway, userscouldnavigateto otherparts
of theaccountmanagementsystemwithouthaving to te-
diously re-enterthe password. Unfortunately, the secu-
rity holediscussedin Section3.3allowedanadversaryto
gainaccessto theaccountmanagementsystemfor anar-
bitraryuserby guessingavalidsessionidentifier. Theac-
countmanagementsystemincludesanoption to change
a user’s registeredemailaddress.By changingtheemail
addressof avictim’saccountandthenselecting“mail me
my password,” anadversarycouldbreakinto to thebook
purchasingpartof thesystem,despitethefactthatit was
securein isolation.

3.2 Protectpasswords

Passwords are the primary meansof authenticating
userson the Web today. It is important that any Web
site guardthe passwordsof its userscarefully. This is
especiallyimportantsinceusers,whenfacedwith many
Web sitesrequiringpasswords,tendto reusepasswords
acrosssites.

Limit exposure of passwords

Compromiseof a password completelycompromises
a user. A site should never reveal a password to a
user. For instance,ihateshopping.net included
the user’s password asa hiddenform variable. A valid
usershouldalreadyknow the password; sendingit un-
necessarilyoverthenetwork givestheeavesdroppingad-
versarymore opportunity to sniff the password. Fur-
thermore,sitesshouldusethe “password” field type in
HTML forms. This hides the password as it is typed
in andpreventsanadversaryfrom peekingover a user’s
shoulderto copy thepassword.

Evenfor non-secureWeb sites,usersshouldhave the
optionto authenticateoverSSL.Thatis, usersshouldnot
type passwordsover HTTP. Passwordssentover HTTP
arevisible to eavesdroppingadversariessniffing thenet-
work andactive adversariesimpersonatingservers. Be-
causeusersoften have the samepassword on multiple
servers,a stolenpassword canbe extremelydamaging.
To protectagainstsuchattacks,a server could require
usersto conductthe login over an SSL connectionto
provideconfidentialityfor thepassword exchange;upon
successfulcompletionof the login exchange,the server
canthenseta cookiewith an unforgeableauthenticator
for useoverHTTP. Theauthenticatorcanbedesignedto
limit thespreadof damage,whereaspasswordscannot.

6

username crypt() output authenticationcookie
bitdiddle MaRdw2J1h6Lfc bitdiddleMaRdw2J1h6Lfc
bitdiddler MaRdw2J1h6Lfc bitdiddlerMaRdw2J1h6Lfc

Figure1: Comparisonof crypt() andWSJ.com authenticationcookies. The last field representsthe username
prependedto theoutputof thecrypt() function.Theinput to thecrypt() functionis theusernameprependedto
thestring“March20”.

Prohibit guessablepasswords

Many Web sites adviseusersto choosememorable
passwordssuchasbirthdays,namesof friends or fam-
ily, or socialsecuritynumbers.This is extremelypoor
advice,assuchpasswordsareeasilyguessedby an at-
tacker who knows the user. Even without bad advice,
passwordsarefairly guessable[33]. Thus,serversought
to prohibitusersfrom usingany passwordfoundin adic-
tionary; suchpasswordsarevulnerableto dictionaryat-
tacks.Serverscanreducetheeffectivenessof on-linedic-
tionary attacksby restrictingthe numberof failed login
attemptsor requiring a short time delaybetweenlogin
attempts.

Unfortunately, implementing this requirementwill
make a Web site lessappealingto usesince it makes
passwordsharderto remember.

Reauthenticatebefore changingpasswords

In security-sensitive operationssuch as password
changing,a server shouldrequirea userto reauthenti-
cate. Otherwise,it may be possiblefor an adversary
to replayan authenticationtoken andforce a password
change,without actualknowledgeof the currentpass-
word.

3.3 Handle authenticatorscarefully

Authenticatorsare the workhorseof any authentica-
tion scheme.Thesearethetokenspresentedby theclient
to gainaccessto thesystem.As discussedabove,authen-
ticatorsprotectpasswordsby beinga short-termsecret;
the authenticatorcan be changedat any time whereas
passwordsaremuchlessconvenientto change.

Makeauthenticatorsunforgeable

Many sites have authenticators that are eas-
ily predictable. For instance, we noticed that
highschoolalumni.com uses ID numbers and
email addressesinside cookies to authenticateusers.
An interrogative adversary can find this information

in the publicly available alumni database,and mint an
authenticatorfor anany user.

Authenticatorsoftencontainkeys thatfunctionasses-
sion identifiers. These identifiers should be crypto-
graphically random; statistical randomnessis not suf-
ficient. The Allaire Cold Fusion Web server issues
CFTOKEN sessionidentifierswhich comefrom a lin-
ear congruentialnumbergenerator[2]. As described
above, FatBrain.com usedessentiallya global se-
quencenumber. While thesenumbersmaybeappropri-
ate for trackingusers,it is possiblefor an adversaryto
deducethenext output,andhencethenext valid session
identifier. Thismayallow theadversaryaccesstheinfor-
mationof anotheruser.

Authenticatorsmayalsocontainotherinformationthat
the systemwill acceptto be true. Thus,they mustalso
be protectedfrom tampering. This is doneby useof a
messageauthenticationcode(MAC). Becausemessage
authenticationcodesrequirea secretkey, only an entity
with knowledgeof thekey canrecreateavalid code.This
makesthe codesunforgeablesinceno adversaryshould
possessthe secretkey. Use only strongcryptographic
hashfunctions. Do not useCRC codesor other non-
cryptographichashes,assuchfunctionsareoften trivial
to break.

Relatedly, whencombiningmultiple piecesof datato
input into a messageauthenticationcode,besureto un-
ambiguouslyseparatethe components.Sincemost in-
putsaretext, this canbedoneusingsomecharacterthat
is known not to appearin theinput fragments.If compo-
nentsarenot clearlyseparated,multiple inputscanlead
to the sameoutputs. For example, “usernameaccess”
could comefrom “username”followed by “access”or
“user” followedby “nameaccess”;betterto write “user-
name&access”to ensurethat the interpretationis unam-
biguous. Of course,caremustbe taken to prevent the
usernamefrom containinganampersand!

Protect authenticators that must be secret

Some systemsbelieve that they are secureagainst
eavesdroppingadversariesbecausethey sendtheir au-
thenticatorsover SSL. However, a securetransportis

7

ineffective if the authenticatorsleak through plaintext
channels.We describetwo waysthatauthenticatorsare
sentoverSSLandmistakeswhichcanleadto theauthen-
ticatorleakinginto plaintext.

One methodis to set the authenticatoras a cookie.
Whendoing so, it is usually appropriateto set the Se-
cure flag on cookiessentover SSL. When set to true,
this flag instructsa Webbrowserto sendthecookieover
SSLonly. A numberof SSLWebsitesneglectto setthis
flag. This simpleerrorcancompletelynullify theuseful
propertiesof SSL.For instance,customersof SprintPCS
canview their accountinformationandmakeequipment
purchasesonline. To authenticate,a userentersa phone
numberandpassword over SSL. SprintPCSthensetsa
cookiewhich actsasanauthenticator. Anyonewith the
cookie can log in as that user. The protocol so far is
reasonablysecure. However, becauseSprintPCSdoes
not set the Secureflag on their authenticationcookie,
the authenticatortravels in plaintext over HTTP when-
ever a uservisits the main SprintPCSWeb page. We
believethatSprintPCSintendedto protectagainsteaves-
droppingadversaries.Nevertheless,a eavesdroppingad-
versarycanaccessa victim’s accountwith a replaybe-
causethecookieauthenticatorleaksoverHTTP.

A secondmethodof settingan authenticatoris to in-
cludeit aspartof theURL. ThoughtheHTTP 1.1spec-
ification [14] recommendsagainstthis, it easyto do and
sitesstill usethis. Theproblemwith this methodis that
it too canleakauthenticatorsthroughplaintext channels.
If a user follows a link from one pageto another, the
WebbrowserusuallysendstheReferer[sic] header. This
field includesthe URL of the pagefrom which the cur-
rent requestoriginated. As describedin Section14.36
of the HTTP specification,the Refererfield is normally
usedto allow a server to traceback-links for logging,
caching,or maintenancepurposes.However, if theURL
of thelinking pageincludestheauthenticator, theserver
will receive a copy of the authenticatorin the HTTP
header. Section15.1.3of the specificationrecommends
thatclientsshouldnot includeaRefererheaderin anon-
secureHTTPrequestif thereferringpagewastransferred
with a secureprotocolfor exactly this reason.However,
this is not a requirement;browserssuchasNetscapeand
Lynx sendtheRefererheaderanywaywithoutany warn-
ing.

This can be exploited via a cross-sitescripting at-
tack [9]. An adversarycancausea userto executear-
bitrary codeandoffer theusera link from a secureURL
includingtheauthenticator(thatappearslegitimate)to a
link of the adversary’s choosing. If the userselectsthe
link, theRefererfield in therequestmayincludetheau-

thenticator, making it available to a eavesdroppingad-
versary. Worse,the link could point to the adversary’s
machine. Then no eavesdroppingis necessaryto cap-
ture the authenticator. If the attacker is clever anduses
anSSLserver to hosttheattack,mostbrowserswill not
indicatethatanything untoward is happeningsincethey
only warnusersabouttransitionsfrom SSL to non-SSL
links.

Therefore,be careful when settingauthenticatorsin
cookiesandfollow therecommendationof theHTTP1.1
specificationby not usingauthenticatorsin URLs.

Avoid using persistentcookies

A persistentcookieis writtento afile ontheuser’ssys-
tem;anephemeral or temporary cookieis only storedin
thebrowser’smemoryanddisappearswhentheuserexits
thebrowser. An errorin thewaythebrowseror userhan-
dlesthe cookiefile may make it accessibleover the In-
ternet,exposingtheuser’scookiesto anyonewhoknows
whereto look. For instance,certainqueriesto searchen-
ginescanproducemany cookiefiles accidentallyplaced
on the Web [18]. If a persistentcookie in a leaked file
containsanauthenticator, anadversarycansimply copy
thecookieandbreakinto theuser’saccount.In addition,
if theuseraccessestheaccountfrom apublicsystem(say
at a library or Internetcaf́e) andreceivesa persistentau-
thenticationcookieon thatsystem,any subsequentuser
of thatsystemcanaccesstheaccount.For thesereasons,
persistentcookiesshouldnot beconsideredprivate. Do
not storeauthenticatorsin persistentcookies.

Limit the lifetime of authenticators

A gooddesignmustalsogracefullyhandlethe com-
promiseof tokenswhich aredesignedto be secret. To
limit the amountof damagea leaked authenticatorcan
cause,limit its lifetime.

For authenticatorsthat arestoredin usercookies,do
not rely on thecookieexpirationfield for secureexpira-
tion. Sincetheclient is responsiblefor enforcingthatex-
piration,amaliciousclientcansetthelifetime arbitrarily.
Netscapeuserscanmanuallyextendtheseexpirationsby
simply editing a text file. We wereable to indefinitely
extendthe lifetime of our WSJ.com cookieauthentica-
tor even thoughWSJ.com set the cookie to expire in
11 hours. This was not extremely alarming,but if an
adversarystole a cookie (as describedin Section3.3),
therewould beno way to revoke theadversary’saccess.
The problemwas compoundedbecausethe cookie au-
thenticatorremainedthesameevenif a user’s password
changed.This preventedtheWSJ.com site from easily
revokingaccessto a compromisedaccount.

8

To prevent unauthorizedcookie lifetime extensions,
includea cryptographicallyunalterabletimestampin the
valueof thecookie,or storetheexpirationtimein auser-
inaccessibleplaceon theserver. Securelybindingexpi-
rationsto authenticatorslimits the damagecausedby a
stolenauthenticator.

Note that an authenticatorthat is storedin a cookie
can be replayed,regardlessof its expiration time, if it
is leaked. By definition,unlesstheclient usescomputa-
tion, the only thing it is capableof doing to the cookie
is to sendit back to the server. If replayprevention is
desired,the authenticatormustbe kept confidentialand
changedafter eachuse. In that case,it might be neces-
saryto recordrecentlyreceivedauthenticatorsandverify
thatnewly receivedauthenticatorsarenot replays.

Bind authenticators to addresses

It can also be useful to tie authenticatorsto specific
network addresses.This helpsprotectagainstreplayat-
tacksby makingit moredifficult for theadversaryto suc-
cessfullyreusetheauthenticator. In additionto acquiring
theauthenticator, theadversarymustappearto originate
from thesamenetwork addressfor which theauthentica-
tor wasminted. However, this may prematurelyinvali-
dateauthenticatorsissuedto mobileDHCPusers.

4 Design

In this sectionwe presenta schemefor performing
clientauthentication.Thisdesignis intendedto beanex-
ampleof a simplesystemthatfollows thehintsprovided
in Section3. We do not claim that theschemeis novel,
but wedoclaim thattheconceptsanddesignprocessare
notextensivelydiscussedin literature.Wepresentabrief
securityanalysisof theschemesin Section5.

Our schemeprovides a personalizableauthenticator
which allows theserver to statelesslyverify the authen-
ticity of therequestandits contents.Theserver canex-
plicitly control the valid lifetime of the authenticatoras
well. The authenticatorcanincludeall the information
neededto servicea request,or canbe usedasa key to
referto sessioninformationstoredon theserver.

Theoverall operationof this schemeis shown in Fig-
ure 2. We assumethat the userhasan existing account
ontheserverwhich is accessedvia ausernameandpass-
word. At thestartof eachsession,theserverreceivesthe
usernameandpassword, verifies them,andsetsan au-
thenticationcookieon the user’s machine.Sincecook-
iesarewidely supported,thismakesthesystemportable.

Subsequentrequeststo theserver includethiscookieand
allow theserver to authenticatethe request.Thedesign
of eachcookieensuresthat a valid cookiecanonly be
createdby theserver; thereforeanyonepossessingavalid
cookie is authorizedto accessthe requestedcontenton
theserver.

Our schemeis designedto be secureagainstan in-
terrogative adversary, as we believe that most of the
schemeswe evaluatedwere designedwith this type of
adversaryin mind. However, becauseSSL with server
authenticationprovidesconfidentialityandintegrity, lay-
eringour designon top of SSLcanprovide anauthenti-
cationsystemsecureagainstanactiveadversary.

4.1 CookieRecipe

Therecipefor ourcookiefollowseasilyfrom thehints
presentedin Section3. Wecreateanunforgeableauthen-
ticator that includesanexplicit expiration time. We use
HTTP state(i.e. cookies)to storethis authenticatorwith
theclient. Thevalueof this cookieis shown here:

exp= � &data= � &digest=MAC � (exp= � &data= �)

Theexpirationtime is denoted� andis expressedassec-
ondspast1970 GMT. The datastring � is an optional
parameterdenotingarbitrarydatathat theserver wishes
to associatewith theclient. Finally, thecookieincludes
a MAC for thecleartext expirationanddata.

Our cookierequirestheuseof a non-malleableMAC;
that is, onewhereit is intractableto generatea valid ci-
phertext from a plaintext messagerelatedto a plaintext
messagewith a known ciphertext [12, 24]. That is, no
adversarycan generatea valid ciphertext without both
the server’s secretkey andthe plaintext, no matterhow
many samplesof valid plaintext/ciphertext pairsthe ad-
versaryhas. Examplesof keyed, non-malleableMACs
areHMAC-MD5 andHMAC-SHA1[24].

4.2 Discussion

Selectingan expiration time � is a trade-off between
limiting the damagethat canbe donewith a leaked au-
thenticatorandrequiringthe userto reauthenticate.Ya-
hoo!, for example,allows usersto specifywhat expira-
tion interval they prefer for authenticatorsthat control
accessto sensitivedata[47]. Thisallowstheuserto con-
trol thetrade-off. On theotherhand,for insensitivedata,
it makessensefor theserver to make thechoice.For ex-
ample,a newspapermight want cookiesto be valid for

9

Checks that user
has valid account

Creates authentication
token

Stores authentication token
as cookie

Bob
Fu

Authentication token

Username, password

Verifies authentication
token

Content request, authentication token

Content

Bob
Fu?

Subsequent requests:

Login procedure:User Server

Figure2: One-exchangeauthenticationsystem.

only a day, whereasa magazinemight allow sessionsto
bevalid for a month(asif theuserwerebuying a single
issue).

The value � may be any information specificto the
userthattheserverwishesto accesswithoutmaintaining
serverstate.Thismaybeanythingfrom asessionidenti-
fier to ausername.Bewarethatthisdatais notencrypted
sosensitiveinformationshouldnotbestoredhere;if sen-
sitive datais needed,we recommendthata cryptograph-
ically randomsessionidentifier be used. This will pre-
vent informationleaksfrom compromisinga user’s pri-
vacy. On theotherhand,if sensitive userinformationis
requiredto handleonly asmallpercentageof thecontent
requests,the authenticatorcan contain the information
neededto servicethemajority of requests.This way the
servercanavoid doingapossiblyexpensivelook-upwith
every request.

A server may alsochooseto leave � empty (and re-
moving the data parameterfrom the cookie). This
might be useful in the casewhereauthenticationmust
expire,but all usersareessentiallythesame.A plausible
exampleof thismightbeapay-peruseservice,suchasa
newspaper.

4.3 Authentication and revocation

To authenticatea user, the server retrievesthe cookie
andextractstheexpiration. If thecookiehasnotexpired,
theserverrecalculatestheMAC in thedigest parame-
ter of thecookie.Sincetheserver is theonly entity who
knows thekey � , thepropertiesof theMACfunction im-
ply that a valid cookiewasgeneratedby the server. So
long as the server only generatescookiesfor authenti-
catedusers,any clientwith avalid cookieis avalid user.

This schemedoesnot provide a mechanismfor se-
curerevocation; that is, endingtheuser’s sessionbefore

the expiration time is up. The easiestoption is for the
servercaninstructtheclient to discardtheauthentication
cookie. This will usuallybe adequatefor mostapplica-
tions. However, a client who hassaved thevalueof the
cookie can continueto reusethat value so long as the
explicit expirationtimehasnotyet passed.

In mostcases,ashortsessioncanmakerevocationun-
necessary:theusercanaccesstheserveruntil thesession
expires, at which time the server can refuseto issuea
new authenticator. Serversthatrequiresecurerevocation
shouldkeeptrackof thesessionstatusontheserver(e.g.,
usinga randomsessionkey or our personalizedscheme
with a serverdatabase).This sessioncanthenbeexplic-
itly revokedon theserver, without trustingtheclient.

Theschemedoesallow simultaneousrevocationof all
authenticators,which can be accomplishedby rotating
theserverkey. Thiswill causeall outstandingcookiesto
fail to verify. Thus,all userswill have to log in again.
Thismight beusefulfor findingunusedaccounts.

4.4 Designalternatives

One interestingpoint of our schemeis that we have
includedtheexpiration time � in the cookievalueitself.
This is the only way for a server to have accessto the
expiration datewithout maintainingstate. Explicit in-
clusionof theexpirationdatein a non-malleablecookie
providesfixed-lengthsessionswithouthaving to trustthe
client to expire thecookie. It would alsohave beenpos-
sible to merely usea sessionidentifier but that would
always requireserver stateand might lead to mistakes
whereexpirationwasleft in thehandsof theclient.

Many schemesdo involve settinga randomsession
identifier for eachuser. This sessionidentifier is used
to accesstheuser’s sessioninformation,which is stored

10

in a databaseon the server. While sucha schemeal-
lows for a client to make customizations(i.e. it is func-
tionally equivalentto the schemewe have presented),it
is potentiallysubjectto guessingattackson the session
identifierspace.If anadversarycansuccessfullyguessa
sessionidentifier, thesystemis broken(seeSection3.3).
Our schemeprovidesa meansfor authenticatingclients
thatis resistantto guessingattacksonsessionidentifiers.
Furthermore,our schemeprovidestheoptionof authen-
ticatingclientswith ������� server state,ratherthan ������� ,
where� is thenumberof clients.

Our systemcan also make it easierto deploy multi-
server systems.Usingsessionidentifiersrequireseither
synchronized,duplicateddatabetweenserversorasingle
server to coordinaterequests,which becomesapotential
bottleneck. Our schemeallows any server to authenti-
cateany userwith a minimum of information,noneof
which mustbe dynamicallysharedbetweenservers. In
addition,theauthenticationalwayscompletesin constant
time,ratherthanin timewhichincreaseswith thenumber
of users.

5 Security analysis

In this sectionwe presentan informal analysisof the
securitypropertiesof ourdesign.For thepurposeof dis-
cussion,we will refer to the cookie’s two halves: the
plaintext andtheverifier. Theplaintext is theexpiration
concatenatedwith the userstring,andtheverifier is the
HMAC of theplaintext.

We will discussthe securityof the schemeoncethe
authenticator(i.e.cookie)is receivedby theuserfrom the
server. We will not discussmechanismsfor completing
theinitial login.

5.1 Forging authenticators

An adversarydoesnot needto log in if it cancreatea
valid authenticatoroffline. Often an adversarycancre-
atea plausibleplaintext string; thereforethe securityof
theauthenticatorrestson thefactthat theverifier cannot
becalculatedby anadversarywithout thekey. Sincewe
have selectedour MAC to be non-malleable,an adver-
sarycannot forgea new authenticator.

An attacker may also attemptto extend the capabil-
ities associatedwith the authenticator. This might in-
clude changingthe expiration date or someaspectof
the datastring which would allow unauthorizedaccess
to the server. For instance,if the datastring includes
a username,and the adversarycan alter the username,

this mightallow accessanotheruser’saccount.It is easy
enoughfor the adversaryto changethe plaintext of the
authenticatorin the desiredmanner. However, as we
have seen,becauseHMAC is non-malleable,it is in-
tractablefor theadversaryto generatea valid ciphertext
for an alteredplaintext string. Thereforethe adversary
cannotbring aboutany changein an authenticatorthat
will beacceptedby theserver.

5.2 Authenticator hijacking

An interrogative adversarycannotseeany messages
that passbetweenthe userandthe server. Therefore,it
cannothijack anotheruser’s authenticator. However, an
eavesdroppercan seethe authenticatoras it passesbe-
tweenthe userand the server. Suchan adversarycan
easilyperforma replayattack. Thereforethe systemis
vulnerableto hijackingby suchanadversary. However,
the replayattacklastsonly as long asthe authenticator
is valid; that is, betweenthe time the adversary“sniffs”
theauthenticatorandtheexpirationtime. Theadversary
doesnot have theability to createor modify a valid au-
thenticator. Thereforethis is anattackof limited useful-
ness. The lifetime of the authenticatordetermineshow
vulnerablethesystemis; systemswhichemploy ashorter
authenticatorlifetime will have to reauthenticatemore
often,but will have tighterboundson thedamagethata
successfuleavesdroppingadversarycanaccomplish.In
addition, the systemcan protectagainstan eavesdrop-
ping adversaryby usingSSL to provide confidentiality
for theauthenticator.

5.3 Other attacks

We mention briefly some attacks on our schemes
which do not deal with the authenticatordirectly. The
bestknown attackagainstthe schemein Section4 is a
bruteforcekey search.

A server compromisebreaksthesystem:if theadver-
saryobtainsthe key to the MAC, it cangeneratevalid
authenticatorsfor all users. Randomkeys and key ro-
tationhelpto preventtheadversaryfrom mountingbrute
forcekey attacks(seeLenstra[28] for suggestionsonkey
size).

In addition,key rotationhelpsprotectagainstvolume
attacks,wherebyanadversarymaybeableto obtainthe
key to the hashfunction becausethe adversaryhasob-
taineda greatquantity of dataencryptedusing it. We
note that HMAC-MD5 and HMAC-SHA1 are not be-
lievedto bevulnerableto thistypeof analysis[24]. How-
ever, we believe that it is prudentto includekey rotation

11

sinceit doesnot decreasethe securityof the scheme,it
protectsagainstserver compromise,andit hasminimal
costto theserver.

In addition,theadversarycanobtainunauthorizedac-
cessby guessingtheuser’spassword;seeSection3.2for
someguidelinesfor preventingthis.

Ourschemein itself only providesuserauthentication.
For protectionagainstserver impersonationor for data
integrity, we recommendSSL.

6 Implementation and performance

The client authenticationschemedescribedin Sec-
tion4 wasimplementedin Perl5.6usingtheLWP, HTTP,
CGI, FCGI, andDigestmodules. We testedthe imple-
mentationon two dual PentiumIII 733 MHz machines
eachwith 256 MB of RAM running the Linux 2.2.18-
smpkernelandApache1.3.17with mod fastcgi2.2.10.
Everythingranon a local disk. A dedicatedGigabit link
with a 20 � s round-triptime connectedthemachines.

6.1 Micr obenchmark performance

We ran � �!��� � trials of crypt() andHMAC-SHA1.
The input to crypt() was an 8-byte input and a 2-
bytesalt. The input to HMAC-SHA1wasa 27-bytein-
put and a 20-bytekey. crypt() finishedon average
in 8.08 � secwith 99%of the trials completingin under
10 � sec.HMAC-SHA1took on average41.4 � secwith
99% of the trials completingin under47 � sec. We at-
tributethevariancesto context switching.

6.2 End-to-endperformance

To measurethe end-to-endperformanceof cookie-
basedlogins, we repeatedlyretrieved 400 bytesof data
from aWebserver thatauthenticatedourclient. Both the
client andthecookieauthenticationschemewereimple-
mentedin Perl,andtheserver ranthecookieauthentica-
tion scriptwith FastCGI.Ourend-to-endtestconsistedof
theclientpresentingacookieauthenticator(asdescribed
in Section4) to theserver, which verifiestheauthentica-
tor by performingHMAC-SHA1 on the expiration date
presentedby theclient. In orderto provideabaselinefor
comparison,we alsomeasuredtheaverageperformance
of plain HTTP, HTTP with Basic Authentication[16],
andanalways-authenticatedFastCGIscriptfor thesame
page.

For eachscheme,we made5,000successive requests,
with valid authenticationinformation (when needed).

0

5

10

15

20

av
er

ag
e

la
te

nc
y

(m
s/

re
qu

es
t)

"

HTTP (no authentication)
HTTP + Basic Auth
FastCGI (no authentication)
#
FastCGI + HMAC-SHA1 cookie
#

5.8$ 6.2$ 7.2$
8.4$

Figure3: End-to-endperformanceof averageservicela-
tency perrequest.We measureHTTPandFastCGIwith-
out authenticationto obtain a baselinefor comparison.
Basic Auth is the cleartext password authenticationin
HTTP[16].

Figure3 presentstheaveragetimefrom therequestbeing
sentin ourHTTP clientuntil a responsewasreceived.

99% of the HTTP trials without authenticationwere
fasterthan5.9 ms. Similarly, 99% of HTTP Basicau-
thenticationtrials were fasterthan6.3 ms. 99% of the
plain FastCGItrials werefasterthan7.7ms,and99%of
the FastCGItrials with our HMAC-SHA1 schemetook
lessthan8.8 ms. Figure3 shows that thecostof HTTP
Basicauthenticationis 0.4msperrequestwhile thecost
of our HMAC-SHA1schemeis 1.2ms. We suspectthat
non-cryptographicfactorssuchasstringparsingandfile
I/O causethe disparity betweenthe microbenchmarks
andtheend-to-endmeasurements.

Note that SSL is an orderof magnitudeslower than
the HMAC-SHA1 cookie scheme. A single new SSL
connectiontakes 90 ms [17] on a reasonablemachine.
SSLclientauthentication,evenwith sessionresumption,
cannotrun fasterthantheHMAC-SHA1cookiescheme
becauseSSLauthenticatestheentireHTTP stream.Our
schemeruns HMAC-SHA1 on fewer than 30 bytesof
dataper request(a timestamp,personalizationdata,and
a key).

7 Relatedwork

Thereis anextensive bodyof work relatedto authen-
tication in generalandWeb authenticationin particular.
We highlight a few relevantexamples.For otherstudies
of designprinciples,seeAbadi [1] or Lampson[27].

12

7.1 Generalauthentication protocols

In the past ten years, several new authentication
protocolshave beendeveloped, including AuthA [4],
EKE [5], provably securepassword authenticatedkey
exchange[7], and the SecureRemotePassword proto-
col [45]. Furthermore,groupsaresimplifying andstan-
dardizingpassword authenticationprotocols[22]. How-
ever, theseprotocolsarenot well-suitedfor theWebbe-
causethey aredesignedfor sessioninitializationof long-
runningconnections,asopposedto themany short-lived
connectionsmadeby Webbrowsers.Long-runningcon-
nectionscan easily afford a protocol involving the ex-
changeof multiple messages,whereasshort-lived ones
cannotabsorbthe overheadof several extra round-trips
per connection. Additionally, theseprotocolsoften re-
quiresignificantcomputation,makingthemundesirable
for loadedWebservers.

One-timepasswordscanpreventreplayattacks.Lam-
port’s user password authenticationschemedefends
againstanadversarywho caneavesdropon thenetwork
andobtaina copiesof server state(i.e. thehashedpass-
wordfile) [26]. Thisschemeis basedonaone-wayfunc-
tion. Haller later implementedtheS/Key one-timepass-
word system[20, 21] using techniquesfrom Lamport.
De Waleffe andQuisquaterextendedLamport’s scheme
with zero-knowledgetechniquesto provide more gen-
eral accesscontrol mechanisms[10]. With their one-
exchangeprotocol, a user can authenticateand prove
possessionof a ticket. This schemeis not appropriate
for our modelof Webclientauthenticationbecauseit re-
quirestheclientto performcomputationsuchasmodular
exponentiation.

Kerberosuses tickets to authenticateusers to ser-
vices[23, 34, 41]. TheKerberosticket is encryptedwith
a key known only to the serviceand the Kerberosin-
frastructureitself. A temporarysessionkey is protected
by encryption.The ticket approachdiffersgreatlyfrom
schemessuchasoursbecauseticketsaremessagepre-
serving,meaningthatan adversarywho compromisesa
servicekey canrecover thesessionkey. If anadversary
compromisesthekey in ourscheme,it canmint andver-
ify tokens,but it cannotrecover the contentsthat were
originally authenticated.Authenticationandencryption
shouldbeseparated,but Kerberosdoesbothin onestep.

The Amoeba distributed operating system crypto-
graphicallyauthenticatedcapabilities(or rights)givento
a user[43]. Oneof theproposedschemesauthenticated
capabilitiesbyXORingthemwith asecretserverkey and
hashingtheresult.ClientauthenticationontheWebfalls
into thesamedesignspace.A Webserverwishesto send
a userasignedcapability.

7.2 Web-specificauthentication protocols

TheHTTPspecificationsprovidetwo mechanismsfor
authentication:BasicauthenticationandDigestauthen-
tication [16]. Basicauthenticationrequiresthe client to
senda usernameand password in the clear as part of
theHTTP request.This pair is typically resentpreemp-
tively in all HTTP requestsfor contentin subdirectories
of the original request.Basicauthenticationis vulnera-
ble to aneavesdroppingadversary. It alsodoesnot pro-
vide guaranteedexpiration (or logout), and repeatedly
exposesa user’s long-termauthenticator. Digestauthen-
tication,a newer form of HTTP authentication,is based
onthesameconceptbut doesnot transmitcleartext pass-
words. In Digestauthentication,theclient sendsa cryp-
tographichash(usually MD5) of the username,pass-
word, a server-provided nonce,the HTTP method,and
theURL. Thesecurityof thisprotocolis extensively dis-
cussedin RFC 2617[16]. Digestauthenticationenjoys
very little client support,eventhoughit is supportedby
thepopularApacheWebserver.

The main risk of theseschemesis that a successful
attackrevealstheuser’spassword,thusgiving theadver-
saryunlimitedaccess.Further, breaksarefacilitatedby
theexistenceof freely availabletoolscapableof sniffing
for authenticationexchanges[40].

TheSecureSocketsLayer(SSL)protocolis astronger
authenticationsystemprovidesconfidentiality, integrity,
and optionally authenticationat the transportlevel. It
is standardizedas the TransportLayer Securityproto-
col [11]. HTTP runs on top of SSL, which provides
all the cryptographicstrength. Integrationat the server
allows the server to retrieve the authenticationparame-
tersnegotiatedby SSL.SSLachievesauthenticationvia
public-key cryptographyin X.509certificates[8] andre-
quires a public-key infrastructure(PKI). This require-
mentis the maindifficulty in usingSSL for authentica-
tion— currentlythereisnoglobalPKI, noris therelikely
to beoneanytimesoon.Severalmajorcertificateauthor-
ities exist (e.g.,Verisign),but thespaceis fracturedand
disjoint. To somedegree,usersavoid client certificates
becausecertificatesarepractically incomprehensibleto
non-technicalusers. Other argumentssuggestthat the
merits of PKI as the answerto many network security
problemshave beensomewhatexaggerated[13]. Client
supportfor SSLis non-standardandthuscanhave inter-
operability problems(e.g., Microsoft InternetExplorer
andNetscapeNavigator client certificatesdo not inter-
operate),andperformanceconcerns.SSLdecreasesWeb
server performanceandoftenprovidesmorefunctional-
ity than most applicationsneed. In an effort to avoid
usingSSL,Bergadano,Crispo,andEccettuatouseJava
appletsto secureHTTPtransactions[6].

13

Park andSanduidentify securityproblemsof regular
cookies,network threats,end-systemthreats,andcookie
harvestingthreats[35]. Samardescribesa cookie-based
distributedarchitecturefor single-signon[38].

7.3 Schemesin the field

Many ad hoc schemesare used today to perform
Webauthenticationwithout makinguseof eitherSSLor
any of the HTTP authenticationmechanisms.Instead,
schemesoftenuseHTTP statemanagementto storeau-
thenticatorswith theclient. This helpssitesprovide au-
thenticationfor Webapplicationswhile preservingease-
of-useandperformance.While many of theseschemes
are well-designedand do indeedprovide appropriately
strongauthenticationfor theenvironmentin which they
aredeployed,just asmany schemeshavefatalflaws.

Shibboleth,a projectof Internet2,is investigatingar-
chitectures,frameworks, and technologiesto support
cross-realmauthenticationandauthorizationfor access
to Web pages[39]. The group completeda survey of
client authenticationon the Web at several universities,
mostof whichuseacombinationof Kerberos,clientcer-
tificates,HTTP authentication,and cookies. However,
they havenot yetpresenteda completedesign.

Open Market has patenteda schemethat createsa
folded cryptographichash of a server secret, a ses-
sion identifier, andotherparameters[29]. Yahoohasa
cookieauthenticationschemethat computesMD5 of a
server secret,user identifier, timestamp,and other pa-
rameters[47]. This schemeis documentedon our Web
site. The ArsDigita Community System(ACS) has a
SHA1-basedcookie authenticationscheme[30]. All
theseschemesare likely to be secureagainstinterroga-
tive adversaries,but all appearvulnerableto eavesdrop-
pers.

Microsoft Passportoffers a managedcookie authen-
tication scheme[36]. Microsoft mints a cookieauthen-
ticator after a userlogs in. Vendorsparticipatingin the
passportservicecanverify theauthenticatorto determine
authenticityandauthorization.Thedetailsof theauthen-
tication schemehave not beenpublished,but the white
paperindicatesthatMicrosoft sharesa uniquesymmet-
ric key with eachvendor. Thesekeys canbothmint and
verify authenticators.

8 Conclusion

To provide designersand implementerswith a clear
framework, we have given a descriptionof the limita-
tions,requirements,andsecuritymodelsspecificto Web

clientauthentication.We presenteda setof hintsonhow
to designasecureclientauthenticationscheme,basedon
experiencegainedfrom our informal survey of commer-
cial schemes.Thesurvey showedthatmany sitesarenot
secureagainstthe interrogativeadversary. We proposed
anauthenticationschemesecureagainsttheinterrogative
adversary.

Web sites have such a large rangeof requirements
that no one authenticationschemecan meet them all.
CurrentlySSLremainstoo costlyandclient authentica-
tion infrastructuresremainhardly deployed. This par-
tially explainswhy so many home-brew schemesexist.
TheWebcommunityoughtto recommendasecurestan-
dardor securepracticesif thereis any hopeto eliminate
the proliferation of insecurehome-brew authentication
schemes.We hopethat this paperwill help schemesin
resistingcommonattacks.

For moreinformationandour sourcecode,download
our technicalreport[18] or visit ourWebsiteathttp:/
/cookies.lcs.mit.edu/ .

9 Acknowledgments

We thankDavid Andersen,Ian Anderson,Jeffrey W.
Baker, RichardBarbalace,Andrew M. Boardman,Benjie
Chen,David Dittrich, Paul Hill, FransKaashoek,David
Mazières,Robert T. Morris, Steve Morris, JoonPark,
Matt Power, Ron Rivest, Jerry Saltzer, RichardSmith,
Win Treese,theanonymousreviewers,andthemembers
of the PDOSgroupat MIT. We also thank the compa-
nieswho talkedwith usaboutthe securityof their Web
sites: FatBrain.com , WSJ.com, andyahoo.com .
The studentsof the MIT Applied Security Reading
Group(http://pdos.lcs.mit.edu/asrg/) de-
serve credit for the genesisof this project. Finally,
we thankDuncanHinesfor manufacturingthematerials
necessaryto sustainour efforts.

References

[1] Mart́in Abadi andRogerNeedham.Prudentengineering
practicefor cryptographicprotocols. TechnicalReport
125,DEC SystemsResearchCenter, June1994.

[2] Allaire Corporation. PersonalCommunication,January
2001.

[3] Mihir Bellare, Anand Desai, David Pointcheval, and
Phillip Rogaway. Relationsamongnotionsof securityfor
public-key encryptionschemes.In HugoKrawczyk, ed-
itor, Proceedingsof Advancesin Cryptology—CRYPTO
98, volume1462of Lecture Notesin ComputerScience,
pages26–45,SantaBarbara,CA, 1998.Springer-Verlag.

14

[4] Mihir Bellare and Phillip Rogaway. The AuthA
protocol for password-based authenticatedkey ex-
change. Technical report, IEEE P1363, March
2000. http://grouper.ieee.org/groups/
1363/StudyGroup/Passwd.html#autha .

[5] StevenM. Bellovin andMichaelMerritt. Encryptedkey
exchange:Password-basedprotocolssecureagainstdic-
tionary attacks. In Proceedingsof the 1992IEEE Sym-
posiumon SecurityandPrivacy, pages72–84,Oakland,
CA, May 1992.

[6] F. Bergadano,B. Crispo, and M. Eccettuato. Secure
WWW transactionsusing standardHTTP and Java ap-
plets. In Proceedingsof the 3rd USENIX Workshop
on Electronic Commerce, pages109–119,Boston,MA,
September1998.

[7] Victor Boyko, Philip MacKenzie,andSarvarPatel.Prov-
ably securepassword authenticatedkey exchangeusing
Diffie-Hellman.In B. Preneel,editor, Proceedingsof Ad-
vancesin Cryptology—EUROCRYPT2000, volume1807
of Lecture Notesin ComputerScience, Bruges,Belgium,
May 2000.Springer-Verlag.

[8] CCITT. RecommendationX.509: Thedirectoryauthen-
ticationframework, 1998.

[9] CERT. Malicious HTML tags embedded in
client Web requests. CA-2000-02, February
2000. http://www.cert.org/advisories/
CA-2000-02.html .

[10] DominiquedeWaleffe andJean-JaquesQuisquater. Bet-
ter login protocolsfor computernetworks. In B. Preneel,
R. Govaerts,andJ. Vandewalle, editors,Proceedingsof
ComputerSecurityandIndustrial Cryptography, volume
741of Lecture Notesin ComputerScience, pages50–70.
Springer-Verlag,1993.

[11] Tim DierksandChristopherAllen. TheTLS protocolver-
sion 1.0. RFC 2246,Network Working Group,January
1999.

[12] Danny Dolev, Cynthia Dwork, and Moni Naor. Non-
malleablecryptography. In Proceedingsof the %�& rd ACM
Symposiumon Theory of Computing, pages542–552,
New Orleans,LA, 1991.

[13] Carl Ellison andBruceSchneier. Tenrisksof PKI: What
you’re not being told about public key infrastructure.
ComputerSecurityJournal, 16(1):1–7,2000.

[14] Roy Fielding, JamesGettys, Jeffrey Mogul, Henrik
Frystyk, Larry Masinter, Paul Leach,andTim Berners-
Lee. Hypertext TransferProtocol— HTTP/1.1. RFC
2616,Network WorkingGroup,June1999.

[15] FIPS180-1. Secure HashStandard. U.S.Departmentof
Commerce/N.I.S.T., NationalTechnicalInformationSer-
vice,Springfield,VA, April 1995.

[16] John Franks, Phillip Hallam-Baker, Jeffrey Hostetler,
ScottLawrence,PaulLeach,Ari Luotonen,andLawrence
Stewart. HTTP authentication:Basicanddigestaccess
authentication.RFC2617,NetworkWorkingGroup,June
1999.

[17] Kevin Fu,M. FransKaashoek,andDavid Mazières.Fast
andsecuredistributedread-onlyfile system.In Proceed-
ingsof the4thUSENIXSymposiumonOperatingSystems
Design and Implementation(OSDI 2000), pages181–
196,SanDiego,CA, October2000.

[18] Kevin Fu, Emil Sit, KendraSmith, and Nick Feamster.
Dosanddon’tsof clientauthenticationontheWeb. Tech-
nicalReport818,MIT Laboratoryfor ComputerScience,
May 2001.http://www.lcs.mit.edu/ .

[19] Shafi Goldwasser, Silvio Micali, and RonaldL. Rivest.
A digital signature scheme secure against adaptive
chosen-messageattacks. SIAM Journal of Computing,
17(2):281–308,April 1988.

[20] Neil Haller. The S/KEY one-timepassword system. In
Proceedingsof theISOCSymposiumonNetworkandDis-
tributedSystemSecurity, pages151–157,SanDiego,CA,
February1994.

[21] Neil Haller. TheS/KEY one-timepasswordsystem.RFC
1760,Network WorkingGroup,February1995.

[22] IEEE P1363a: Standardspecificationsfor public key
cryptography: Additional techniques. http://
www.manta.ieee.org/groups/1363/P1363a .

[23] JohnT. Kohl. Theuseof encryptionin Kerberosfor net-
work authentication. In G. Brassard,editor, Proceed-
ings of Advancesin Cryptology—CRYPTO 89, volume
435of Lecture Notesin ComputerScience, pages35–43.
Springer-Verlag,1990.

[24] HugoKrawczyk,Mihir Bellare,andRanCanetti.HMAC:
Keyed-hashingfor messageauthentication. RFC 2104,
Network Working Group,February1997.

[25] David Kristol andLou Montulli. HTTP StateManage-
mentMechanism.RFC2965,Network Working Group,
October2000.

[26] Leslie Lamport. Password authenticationwith inse-
cure communication. Communicationsof the ACM,
24(11):770–771,November1981.

[27] Butler Lampson. Hints for computersystemdesign. In
Proceedingsof the 9th ACM Symposiumon Operating
SystemsPrinciples, pages33–48, Bretton Woods,NH,
1983.

[28] Arjen LenstraandEric Verheul. Selectingcryptographic
key sizes. http://www.cryptosavvy.com/
cryptosizes.pdf , November1999.

[29] ThomasLevergood,LawrenceStewart, StephenMorris,
Andrew Payne, and Winfield Treese. Internet server
accesscontrol and monitoring systems. U.S. patent
#5,708,780,OpenMarket, January1998.

[30] Richard Li and Archit Shah. ArsDigita Commu-
nity System (ACS) security design. http:/
/developer.arsdigita.com/doc/
security-design.html .

[31] Alfred J. Menezes,Paul C. Van Oorschot,andScottA.
Vanstone.Handbookof appliedcryptography. TheCRC
Pressserieson discretemathematicsandits applications.
CRCPress,1997.

15

[32] Keith Moore andNed Freed. Useof HTTP StateMan-
agement.RFC 2964,Network Working Group,October
2000.

[33] RobertMorris andKenThompson.Passwordsecurity:A
casehistory. Communicationsof the ACM, 22(11):584–
597,November1979.

[34] B. Clif ford NeumanandTheodoreTs’o. Kerberos:An
authenticationservice for computer networks. IEEE
CommunicationsMagazine, 32(9):33–38, September
1994.

[35] JoonS. Park and Ravi Sandhu. Securecookieson the
Web. IEEEInternetComputing, 4(4):36–44,July/August
2000.

[36] Microsoftpassport.http://www.passport.com/ .

[37] Eric Rescorla.SSLandTLS:DesigningandBuilding Se-
cure Systems. Addison-Wesley, 2000.

[38] Vipin Samar. Singlesign-onusingcookiesfor Web ap-
plications. In Proceedingsof the8th IEEE Workshopon
EnablingTechnologies: Infrastructure for Collaborative
Enterprises, pages158–163,PaloAlto, CA, 1999.

[39] The Shibboleth Project. http://
middleware.internet2.edu/shibboleth/ .

[40] Dug Song. dsniff. http://www.monkey.org/
˜dugsong/dsniff/ .

[41] JenniferSteiner, Clif ford Neuman,and Jeffrey Schiller.
Kerberos: An authenticationservicefor open network
systems. In Proceedingsof the Winter 1988 USENIX,
pages191–202,Dallas,TX, February1988.

[42] Paul Syverson, Stuart Stubblebine,and David Gold-
schlag. Unlinkableserialtransactions.In R. Hirschfeld,
editor, Proceedingsof Financial Cryptography, volume
1318 of Lecture Notesin ComputerScience, Anguilla,
BWI, 1997.Springer-Verlag.

[43] Andrew Tanenbaum,SapeMullender, and Robbertvan
Renesse.Using sparsecapabilitiesin a distributedsys-
tem. In Proceedingsof the6th InternationalConference
on DistributedComputing, pages558–563,Cambridge,
MA, 1986.

[44] David Wagner and Ian Goldberg. Proofs of secu-
rity for the Unix password hashing algorithm. In
T. Okamoto, editor, Proceedings of Advances in
Cryptology—ASIACRYPT2000, volume1976of Lecture
Notes in ComputerScience, Kyoto, Japan,December
2000.Springer-Verlag.

[45] ThomasWu. The secureremotepassword protocol. In
Proceedingsof the 1998 Internet SocietyNetwork and
Distributed SystemSecuritySymposium, pages97–111,
SanDiego,CA, March1998.

[46] Web and mobile code security. http:/
/www.securityfocus.com/forums/
www-mobile-code/ .

[47] Yahoo,Inc. PersonalCommunication,November2000.

16

