Basic Mechanics of

Operatlonal Semantics

e \ -“ lx liigisa, ‘
' ‘l'pl g= Dy ' ' d
. r , 10 ;
. -,é A A AAC

David Van Horn

What Is an operational
semantics?

A method of defining the meaning of programs by
describing the actions carried out during
execution.

There are many different flavors:

e Fvaluator

e Natural (aka big-step)

e Reduction (aka SOS, small-step)
e Abstract machine

What Is an operational
semantics used for?

e Specifying a programming language
e Communicating language design ideas

e \/a
e \/a

idating ¢
idating ¢

aims about
aims about

anguages

lype systems, etc

® Proving correctness of a compiler

From Derek’s talk

You are viewing Derek Dreyer's screen (@) View Options v

A structure that works

e Abstract (1-2 paragraphs, 1000 readers)
e Intro (2-4 pages, 100 readers)

- ar: - - A
: i > — ! - - | - J S o
ARF - 2 3 N = SET = - < = =
P WO, TR Wy e e el e 2 T PO PG O O B

e Technical meat (8-12 pages, 5 readers)

Effects for Efficiency

Asymptotic Speedup with First-Class Control

DANIEL HILLERSTROM, The University of Edinburgh, UK
SAM LINDLEY, The University of Edinburgh and Imperial College London and Heriot-Watt University, UK
JOHN LONGLEY, The University of Edinburgh, UK

We study the fundamental efficiency of delimited control. Specifically, we show that effect handlers enable an
asymptotic improvement in runtime complexity for a certain class of functions. We consider the generic count
problem using a pure PCF-like base language Ay, and its extension with effect handlers A},. We show that Ay,
admits an asymptotically more efficient implementation of generic count than any A}, implementation. We
also show that this efficiency gap remains when Ay, is extended with mutable state.

To our knowledge this result is the first of its kind for control operators.

CCS Concepts: « Theory of computation — Lambda calculus; Abstract machines; Control primitives.
Additional Key Words and Phrases: effect handlers, asymptotic complexity analysis, generic search

ACM Reference Format:

Daniel Hillerstré6m, Sam Lindley, and John Longley. 2020. Effects for Efficiency: Asymptotic Speedup with
First-Class Control. Proc. ACM Program. Lang. 4, ICFP, Article 100 (August 2020), 29 pages. https://doi.org/10.
1145/3408982

1 INTRODUCTION

In today’s programming languages we find a wealth of powerful constructs and features — excep-
tions, higher-order store, dynamic method dispatch, coroutines, explicit continuations, concurrency
features, Lisp-style ‘quote’ and so on — which may be present or absent in various combinations
in any given language. There are of course many important pragmatic and stylistic differences
between languages, but here we are concerned with whether languages may differ more essentially
in their expressive power, according to the selection of features they contain.

One can interpret this question in various ways. For instance, Felleisen [1991] considers the
question of whether a language £ admits a translation into a sublanguage £’ in a way which
respects not only the behaviour of programs but also aspects of their (global or local) syntactic
structure. If the translation of some £-program into £’ requires a complete global restructuring,
we may say that £’ is in some way less expressive than L. In the present paper, however, we
have in mind even more fundamental expressivity differences that would not be bridged even if
whole-program translations were admitted. These fall under two headings.

(1) Computability: Are there operations of a given type that are programmable in £ but not
expressible at all in £’?

Authors’ addresses: Daniel Hillerstrém, The University of Edinburgh, UK, danielhillerstrom@ed.ac.uk; Sam Lindley, The
University of Edinburgh and Imperial College London and Heriot-Watt University, UK, sam.lindley@ed.ac.uk; John Longley,
The University of Edinburgh, UK, jrl@staffmail.ed.ac.uk.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2020 Copyright held by the owner/author(s).

2475-1421/2020/8-ART100

https://doi.org/10.1145/3408982

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 100. Publication date: August 2020.

Effects for Efficiency

Asymptotic Speedup with First-Class Control

We study the fundamental efficiency of delimited control. Specifically, we show that effect handlers enable an
asymptotic improvement in runtime complexity for a certain class of functions. We consider the generic count
problem using a pure PCF-like base language A}, and its extension with effect handlers A},. We show that Ay,
admits an asymptotically more efficient implementation of generic count than any Ay, implementation. We
also show that this efficiency gap remains when Ay, is extended with mutable state.

Daniel Hillerstrém, Sam Lindley, and John'iongley2020 Eftects for Efticiency: Asymptotic Speedup with 1
First-Class Control. Proc. ACM Program. Lang. 4, ICFP, Article 100 (August 2020), 29 pages. https://doi.org/10.

1145/3408982

1 INTRODUCTION

In today’s programming languages we find a wealth of powerful constructs and features — excep-
tions, higher-order store, dynamic method dispatch, coroutines, explicit continuations, concurrency
features, Lisp-style ‘quote’ and so on — which may be present or absent in various combinations
in any given language. There are of course many important pragmatic and stylistic differences
between languages, but here we are concerned with whether languages may differ more essentially
in their expressive power, according to the selection of features they contain.

One can interpret this question in various ways. For instance, Felleisen [1991] considers the
question of whether a language £ admits a translation into a sublanguage £’ in a way which
respects not only the behaviour of programs but also aspects of their (global or local) syntactic
structure. If the translation of some £-program into £’ requires a complete global restructuring,
we may say that £’ is in some way less expressive than L. In the present paper, however, we
have in mind even more fundamental expressivity differences that would not be bridged even if
whole-program translations were admitted. These fall under two headings.

(1) Computability: Are there operations of a given type that are programmable in £ but not
expressible at all in £’?

Authors’ addresses: Daniel Hillerstrém, The University of Edinburgh, UK, danielhillerstrom@ed.ac.uk; Sam Lindley, The
University of Edinburgh and Imperial College London and Heriot-Watt University, UK, sam.lindley@ed.ac.uk; John Longley,
The University of Edinburgh, UK, jrl@staffmail.ed.ac.uk.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2020 Copyright held by the owner/author(s).

2475-1421/2020/8-ART100

https://doi.org/10.1145/3408982

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 100. Publication date: August 2020.

Effects for Efficiency

Asymptotic Speedup with First-Class Control

We study the fundamental efficiency of delimited control. Specifically, we show that effect handlers enable an
asymptotic improvement in runtime complexity for a certain class of functions. We consider the generic count
problem using a pure PCF-like base language A}, and its extension with effect handlers A},. We show that Ay,
admits an asymptotically more efficient implementation of generic count than any Ay, implementation. We
also show that this efficiency gap remains when Ay, is extended with mutable state.

Daniel Hillerstrém, Sam Lindley, and John'iongley2020 Ettects for Efticiency: Asymptotic Speedup with ' 4
First-Class Control. Proc. ACM Program. Lang. 4, ICFP, Article 100 (August 2020), 29 pages. https://doi.org/10.

1145/3408982

1 INTRODUCTION

In today’ ing 1
fons hghor-order sove dyna S-APP (AxA. MYV ~> M[V/x]
imany gvenanguage st S-APP-REC (rec f4 x. M)V ~> Ml(rec f* x. M)/f, V/x]
petweén languages, but here w S-CONST ¢V ~» return (|_01 (V))
in their expressive power, accc
One can interpret this ques S_SPLIT let <x, y> = <V, W> in N ~> N[V/x’ W/y]

question of whether a langua . B .
respects not only the behavio S-Case-INL case (inl V)® {inl x — M;inr y — N} ~ M[V/x]

structure. If the translation of

we may say that £’ is in somr S-CASE-INR case (inr V)A {inl X = M, inr y = N} > N[V/y]

have in mind even more fund: .
whole-program translations w S-LET let x < return Vin N ~ N[V/X]
(1) Computability: Are ther S-LIFT 8 [M] ~> 8 [N], lf M~~> N

expressible at all in £’?

Authors’ addresses: Daniel Hillerstro:
University of Edinburgh and Imperial (

The University of Bdinburgh, UK. i1 S-RET handle (return V) with H ~ N[V /x], where H? = {val x — N}

S-Op handle &[do ¢ V] with H ~> N[V/p, (Ay.handle &[return y| with H)/r|,
This work is licensed under a Creative where Hf — { ! pre— N}

© 2020 Copyright held by the owner/:
2475-1421/2020/8-ART100
https://doi.org/10.1145/3408982

- N
Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 100 Publication date: August 2020.

Arithmetic

¢ Syntax

e Semantics
 Natural, big-step
e Evaluator
o Structured, small-step
 Reduction
e Standard reduction
 Abstract machine

Syntax Of A 3 ways: 1/3

el =>1€ A

e € A= Pred(e) € A
e € A= Succ(e) €
e1 € ANey € A= Plus(eq,eq) €
e1 € ANes € A= Mult(eq,es) €

Syntax Of A 3 ways: 2/3

.| =101 ...
0

Pred(e)

Succ(e)

Plus(e, e

Mult(e, e)

Y/
A e ::

INnference rules

H1 Hs

C

INnference rules

Syntax of A swasiae

1 € 7 eec A eec A
. (1) (2) (3)
e A Pred(e) € A Succ(e) € A

e1 € A 626./4(4) e1 € A BQE.A(S)

Plus(el, 62) c A Mult(el, 62) c A

Proof of Plus(4, Succ(2)) € A

2 € 4
4 €7 2¢ A
1A Succ(2) € A
Plus(4, Succ(2)) € A

Natural semantics of A

JCAXZ

Plus(4, Succ(2)) | 7

Natural semantics of A

JCAXZ

) R)

i) i Pred(e) || i — 1 Succ(e) | 7+ 1

e1 4 11 ez) 19 e1 4 11 ez |} 12
Plus(el, 62) 114+ 29 Mult(el, 62) I 1119

Natural semantics of A

e1 4 71 e2 1 12
Plus(el, 62) 11+ 19

e1 4 11 ea) 19 P =11 + 19
Plus(el,eg) UZ

Proot of Plus(4, Succ(2)) || 7

2 1 2
4] 4 Succ(2) | 3
Plus(4, Succ(2)) | 7

Fvaluator semantics of A

type arith = Int of int
Pred of arith

Succ of arith
Plus of arith * arith

Mult of arith * arith JCAXZ

let rec eval (e : arith) : int =
match e with
Int 1 -> 1
Pred e -> (eval e) - 1
Succ e => (eval e) + 1
Plus (el, e2) -> (eval el) + (eval e2)
Mult (el, e2) -> (eval el) * (eval e2)

eval (Plus (Int 4, Succ (Int 2)));;
- : int =7

SOS semantics of A
S CAx A

Plus(4, Succ(2)) — Plus(4, 3)
Plus(4,3) — 7

@/TM\Y

SOS semantics of A

- - -~
- - ~
- - ~
-- ~
-
—’——

Plus(4, Succ(2)) — Plus(4, 3)
Plus(4,3) —

each step hasay

X
v
(

SOS semantics of A

— CAx A

Part 1; axioms

Pred(i) — 71— 1 Succ(z) — 1+1

PluS(’il,ig) — 11 + 19 MUIt(il,iQ) — 11+ 19

SOS semantics of A

— CAx A

Part 2: contexts

e — ¢ e — ¢ e1 — €]
Pred(e) — Pred(e’) Succ(e) — Succ(e’) Plus(e1,es) — Plus(€}, e2)
62—)6’2 61—)6’1 62%6’2

Plus(eq, es) — Plus(eq, e5) Mult(eq, es) — Mult(e], e2) Mult(eq, e2) — Mult(eq, e5)

compatible
closure

Proot of each step

Succ(2) — 3
Plus(4, Succ(2)) — Plus(4, 3) Plus(4,3) — 7

Different steps

Succ(4) — 5

Plus(Succ(4), Pred(3)) — Plus(5, Pred(3))

Pred(3) — 2

Plus(Succ(4), Pred(3)) — Plus(Succ(4), 2)

SOS semantics of A

—S*C Ax A
/
e — € reflexive
closure
e %* 6/ e %* &
* / / * [/
e — € e — e transitive
~ // closure

Relating natural and SOS

Claim:

ell1 < e —>"1

Reduction semantics

Every proof of one-step reduction looks like:

Reduction semantics

Every proof of one-step reduction looks like:

Mult(Succ | ' (2, .‘

Reduction axioms

a CAx A

Pred(i) a1 — 1 Succ(z) ai+ 1

PIUS(il, ig) ail + 19 Mult(il, iz) a1

Reduction semantics

Every proof of one-step reduction looks like:

Reduction semantics

Context C =
Pred(C) | Succ(C)
Plus(C,e) | Plus(e,C) C [6]
Mult(C,e) | Mult(e,C) A

R A AN S eae
Cle] — Cl[e']

Reduction semantics

Context C =

Mult(C,e) | Mult(e,C)

Mule(SuccPlus(2, 3)), Pred(4)) — Mult(Succ{B), Pred(4))

Plus(2,3) a5

Pred(C) | Succ(C)
Plus(C,e) | Plus(e,C) C [6]

C|Plus(2,3)] — C|5]|, where C = Mult(Succ(

), Pred(4))

Reduction semantics

Standard reductions

61%6’1

Plus(eq, ea) — Plus(e’, e2)

/
e—— €

Mult(i,) — Mult(i, ¢')

eace
er— e
er— e el — e}
Plus(i, e) — Plus(i, €) Mult(eq, e2) — Mult(e}, es)
er— ¢ er— ¢

Succ(e) — Succ(e’) Pred(e) — Pred(e’)

Standard reductions

/
eace

Ele] — El€’]

EvalContext & =
Pred(&) | Succ(&)
Plus(&,e) | Plus(, &)
Mult(&,e) | Mult(i, E)

Relating reductions

Claim:

e] &= e = 1

Abstract (stack) machine

Frame F = Pred() | Succ(J)
Plus([1, e) | Plus(z,)
Mult(1, e) | Mult(z, L)
Stack § = ||| F:S

Serious s € A\Z

Abstract (stack) machine

eae

e,S ~¢€e S

reduce

Abstract (stack) machine

Pred(s),S ~~ s,Pred(]) :: S

push

Mult(s,e),S ~ s,Mult((,e) :: S

Mult(i, s), S ~ s, Mult(i,[J) :: S

(Not showing similar rules for Succ, Plus)

Abstract (stack) machine

i,Pred(]) :: S ~~ Pred(i), S

POP

i, Mult(Ld,e) :: § ~» Mult(z,e),S

i, Mult(e,(J) :: § ~» Mult(e,i),S

(Not showing similar rules for Succ, Plus)

Relating reductions

Claim:

e—* 1 <= e,||~"1,|]

Functions

€

App(e; e)
Fun(x,e)
Var(x)

x|ylz]|...

i | Fun(z, e)

Substitution

Var(z')[e/x] = - e =a
| var(a), otherwise

Succ(eg)le/x] = Succ(egle/x])

Plus(eg,e1)|e/x] = Plus(egle/x|,e1le/x])

Fun(z',eq)le/x] = ..

the tricky part

Natural semantics

eg |} Fun(z,e) eler /x| | v
App(eg,er) | v

call-by-name

Natural semantics

eo |} Fun(x, e) e1 b v elvi /x| | v

App(eg,e1) | v

call-by-value

Reduction semantics

App(Fun(z,e),€e') 3 ele’ /x]

Context C = ... € (3U,3> 6,
| Fun(z,C)

| App(C,e) | App(e,C) C[@] — C[G/]

Reduction semantics

App(Fun(x,e),v) By e|v/x]

Context C = ... e (au 6/
| Fun(z,C) (IgV)

| App(C.e) | App(e.C) Cle] —v Cle]

Standard reductions

App(Fun(z,e),¢') B ele’ /]

Context C = .. e (aU,B) 6/

~Fun(r,C)

| App(C,e) | ApptesL) 5[6] — 8[6/]

EvalContext & = ...
| App(E,e)

Standard reductions

App(Fun(x,e),v) By e|v/x]

Centext C

e (alU e’
~Fun(zx.C) (ﬁV)

| /
| App(C.e) TAppteC) Ele] —v El€]
EvalContext & =
|

App(&E,e) | App(v, &)

Abstract machine

Frame F = ...
| App(d,e) | App(v,)

remove for CbN

Push, pop, reduce same as before mutatis mutandis

EXxceptions

e = ...
Raise(e)
Try(e,x,e)
EvalContext & = ...
Raise(&)
Try(&E,x,e)

TryContext 7T € &E\Try(€,x,e)

Exceptions

Try(v,z,e) T v

Try(T|Raise(v)], x,e) T elv/x]

e(@auBUT) €

Ele] — E€']

Call/cc

Callcc(x, e) | Halt(e)

Halt(£)

EHalt(v)| — v

E[Callcc(x, €)] — e[Fun(z', Halt(E[x'])) /x]

Operational semantics: A method of defining the
meaning of programs by describing the actions
carried out during execution.

Useful for: What you’ve seen:
e Specifying a PL * Syntax
e Communicating ideas * Semantics

 Natural, big-ste
e Validating claims s Eeatiator LT

* .. Structured, small-step
 Reduction
e Standard reduction
 Abstract machine

Effects for Efficiency

Asymptotic Speedup with First-Class Control

DANIEL HILLERSTROM, The University of Edinburgh, UK
SAM LINDLEY, The University of Edinburgh and Imperial College London and Heriot-Watt University, UK
JOHN LONGLEY, The University of Edinburgh, UK

S-App
S-ApPP-REC
S-CONST
S-SpLIT
S-CASE-INL

S-CASE-INR case (inr V)* {inl x — M;inr y — N} ~> N

S-LET
S-LIFT

S-RET handle (return V) with H ~ N[V /x],

————

(AxA. M)V ~ M

[V/x]

(rec f4 x. M)V ~> M[(rec 2 x. M)/f, V/x]
¢V~ return ("¢ (V))

let (x,y) =(V,W)in N ~ N[V /x, W/y]

case (inl V)? {inl x = M;inr y — N} ~ M

let x — return Vin N~ N

[V /x|
V/y

V/x]

E[M] ~ &

N,

if M ~ N

where H? = {val x —» N}

S-Op handle E[do ¢ V] with H ~ N[V/p, (1y.handle E[return y] with H)/r|,
where H! = {€p r — N}

Effects for Efficiency

Asymptotic Speedup with First-Class Control

DANIEL HILLERSTROM, The University of Edinburgh, UK
SAM LINDLEY, The University of Edinburgh and Imperial College London and Heriot-Watt University, UK
JOHN LONGLEY, The University of Edinburgh, UK

| —

S-App (AxA. M)V ~ M[V/x]

S-ApP-REC (rec f4 x. M)V ~> M[(rec 2 x. M)/f, V/x]
S-CONST ¢V~ return ("¢ (V))
S-SpPLIT let (x,y) =(V,W)in N~ N[V /x, W/y]

S-Case-INL case (inl V)? {inl x — M;inr y — N} ~> M[V/x]
S-CASE-INR case (inr V) {inl x — M;inr y — N} ~> N[V /y]
S-LET let x < return Vin N ~ N|[V/x]
S-LIFT E[M] ~ E[N], if M~ N

S-RET handle (return V) with H ~ N|[V/x], where H? = {val x —» N}

S-Op handle E[do ¢ V] with H ~ N[V/p, (1y.handle E[return y] with H)/r|,
where H! = {€p r — N}

it -

