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What Is an operational
semantics?

A method of defining the meaning of programs by
describing the actions carried out during
execution.

There are many different flavors:

e Fvaluator

e Natural (aka big-step)

e Reduction (aka SOS, small-step)
e Abstract machine




What Is an operational
semantics used for?

e Specifying a programming language
e Communicating language design ideas

e \/a
e \/a

idating ¢
idating ¢

aims about
aims about

anguages

lype systems, etc

® Proving correctness of a compiler
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We study the fundamental efficiency of delimited control. Specifically, we show that effect handlers enable an
asymptotic improvement in runtime complexity for a certain class of functions. We consider the generic count
problem using a pure PCF-like base language Ay, and its extension with effect handlers A},. We show that Ay,
admits an asymptotically more efficient implementation of generic count than any A}, implementation. We
also show that this efficiency gap remains when Ay, is extended with mutable state.

To our knowledge this result is the first of its kind for control operators.
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1 INTRODUCTION

In today’s programming languages we find a wealth of powerful constructs and features — excep-
tions, higher-order store, dynamic method dispatch, coroutines, explicit continuations, concurrency
features, Lisp-style ‘quote’ and so on — which may be present or absent in various combinations
in any given language. There are of course many important pragmatic and stylistic differences
between languages, but here we are concerned with whether languages may differ more essentially
in their expressive power, according to the selection of features they contain.

One can interpret this question in various ways. For instance, Felleisen [1991] considers the
question of whether a language £ admits a translation into a sublanguage £’ in a way which
respects not only the behaviour of programs but also aspects of their (global or local) syntactic
structure. If the translation of some £-program into £’ requires a complete global restructuring,
we may say that £’ is in some way less expressive than L. In the present paper, however, we
have in mind even more fundamental expressivity differences that would not be bridged even if
whole-program translations were admitted. These fall under two headings.

(1) Computability: Are there operations of a given type that are programmable in £ but not
expressible at all in £’?
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In today’ ing 1
fons hghor-order sove dyna  S-APP (AxA. MYV ~> M[V/x]
imany gvenanguage st S-APP-REC (rec f4 x. M)V ~> Ml(rec f* x. M)/f, V/x]
petweén languages, but here w S-CONST ¢V ~» return (|_01 (V))
in their expressive power, accc
One can interpret this ques S_SPLIT let <x, y> = <V, W> in N ~> N[V/x’ W/y]

question of whether a langua . B .
respects not only the behavio S-Case-INL  case (inl V)® {inl x — M;inr y — N} ~ M[V/x]

structure. If the translation of

we may say that £’ is in somr S-CASE-INR case (inr V)A {inl X = M, inr y = N} > N[V/y]

have in mind even more fund: .
whole-program translations w S-LET let x < return Vin N ~ N[ V/X]
(1) Computability: Are ther S-LIFT 8 [M] ~> 8 [N], lf M~~> N

expressible at all in £’?
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Arithmetic

¢ Syntax

e Semantics
 Natural, big-step
e Evaluator
o Structured, small-step
 Reduction
e Standard reduction
 Abstract machine




Syntax Of A 3 ways: 1/3

el =>1€ A

e € A= Pred(e) € A
e € A= Succ(e) €
e1 € ANey € A= Plus(eq,eq) €
e1 € ANes € A= Mult(eq,es) €



Syntax Of A 3 ways: 2/3

.| =101 ...
0

Pred(e)

Succ(e)

Plus(e, e

Mult(e, e)

Y/
A e ::




INnference rules

H1 Hs

C



INnference rules




Syntax of A swasiae

1 € 7 eec A eec A
. (1) (2) (3)
e A Pred(e) € A Succ(e) € A

e1 € A 626./4(4) e1 € A BQE.A(S)

Plus(el, 62) c A Mult(el, 62) c A



Proof of Plus(4, Succ(2)) € A

2 € 4
4 €7 2¢ A
1A Succ(2) € A
Plus(4, Succ(2)) € A




Natural semantics of A

JCAXZ

Plus(4, Succ(2)) | 7



Natural semantics of A

JCAXZ

) R )

i) i Pred(e) || i — 1 Succ(e) | 7+ 1

e1 4 11 ez ) 19 e1 4 11 ez |} 12
Plus(el, 62) 114+ 29 Mult(el, 62) I 1119




Natural semantics of A

e1 4 71 e2 1 12
Plus(el, 62) 11+ 19

e1 4 11 ea ) 19 P =11 + 19
Plus(el,eg) UZ




Proot of Plus(4, Succ(2)) || 7

2 1 2
4] 4 Succ(2) | 3
Plus(4, Succ(2)) | 7




Fvaluator semantics of A

type arith = Int of int
Pred of arith

Succ of arith
Plus of arith * arith

Mult of arith * arith JCAXZ

let rec eval (e : arith) : int =
match e with
Int 1 -> 1
Pred e -> (eval e) - 1
Succ e => (eval e) + 1
Plus (el, e2) -> (eval el) + (eval e2)
Mult (el, e2) -> (eval el) * (eval e2)

# eval (Plus (Int 4, Succ (Int 2)));;
- : int =7



SOS semantics of A
S CAx A

Plus(4, Succ(2)) — Plus(4, 3)
Plus(4,3) — 7

@/TM\Y




SOS semantics of A

---------------
- - -~
- - ~
- - ~
-- ~
-
—’——

Plus(4, Succ(2)) — Plus(4, 3)
Plus(4,3) —

each step hasay

X
v
(




SOS semantics of A

— CAx A

Part 1; axioms

Pred(i) — 71— 1 Succ(z) — 1+1

PluS(’il,ig) — 11 + 19 MUIt(il,iQ) — 11+ 19



SOS semantics of A

— CAx A

Part 2: contexts

e — ¢ e — ¢ e1 — €]
Pred(e) — Pred(e’) Succ(e) — Succ(e’) Plus(e1,es) — Plus(€}, e2)
62—)6’2 61—)6’1 62%6’2

Plus(eq, es) — Plus(eq, e5) Mult(eq, es) — Mult(e], e2) Mult(eq, e2) — Mult(eq, e5)

compatible
closure



Proot of each step

Succ(2) — 3
Plus(4, Succ(2)) — Plus(4, 3) Plus(4,3) — 7




Different steps

Succ(4) — 5

Plus(Succ(4), Pred(3)) — Plus(5, Pred(3))

Pred(3) — 2

Plus(Succ(4), Pred(3)) — Plus(Succ(4), 2)



SOS semantics of A

—S*C Ax A
/
e — € reflexive
closure
e %* 6/ e %* &
* / / * [/
e — € e — e transitive
~  // closure



Relating natural and SOS

Claim:

ell1 < e —>"1




Reduction semantics

Every proof of one-step reduction looks like:




Reduction semantics

Every proof of one-step reduction looks like:

Mult(Succ | ' (2, .‘



Reduction axioms

a CAx A

Pred(i) a1 — 1 Succ(z) ai+ 1

PIUS(il, ig) ail + 19 Mult(il, iz) a1



Reduction semantics

Every proof of one-step reduction looks like:




Reduction semantics

Context C =
Pred(C) | Succ(C)
Plus(C,e) | Plus(e,C) C [6]
Mult(C,e) | Mult(e,C) A

R A AN S eae
Cle] — Cl[e']




Reduction semantics

Context C =

Mult(C,e) | Mult(e,C)

Mule(SuccPlus(2, 3)), Pred(4)) — Mult(Succ{B), Pred(4))

Plus(2,3) a5

Pred(C) | Succ(C)
Plus(C,e) | Plus(e,C) C [6]

C|Plus(2,3)] — C|5]|, where C = Mult(Succ(

), Pred(4))



Reduction semantics




Standard reductions

61%6’1

Plus(eq, ea) — Plus(e’, e2)

/
e—— €

Mult(i, ) — Mult(i, ¢')

eace
er— e
er— e el — e}
Plus(i, e) — Plus(i, €) Mult(eq, e2) — Mult(e}, es)
er— ¢ er— ¢

Succ(e) — Succ(e’) Pred(e) — Pred(e’)



Standard reductions

/
eace

Ele] — El€’]

EvalContext & =
Pred(&) | Succ(&)
Plus(&,e) | Plus(, &)
Mult(&,e) | Mult(i, E)




Relating reductions

Claim:

e ] &= e = 1




Abstract (stack) machine

Frame F = Pred() | Succ(J)
Plus([1, e) | Plus(z, )
Mult(1, e) | Mult(z, L)
Stack § = ||| F:S

Serious s € A\Z



Abstract (stack) machine

eae

e,S ~¢€e S

reduce



Abstract (stack) machine

Pred(s),S ~~ s,Pred(]) :: S

push

Mult(s,e),S ~ s,Mult((,e) :: S

Mult(i, s), S ~ s, Mult(i,[J) :: S

(Not showing similar rules for Succ, Plus)



Abstract (stack) machine

i,Pred(]) :: S ~~ Pred(i), S

POP

i, Mult(Ld,e) :: § ~» Mult(z,e),S

i, Mult(e,(J) :: § ~» Mult(e,i),S

(Not showing similar rules for Succ, Plus)



Relating reductions

Claim:

e—* 1 <= e,||~"1,|]







Functions

€

App(e; e)
Fun(x,e)
Var(x)

x|ylz]|...

i | Fun(z, e)



Substitution

Var(z')[e/x] = - e =a
| var(a), otherwise

Succ(eg)le/x] = Succ(egle/x])

Plus(eg,e1)|e/x] = Plus(egle/x|,e1le/x])

Fun(z',eq)le/x] = ..

the tricky part



Natural semantics

eg |} Fun(z,e) eler /x| | v
App(eg,er) | v

call-by-name



Natural semantics

eo |} Fun(x, e) e1 b v elvi /x| | v

App(eg,e1) | v

call-by-value



Reduction semantics

App(Fun(z,e),€e') 3 ele’ /x]

Context C = ... € (3U,3> 6,
| Fun(z,C)

| App(C,e) | App(e,C) C[@] — C[G/]



Reduction semantics

App(Fun(x,e),v) By e|v/x]

Context C = ... e (au 6/
| Fun(z,C) ( IgV)

| App(C.e) | App(e.C) Cle] —v Cle]



Standard reductions

App(Fun(z,e),¢') B ele’ /]

Context C = .. e (aU,B) 6/

~Fun(r,C)

| App(C,e) | ApptesL) 5[6] — 8[6/]

EvalContext & = ...
| App(E,e)



Standard reductions

App(Fun(x,e),v) By e|v/x]

Centext C

e (alU e’
~Fun(zx.C) ( ﬁV)

| /
| App(C.e) TAppteC) Ele] —v El€]
EvalContext & =
|

App(&E,e) | App(v, &)



Abstract machine

Frame F = ...
| App(d,e) | App(v, )

remove for CbN

Push, pop, reduce same as before mutatis mutandis






EXxceptions

e = ...
Raise(e)
Try(e,x,e)
EvalContext & = ...
Raise(&)
Try(&E,x,e)

TryContext 7T € &E\Try(€,x,e)



Exceptions

Try(v,z,e) T v

Try(T|Raise(v)], x,e) T elv/x]

e(@auBUT) €

Ele] — E€']



Call/cc

Callcc(x, e) | Halt(e)

Halt(£)

EHalt(v)| — v

E[Callcc(x, €)] — e[Fun(z', Halt(E[x'])) /x]



Operational semantics: A method of defining the
meaning of programs by describing the actions
carried out during execution.

Useful for: What you’ve seen:
e Specifying a PL * Syntax
e Communicating ideas * Semantics

 Natural, big-ste
e Validating claims s Eeatiator LT

* ..  Structured, small-step
 Reduction
e Standard reduction
 Abstract machine
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S-App
S-ApPP-REC
S-CONST
S-SpLIT
S-CASE-INL

S-CASE-INR case (inr V)* {inl x — M;inr y — N} ~> N

S-LET
S-LIFT

S-RET handle (return V) with H ~ N[V /x],

————

(AxA. M)V ~ M

[V/x]

(rec f4 x. M)V ~> M[(rec 2 x. M)/f, V/x]
¢V~ return ("¢ (V))

let (x,y) =(V,W)in N ~ N[V /x, W/y]

case (inl V)? {inl x = M;inr y — N} ~ M

let x — return Vin N~ N

[V /x|
V/y

V/x]

E[M] ~ &

N,

if M ~ N

where H? = {val x —» N}

S-Op  handle E[do ¢ V] with H ~ N[V/p, (1y.handle E[return y] with H)/r|,
where H! = {€p r — N}
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| —

S-App (AxA. M)V ~ M[V/x]

S-ApP-REC (rec f4 x. M)V ~> M[(rec 2 x. M)/f, V/x]
S-CONST ¢V~ return ("¢ (V))
S-SpPLIT let (x,y) =(V,W)in N~ N[V /x, W/y]

S-Case-INL  case (inl V)? {inl x — M;inr y — N} ~> M[V/x]
S-CASE-INR case (inr V) {inl x — M;inr y — N} ~> N[V /y]
S-LET let x < return Vin N ~ N|[V/x]
S-LIFT E[M] ~ E[N], if M~ N

S-RET handle (return V) with H ~ N|[V/x], where H? = {val x —» N}

S-Op  handle E[do ¢ V] with H ~ N[V/p, (1y.handle E[return y] with H)/r|,
where H! = {€p r — N}

it -




