
Build It Break It: Measuring and Comparing Development Security

Andrew Ruef, Michael Hicks, James Parker, Dave Levin,
Atif Memon, Jandelyn Plane, and Piotr Mardziel

University of Maryland, College Park

Abstract

There is currently little evidence about what tools,
methods, processes, and languages lead to secure
software. We present the experimental design of the
Build it Break it secure programming contest as an
aim to provide such evidence. The contest also pro-
vides education value to participants where they
gain experience developing programs in an adver-
sarial settings. We show preliminary results from
previous runs of the contest that demonstrate the
contest works as designed, and provides the data
desired. We are in the process of scaling the contest
to collect larger data sets with the goal of making
statistically significant correlations between vari-
ous factors of development and software security.

1 Introduction

Experts have long advocated that achieving se-
curity in a computer system requires careful de-
sign and implementation from the ground up [19].
Over the last decade, Microsoft [10, 11] and oth-
ers [23, 15, 13] have described processes and meth-
ods for building secure software, and researchers
and companies have, among other activities, devel-
oped software analysis and testing tools [8, 6, 14] to
help developers find vulnerabilities. Despite these
efforts, the situation seems to have worsened, not
improved, with vulnerable software proliferating
despite billions spent annually on security [3].

This disconnect between secure development in-
novation and marketplace adoption may be due to
a lack of evidence. In particular, no one would dis-
agree that certain technologies, such as type-safe
programming languages and static analysis tools,

and activities, such as code reviews and penetra-
tion testing, can improve software’s security. The
question is how effective these (and other) things
are, in terms of their costs vs. benefits. Companies
would like to know: Which technologies or pro-
cesses shake out the most (critical) bugs? Which
are the easiest to use? Which have the least impact
on other metrics of software quality, such as perfor-
mance and maintainability? It is currently difficult
to answer these questions because we lack the em-
pirical evidence needed to do so.

In this paper we present Build-it, Break-it, Fix-
it (BiBiFi), a new software security contest that is
a fun experience for contestants, as well as an ex-
perimental testbed by which researchers can gather
empirical evidence about secure development. A
BiBiFi contest has three phases. The first phase,
Build-it, asks small development teams to build
software according to a provided specification in-
cluding security goals. The software is scored for
being correct, fast, and feature-ful. The second
phase, Break-it, asks teams to find security viola-
tions and other problems in other teams’ build-it
submissions. Identified problems, proved via test
cases, benefit a Break-it team’s score while penal-
izing the Build-it team’s score. (A team’s break-it
and build-it scores are independent, with prizes for
top scorers in each category.) The final phase, Fix-
it, gives builders a chance to fix bugs and thereby
possibly get some points back if the process discov-
ers that distinct break-it test cases identify the same
underlying software problem.

We designed BiBiFi to give researchers in situ
data on how teams develop code—for better or
for worse—when security is a first-order design
goal. As such, BiBiFi contestants are afforded a

1

significant amount of freedom. Build-it teams can
choose to build their software using whatever pro-
gramming language(s), libraries, tools, or processes
they want, and likewise Break-it teams can hunt for
vulnerabilities as they like, using manual code re-
views, analysis or testing tools, reverse engineer-
ing, and so on. During the contest, we collect data
on each team’s activities. For example, we keep
track of commit logs, testing outcomes, and inter-
actions with the contest site. Prior to and after the
contest, we survey the participants to record their
background, mindset, choices, and activities.

By correlating how teams worked with how well
they performed in the competition, researchers can
learn about what practices do and do not work.
Treating the contest as a scientific experiment, the
contest problem is the control, the final score is the
dependent variable, and the various choices made
by each team, which we observe, are the indepen-
dent variables. To permit repeatable, statistically
significant results, we have designed BiBiFi and
implemented its infrastructure to scale to multiple
competitions with thousands of competitors.

Our hope is to use BiBiFi—and for other re-
searchers to apply it, as well—to empirically learn
what factors most strongly influence security out-
comes: Does better security correlate with: the
choice of programming language? the use of de-
velopment or analysis tools? the use of code re-
views? participants’ background (e.g., certification)
and education (e.g., particular majors or courses)?
the choice of a particular build process, or perhaps
merely the size of the team itself? As educators,
we are particularly interested in applying answers
to questions like these to better prepare students to
write responsible, secure code.

This paper makes two main contributions. First,
it describes the design of BiBiFi (Section 2) and the
contest infrastructure (Section 3), focusing on how
both aim to ensure that high scores in the contest
correlate with meaningful, real-world outcomes.

Second, it describes our first run of the contest,
held during the Fall of 2014 (Section 4). We de-
scribe the contest problem, the rationale for its de-
sign, and details of how the contest proceeded and
concluded. While participation in this contest was
modest, and thus we cannot view the data we gath-
ered as significant, the outcomes were interesting,
and taught us important lessons that can be applied
to future runs.

To the best of our knowledge, BiBiFi is the first

public, large-scale contest whose focus is on build-
ing secure systems. Our contest takes inspiration
from popular capture-the-flag (CTF) cybersecurity
contests [5, 7, 16] and from programming contests
[21, 2, 12], but is unique in that it combines ideas
from both in a novel way. Although no contest can
truly capture the many difficulties of professional
development, we hope it will provide some general
insight nevertheless, and thus provide some sorely
needed evidence about what works for building se-
cure software.

2 Build-it, Break-it, Fix-it: Design

This section summarizes the BiBiFi contest goals
and how the contest’s design satisfies those goals.

2.1 Goals, incentives, and disincentives

Our most basic goals are that the winners of the
Build-it phase truly produced the highest quality
software, and that the winners of the Break-it phase
performed the most thorough, creative analysis of
others’ code. We break down these high-level goals
into a set of 12 concrete requirements that guide our
design.

The winning Build-it team would ideally develop
software that is (1) correct, (2) secure, (3) efficient,
and (4) maintainable. While the quality of primary
interest to our contest is security, the other aspects
of quality cannot be ignored. It is easy to produce
secure software that is incorrect (have it do noth-
ing!). Ignoring performance is also unreasonable,
as performance concerns are often cited as reasons
not to deploy defense mechanisms [1, 22]. Main-
tainability is also important—spaghetti code might
be harder for attackers to reverse engineer, but it
would also be harder for engineers to maintain. So
we would like to encourage build-it teams to focus
on all four aspects of quality.

The winning Break-it team would ideally (5) find
as many defects as possible in the submitted soft-
ware, thus giving greater confidence to our as-
sessment that a particular contestant’s software is
more secure than another’s. To maximize cover-
age, each break-it team should have incentive to
(6) look carefully at multiple submissions, rather
than target a few submissions. Moreover, teams
should be given incentive to, in some cases, (7) ex-
plore code in depth, to find tricky defects and not
just obvious ones. We would like break-it teams

2

to (8) produce useful bug reports that can be un-
derstood and acted on to produce a fix. Finally, we
would like to (9) discourage superficially different
bug reports that use different inputs to identify the
same underlying flaw.

We also have several general goals. First, we
want to (10) scale up the contest as much as possi-
ble, allowing for up to several hundred participat-
ing teams. The more teams we have, the greater
our impact from both a teaching and research point
of view: on the teaching side, more students expe-
rience the desired learning outcomes, and on the
research side, we have a greater corpus of data to
draw on. To support scalability, the contest de-
sign should (10a) encourage greater participation,
and (10b) minimize the amount of manual judg-
ment required to assess the results. The latter is im-
portant for reducing staffing needs and also helps
make the outcomes more understandable. We also
wish to (11) discourage collusion where it might
provide an unfair advantage. As a final goal, we
want (12) the data that we gather from running
the contest—the activity logs and submissions pro-
duced by the participants, as well their metadata—
to be useful in assessing the reasons for a team’s
success or failure.

2.2 Contest structure

BiBiFi begins with the build-it phase. Registered
contestants aim to implement the target software
system according to a published specification. A
suitable target is one that can be completed by
good programmers in a short time (from a week-
end up to a couple of weeks, depending on phase
length), has an interesting attack surface, and is eas-
ily benchmarked for performance; we discuss these
points in greater depth in Section 2.4. The imple-
mentation must build and run on a standard Linux
VM made available prior to the start of the con-
test. Teams may be geographically distributed—the
competition is not hosted on-site—and develop us-
ing Git [9]; with each push, the contest infrastruc-
ture downloads the submission, builds it, and tests
it (for correctness and performance), updating the
scoreboard.

The next phase is the break-it phase. Break-it
teams can download, build, and inspect all build-
it submissions, including source code.1 We ran-

1We check that submissions contain source code that builds
properly and has not been mechanically obfuscated [4].

domize each break-it team’s view of the build-it
teams’ submissions, but organize them by meta-
data like programming language. When they think
they have found a defect, they submit a test case.
BiBiFi’s infrastructure accepts this as a defect if it
passes our reference implementation but fails on
the buggy implementation. Any failing test is po-
tentially worth points; we take the view that a cor-
rectness bug is potentially a security bug waiting
to be exploited. That said, additional points are
granted to an actual exploit or to demonstrated vi-
olations of security goals; for the latter we require
special test case formats (see Section 4). To encour-
age coverage, a break-it team may submit up to ten
passing test cases per build-it submission.

The final phase is the fix-it phase. Build-it teams
are provided with the bug reports and test cases
implicating their submission. They may fix flaws
these test cases identify; if a single fix corrects more
than one failing test case, the test cases are “morally
the same,” and points are only deducted for one of
them. The organizers determine, based on informa-
tion provided by the build-it teams and other as-
sessment, whether a submitted fix is “atomic” in the
sense that it corrects only one conceptual flaw.

Inspired by the ICFP programming contest [12],
we had originally set the contest to run on three
consecutive (3-day) weekends, but found that this
was too aggressive (too few teams qualified). We
plan to set them to 1–2 weeks each, in our next run.

Scoring in BiBiFi works as follows. As the con-
test unfolds we post each team’s build-it and break-
it scores. Each build-it team receives a fixed point
total for passing a core suite of correctness tests,
relative to the number of qualifying submissions
M; e.g., 5M points. Teams get a linearly scaled
bonus according to their rank-ordering, per perfor-
mance test; i.e., the best performing submission for
a given test earns M points, while the worst earns 0.
Teams receive extra points for successfully imple-
menting optional features from the problem spec-
ification; each optional test is worth M/2 points.
After the break-it and fix-it phases, we will know
the set of unique defects against a submission, and
which teams reported those defects. A unique de-
fect deducts a fixed point value P from a build-it
team’s initial score, and each of the N break-it teams
that identified the defect will gain P/N points to
their break-it score. For correctness bugs, we set P
to M/2; for crashes that violate memory safety we
set P to M, and for exploits and other security prop-

3

erty failures we set P to 2M. After the fix-it phase,
and all scores are final, the top scorers for both the
build-it and break-it categories are awarded prizes.

2.3 Assessment

Consider this design with respect to the goals out-
lined in Section 2.1, starting with the build-it teams.
Because they will lose points for each discovered
defect, they have incentive to write correct code
(1)(2). Moreover, granting more points to the fastest
implementations provides incentive to write effi-
cient implementations (3). Finally, it is in the par-
ticipants’ best interests to write maintainable (i.e.,
understandable) code because they can gain points
back by fixing flaws provided in the final phase (4).
It is important for the build-it phase to not be too
long, thus forcing teams to carefully weigh their
options—to maximize points they need to pick a
method that will allow them to build the system
quickly, correctly, and securely.

The break-it teams are also encouraged to fol-
low the spirit of the competition. First, by requir-
ing them to provide test cases as evidence of a de-
fect or vulnerability, we ensure they are providing
useful bug reports (8). Because they are limited to
a fixed number of test cases per submission, they
have incentive to examine as many submissions as
possible, to gain more points (6). Moreover, they
are incentivized to ensure that test cases for any
given submission are not morally the same, or else
they will not gain as many points (9). Finally, by
providing fewer points for defects also found by
other teams, break-it teams are encouraged to look
deeper for hard-to-find bugs, rather than just low-
hanging fruit (7). Together, these incentives encour-
age both broad and deep exploration to find many
unique bugs (5).

Now consider the final set of goals. To encour-
age participation (10a), contestants may participate
remotely, commit only a short amount of time, re-
ceive online accreditation, and win cash prizes (and
notoriety). To reduce the amount of work for the
organizers (10b), we employ best-effort automation
and incentivize teams to make the organizers’ jobs
easy. In particular, rather than ask organizers (or
automation) to perfectly disambiguate similar de-
fects, build-it teams will do it (and break-it teams
will avoid testing their ability to do it) because it
is in their interests. The organizers simply confirm
that the teams are not fixing multiple bugs at once,

which teams are motivated to make clear so their
fixes are approved.

Discouraging collusion (11) is crucial to ensur-
ing fair outcomes. There are three broad possibili-
ties for collusion, each of which we discourage with
how we score and administer the competition.

First, two break-it teams could consider sharing
bugs they find with one another. By scaling the
points each finder of a particular bug obtains, we
remove incentive for them to both submit the same
bugs, as they would risk diluting how many points
they both obtain.

The second class of collusion is between a build-
it team and a break-it team, but neither have incen-
tive to assist one another. The zero-sum nature of
the scoring between breakers and builders places
them at odds with one another; revealing a bug to a
break-it team hurts the builder, and not reporting a
bug hurts the breaker.

Finally, two build-it teams could collude, for in-
stance by sharing code with one another. It might
be in their interests to do this in the event that
the competition offers prizes to two or more build-
it teams, since collusion could obtain more than
one prize-position. We use judging and automated
tools (and feedback from break-it teams) to detect
if two teams share the same code (and disqualify
them), but it is not clear how to detect whether
two teams provided out-of-band feedback to one
another prior to submitting code (e.g., by holding
their own informal “break-it” and “fix-it” stages).
We view this as a minor threat to validity; at the
surface, such assistance appears unfair, but it is not
clear that it is contrary to the goals of the contest,
that is, to developing secure code.

2.4 Discussion: Task Selection

For each offering of the contest, we must design a
suitable programming task, implement a reference
solution, and write basic performance and correct-
ness tests. To ensure that the contest outcomes are
meaningful, we believe the task must exhibit the
following five qualities:

First, it must be appropriately sized. The software
system must be constructible within a short time
window by a small, motivated team. Second, the
implemented software must have measurable per-
formance to motivate programmers to take risks in
their design to make it efficient. Third, the task
should require independent development. The task

4

Judges Contestants

Web Application

Database

Repositories

Git listener

Scheduler

Amazon MC2

score pre/post-survey
scoreboard

git push

VM

build
test

benchmark

oracle

Figure 1: Implementation overview.

should not be too similar to an existing software to
ensure that contestants do the coding themselves.
(Of course, we expect contestants to use libraries
and frameworks.)

These three qualities are typical for many cod-
ing competitions (and class projects). What distin-
guishes BiBiFi tasks are their security-related goals:

Our fourth goal is that a task should have a
large attack surface, meaning that there is a suffi-
ciently rich set of security-relevant interactions to
potentially exploit. Finally, the task’s functionality
should be relevant: it must represent, in terms of
application area and underlying code structure, a
class of systems that are security-critical, so that the
outcomes are meaningful to the question of build-
ing real-world secure systems.

We describe in Section 4.1 the task we used in our
first BiBiFi run (a secure, append-only log).

3 Contest implementation

Figure 1 illustrates components of the contest im-
plementation (along the left), and the interactions

between participants and outside elements (on the
right). This section describes key implementation
details that aim to ensure security and scalability.

3.1 BIBIFI web application

The locus of the BIBIFI contest is the web appli-
cation running at https://builditbreakit.org.
Contestants sign up for the contest using this ap-
plication, filling out a survey when doing so, to
gather demographic data and other data potentially
relevant to the contest outcome (e.g., programming
experience and security training). During the con-
test, the web app orchestrates the key functions: It
tests build-it submissions and break-it bug reports;
it keeps the current scores updated; and it provides
a workbench for the judges for considering whether
or not a submitted fix covers one bug or not.

It is important that the web application be
secure; otherwise, contest outcomes could be
thwarted by unscrupulous participants. To sup-
port this end, we implemented the web applica-
tion in about 9000 lines of Haskell using the Yesod
[25] web framework backed by a PostgreSQL [18]
database. Haskell’s strong type system defends
against use-after-free, buffer overrun, and other
memory safety-based attacks. The use of Yesod
adds further automatic protection against various
attacks like CSRF, XSS, and SQL injection. As one
further layer of defense, the web application in-
corporates the information flow control framework
LMonad [17], which is derived from LIO [20], in or-
der to protect against inadvertent information leaks
and privilege escalations. LMonad dynamically
guarantees that users can only access their own in-
formation.

3.2 Testing submissions

Our implementation includes backend infrastruc-
ture for testing, both during the build-it round for
correctness and performance, and during the break-
it round to assess potential vulnerabilities. The
backend consists of approximately 4400 lines of
Haskell code (and a little Python).

To implement testing we require contestants to
specify a URL to a Git [9] repository hosted on ei-
ther Github or Bitbucket, and shared with a desig-
nated bibifi username, read-only. The backend
“listens” to each contestant repository for pushes.
Each time this happens, the backend downloads

5

and archives each commit. Testing is then handled
by a scheduler that spins up an Amazon EC2 vir-
tual machine which builds and tests each submis-
sion. We require that teams’ code builds and runs,
without any network access, in an Ubuntu Linux
VM that we share in advance. Teams can request
that we install additional packages not present on
the VM. The use of VMs supports both scalabil-
ity (Amazon EC2 instances are dynamically pro-
visioned) and security (using fresh VM instances
prevents a team from affecting the results of future
tests, or of tests on other teams’ submissions).

All qualifying build-it submissions may be
downloaded by break-it teams at the start of the
break-it phase. The web application randomizes
the order the submissions are presented to each
break-it team to encourage broad coverage. As
break-it teams identify bugs, they prepare a (JSON-
based) file specifying the buggy submission along
with a sequence of commands with expected out-
puts that demonstrate the bug. Break-it teams com-
mit this file (to their Git repository) and then push.
The backend uses the file to set up a test of the im-
plicated submission to see if it indeed is a bug. How
it does this depends on the specification and the
kind of bug.

4 Experience

We have run BiBiFi twice: once as a pilot open only
to contestants at our institution(s), in early 2014,
and later for all US college students, in Fall 2014.
Participant data was anonymized and stored in a
manner approved by the UMD IRB. Participants
consented to have data related to their activities col-
lected, anonymized, stored, and analyzed. This sec-
tion describes the Fall 2014 contest, some of the data
we collected, and some lessons learned.

4.1 Contest problem

The programming problem for the contest was to
implement a secure log for a hypothetical art gallery
alarm system. This log stores events generated
by sensors when employees and visitors enter and
exit gallery rooms. Two programs, logappend and
logread, are used to access the log. The former
adds new events to the log, while the latter reads
the log to query about certain events. An empty
log is created by logappend with a given authenti-
cation token, and all subsequent calls to logappend

and logread on the same log must use that token.
Build-it teams could design the log format and

implement these two programs however they like
while ensuring both log privacy and integrity: any
attempt to learn something about the log’s contents,
or to change them, without the use of the logread

and logappend and the proper token should be de-
tected. Performance was measured in terms of time
to perform a particular sequence of operations, and
space consumed by the resulting log.

Break-it teams could demonstrate correctness
bugs by showing that a program did not adhere
to the specification. They could also demonstrate
violations of confidentiality or integrity as follows.
When providing submissions to the break-it teams,
we also included a set of log files. In some cases
we just provided the file, and in other cases we
also provided a transcript of the logappend oper-
ations used to generate the file, but omitting the to-
ken used. A break-it team could submit a test case
involving a transcript-less log that demonstrates
knowledge of the file’s contents, thus violating pri-
vacy. A team could also submit a test case involv-
ing the second kind of log, where using logread on
a modified version of the log (also provided by the
team) outputs a different answer than with the un-
modified log (when using the correct token), thus
violating integrity.

4.2 Outcomes and Lessons

A total of 90 teams registered for the contest. Of
these, 28 teams (totaling 64 people) shared a Git
repository with us and carried out some develop-
ment. Of these, 11 qualified to be break-it round
targets.2

Nine teams (25 people) competed in the break-it
round. Of these, seven teams scored points by find-
ing bugs in build-it submissions. We also had two
professional teams (from Cyberpoint and AT&T)
participate in the Break-it round. The bugs they
found counted against the Build-it scores, but did
not affect student Break-it teams’ scores. In to-
tal, break-it teams found 178 unique bugs. The
winning student teams did better than both pro-
fessional teams. In general, student teams largely
employed testing and manual inspection to find
bugs. The top break-it team was also the third-place

2A twelfth team (121) had a working submission until five
minutes before the submission deadline, but then pushed a ver-
sion that “added compression” that failed to pass the correctness
tests.

6

Contest ProblemDevelopment

��
���
���
���
���
����

����� ����� ����� ����� ����� ��������������

��
��

�
��
��

��
�
�
��

�
��
��
��

������������������������������
�����������������������������

������������������������

����
����
����

����
����
����
���������

�
��
��
��
��
��

��
�
�
��

�
��
��
��

Submission

�����
�����
�����
�����
�����

�� �� �� �� �� �� �� �� �� �� ��� �������

��
�
��
��
��

�
��
��
��
�

�������

������
������ ��� ������

��

������ ����

�

������
����

���

Team Composition

�� �� �� �� �� �� �� �� �� �� ��� ���

�������
����������
���������������
��������
�������������
������������
����������
���������
�������������
������������������

����
� � � � � � � � � � � �

��
��
���
���
���
����

��
��
��
�
�

��
��
��
��
�

�
��
�

��
�
��
��
��
�

�
��
��
��
�

Team Cohesion

+perf.

�� �� �� �� �� �� �� �� �� �� ��� ���
���������
��������������
�����
�����
�������
�������
�����������
������

����

+tests -bugs +fixesBuild Results Break Results Fix Results

����

��

����

�����

�����

�����

����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ��������������

������������� ������������� ������������������ �������

��
��
��
��
��
�

��
��

��
��

��

��

��

��
��

���

���

��

Commit Merge

Yes No

1
|∪ixi |

=
1
0

|∩ixi |
|∪ixi |

=
1.0
0.5
0.0

Figure 2: Fall 2014 contest data sample. A sample of three teams’ development data (top left) includes the git commit
history featuring code changes and merges (large shaded dots). The magnitude of the code changes is visualized both
as code lines added and code lines deleted as a proportion of maximum lines The final qualifying submissions (middle
left) are shown along with their language and size. The team composition (top right) derived from pre/post contest
surveys includes 1) yes/no questions and 2) years of experience. Additionally the surveys provide statistics relating to
the cohesion of the teams (middle right). This includes single answer questions which are visualized as the inverse of
the set size of the team’s answers (top 6 lines), and multiple answer questions which are visualized as the size of the
intersection as a proportion of the union (bottom 2 lines).

build-it team, and reused its build-it test suite to
find bugs in others’ submissions. The second-place
team and professional teams also used static analy-
sis and fuzzing.

Three build-it teams earned points back during
the fix-it round. Doing so dropped the total number
of unique bugs from 200 to 178.

The bottom of Figure 2 shows the contest as it un-
folded, plotting the score of each qualifying build-it
teams across all three rounds (build-it, break-it, and
fix-it). In terms of final scores, the top three build-
it teams were teams 30 (1st), 28 (2nd), and 71 (3rd),
while the top break-it teams were teams 71 (1st), 66
(2nd), and 114 (3rd). Other data we gathered during
this contest run is visualized in the top half of the
figure and described in the caption.

Lessons learned. The Fall 2014 results confirmed
the importance of having a contest problem with
specific security goals. Our pilot contest asked con-
testants to build a secure parser (for SDXF [24]);
as parsers are often a target of exploits, we felt
this topic was relevant. However, writing a secure
parser requires no real ingenuity: write it in a type-
or memory-safe language. This is what the builders
did, leaving nothing on the table for break-it teams.
Our Fall 2014 problem had specific privacy and in-
tegrity goals that we could directly test for, and for
which type- and memory-safety is not sufficient. In-
stead, contestants needed to include some sort of
cryptography in their design. Some teams failed to
do so, relying on the obscurity of their runtime’s
object serialization protocol to deter attacks. Others

7

had errors with the use of a cryptographic library,
or with not validating the integrity of the log file as
a whole. Break-it teams found and exploited these
flaws, resulting in a large drop in score for several
of the submissions. Only one submission written in
C had a heap overflow error in command line pars-
ing and the application could be made to segfault
from command line arguments.

We also learned that timing and phase duration
are extremely important: We had originally set the
build-it round at three days, but only one team
qualified! Therefore we extended the round to
nearly two weeks (explaining the change in commit
activity shown the upper left of Figure 2).

Another lesson was that correctness bugs can
have an outsized effect without a comprehensive
test suite; correctness bugs had a big impact on final
scores. Moreover, correctness bugs need an unam-
biguous judge—an oracle implementation—since
the specification is inevitably going to be vague;
several “fixes” at the end were allowances due to
specification ambiguity.

5 Conclusions

We have designed, developed, and held initial runs
of a contest, BiBiFi, that is a fun arena for contes-
tants, and an experiment testbed for researchers.
BiBiFi’s design seeks to align the incentives of the
contestants (who wish to win) with those of re-
searchers (who wish to see what leads to the best
code and the most thorough attack analysis). Our
hope is that BiBiFi can facilitate good educational
experiences and supply empirical evidence about
best practices, both for building secure code and
breaking insecure code. More information, data,
and opportunities to participate are available at
https://builditbreakit.org

References

[1] ABADI, M., BUDIU, M., ERLINGSSON, U., AND LIGATTI,
J. Control-flow integrity principles, implementations, and
applications. ACM Trans. Inf. Syst. Secur. 13, 1 (Nov. 2009),
4:1–4:40.

[2] The ACM-ICPC international collegiate programming con-
test. http://icpc.baylor.edu.

[3] ANDERSON, R., BARTON, C., BÓHME, R., CLAYTON, R.,
VAN EETEN, M., LEVI, M., MOORE, T., AND SAVAGE, S.
Measuring the cost of cybercrime. In Proceedings of the
11th Annual Workshop on the Economics of Information Secu-
rity (2012).

[4] COLLBERG, C., AND THOMBORSON, C. Watermarking,
tamper-proofing, and obfuscation - tools for software pro-
tection. Software Engineering, IEEE Transactions on 28, 8 (aug
2002), 735 – 746.

[5] COMPETITION, N. C. C. D. National collegiate cyber de-
fense competition. http://www.nationalccdc.org.

[6] Coverity security advisor. http://www.coverity.com/

products/security-advisor.html.

[7] DEF CON COMMUNICATIONS, I. Capture the flag archive.
https://www.defcon.org/html/links/dc-ctf.html.

[8] Fortify software security center. http://

www.hpenterprisesecurity.com/products/

hp-fortify-software-security-center.

[9] Git – distributed version control management system.
http://git-scm.com.

[10] HOWARD, M., AND LEBLANC, D. Writing Secure Code. Mi-
crosoft Press, 2003.

[11] HOWARD, M., AND LIPNER, S. The Security Development
Lifecycle. Microsoft Press, 2006.

[12] ICFP programming contest. http://icfpcontest.org/.

[13] ISC(2). (csslp) certification. http://www.isc2.org/csslp.

[14] Owasp lapse project. https://www.owasp.org/index.

php/Category:OWASP_LAPSE_Project.

[15] MCGRAW, G. Software Security: Building Security In. Soft-
ware Security Series. Addison-Wesley, 2006.

[16] OF NEW YORK UNIVERSITY, P. I. Csaw - cybersecu-
rity competition 2012. http://www.poly.edu/csaw2012/

csaw-CTF/.

[17] PARKER, J. L. LMonad: Information flow control for
haskell web applications. Master’s thesis, University of
Maryland, College Park, 2014.

[18] PostgreSQL: The world’s most advanced open source
database. http://www.postgresql.org/. Accessed: 2015-
05-01.

[19] SALTZER, J. H., AND SCHROEDER, M. D. The protection
of information in computer systems. Proceedings of the IEEE
63, 9 (1975), 1278–1308.

[20] STEFAN, D., RUSSO, A., MITCHELL, J. C., AND MAZIÈRES,
D. Flexible dynamic information flow control in haskell.
SIGPLAN Not. 46, 12 (Sept. 2011), 95–106.

[21] Top coder competitions. http://apps.topcoder.com/

wiki/display/tc/Algorithm+Overview.

[22] ÚLFAR ERLINGSSON. personal communication to PI Hicks
that CFI was not deployed at Microsoft due to its overhead
exceeding 10%, 2012.

[23] VIEGA, J., AND MCGRAW, G. Building Secure Software: How
to Avoid Security Problems the Right Way. Professional Com-
puting Series. Addison-Wesley, 2001.

[24] WILDGRUBE, M. Structured data exchange format (SDXF).
Tech. Rep. RFC 3072, Network Working Group, May 2001.

[25] Yesod web framework for haskell. http://www.yesodweb.
com/. Accessed: 2015-05-01.

8

