
Problem Set 4 – Part 1
CMSC 427

Distributed: Thursday, November 1, 2007
Due: Tuesday, November 20, 2007

Programming

 For this assignment you will write a simple ray tracer. It will be written in C++
without using OpenGL. For full credit, it must support the following features:

• A camera with arbitrary position, direction, and orientation
• Arbitrary image resolution
• Triangle and sphere primitives
• Ambient, directional, and point lights
• Arbitrary materials defined by a color, Phong exponent, and specular fraction
• Diffuse and specular shading, and mirror reflections
• Cast shadows

Note that the BMPImage library sometimes has problems with weird image resolutions,
so you should stick with either powers of 2 (e.g. 64x64, 128x128, ...) or standard
resolutions (e.g. 640x480, 1024x768, ...).

 The program must read from the command line the name of an input file
describing the scene to be ray traced, the name of the output bmp file, and the image
resolution. We have provided skeleton code that parses the command line and the scene
input file. We have also provided sample input files, and the output files that the ray
tracer should produce when using these as input.

 The input file format consists of a series of commands, each followed by a list of
parameters. Blank lines and lines beginning with # are ignored. The supported
commands are:

Format Example Description

camera
eye x,y,z
look at point x,y,z
up vector x,y,z
y field of view degrees

camera
0.0 0.0 0.0
0.0 0.0 -100.0
0.0 1.0 0.0
30.0

Specifies the position, orientation, and
direction of the camera.

The image is defined to be 1 unit away from
the camera in the direction the camera is
facing.

"eye" is the camera's position

"look at point" is a point in the scene the
camera is pointing at

"up vector" gives the camera's orientation

"y field of view degrees" is the angle from the
top to the bottom of the image in the camera's
up and down directions

ambientLight
intensity r, g, b

ambientLight
0.1 0.1 0.1

Specifies an amount of light that is striking all
objects in the scene. Each scene has at most
one ambient light.

directionLight
intensity r, g, b
direction x, y, z

directionLight
0.3 0.0 0.0
1.0 1.0 1.0

Specifies a light coming into the scene from
infinitely far away from the given direction
("direction" is the direction TO the light from
any point in the scene). Direction lights can
be shadowed.

pointLight
intensity r,g,b
position x,y,z

pointLight
0.0 300.0 0.0
30.0 10.0 -50.0

Specifies a point light source located at the
given position. Since the light intensity
attenuates with distance, you may want to
make the initial intensity much larger than 1.
Point lights can be shadowed.

material
color r,g,b
Phong cosine exponent
specular fraction

material
1.0 1.0 1.0
50.0
0.0

Specifies the material properties for all
triangles and spheres declared after this point
in the file (until the next material command).

"specular fraction" is the fraction of the final
color that comes from the Phong specular
highlight and the mirror reflection. The
remaining fraction of the final color comes
from the diffuse Lambertian shading.

triangle
vertex1 x,y,z
vertex2 x,y,z
vertex3 x,y,z

triangle
5.0 0.0 -50.0
15.0 0.0 -50.0
15.0 10.0 -50.0

Specifies a triangle primitive with the given 3
vertices.

sphere
center x,y,z
radius

sphere
10.0 5.0 -47.5
1.0

Specifies a sphere primitive with the given
center and radius.

Points will be assigned as follows:

• 40 Points- Render spheres and triangles with ray tracing under ambient light. For this

you will need to shoot rays from the eye position through the pixels in the image and
into the scene, and test for intersection against the primitives. The pixel color will be
determined by finding the closest intersection, and multiplying that primitive's
material color by the ambient light.

• 30 Points- Add point and directional light sources with specular highlights and diffuse
shading. Now, once you've found the closest ray intersection, you will need to
compute a diffuse and a specular contribution to the final color from each light. The
diffuse light contribution involves the angle between the surface normal and the light,
while the specular light contribution involves the angle between the viewer and the
light reflection, as well as the Phong exponent. The material's "specular fraction" tells
what fraction of the final color should come from the specular light. The remaining
fraction should come from the diffuse light, with the ambient light being added on top
of these. Remember that point light intensity decreases proportional to the square of
the distance from the light.

• 20 Points- Add cast shadows. To implement this, when computing the diffuse and
specular contributions from each light, you will need to first cast a ray in the direction
of the light from the intersection point on the surface. If the ray intersects another
object that is closer than the light, the point is shadowed from the light, and the light
should not affect it.

• 10 Points- Add mirror reflections. At each intersection point, recursively cast a ray
from the point in the direction to the viewer reflected across the surface normal. This
ray should not be cast if the recursion depth is greater than 5, or the surface material's
"specular fraction" is 0. The light returned by this ray cast should be added to the
specular light for this point.

Extra credit:

• Add anti-aliasing with super-sampling. Instead of casting one ray through each pixel

in the image, cast several through different points in each pixel, and average the
resulting colors.

• Add refractions. Allow the index of refraction of materials to be specified in the scene
file (your program should still be able to read scene files in the original format). You
can assume the index of refraction of air is 1. When a ray intersects a surface, in
addition to recursively casting a reflected ray, recursively cast a refracted ray in the
direction given by Snell's law. The light returned by this ray should be added to the
diffuse, specular, and ambient light.

Notes:

One thing you need to be careful of when writing this program is that, due to roundoff
error, the intersection distance reported by your intersect routines will be slightly
incorrect. This can cause a problem if you shoot another ray from the intersection point,
since it might end up intersecting the same surface it's supposed to be coming from. To
prevent this, you should define some small constant epsilon (say, 0.01), and assume that
any intersections at a distance along the ray less than this are not true intersections and
ignore them.

The images produced by your program do not have to be pixel-for-pixel accurate to the
example image, although if there's significant deviation you may be doing something
wrong. It's also not impossible that there are bugs in the demo program, so let us know if
your program is producing different output than the demo that you really think is correct.

Written Part:

Pencil and Paper exercises (5 points each)

1. Suppose there is a thin sheet of glass which occupies the space in which 0<z<1.
Light travels half as fast through this glass as it does through air. Suppose we use
a laser located at (-10,0,11), to shine a light so that it strikes the glass at the point
(0,0,1). Using Snell’s law, answer the following:

a. What will be the direction of the light when it is inside the glass? You can
express this direction with a unit vector in this direction.

b. If there is a sheet of paper occupying the plane z = -20, where will the
light strike this paper?

c. What would happen if the light traveled twice as fast in the glass as in air
(ok, that’s probably not possible, but imagine we are on some planet with
really thick air)? In answering this question, you might have to look up
information, eg., see:
http://www.volpiusa.com/whitepapers/FundamentalsofOptics.pdf.

2. Suppose we are looking at a white, Lambertian sphere, which has a center at

(0,0,50) and a radius of 20. We are using a perspective camera with a focal point
at (0,0,0) and an image plane of z = 5. The camera is two units square. That is,
imagine there is film covering a portion of the image plane in which we have z=5,
and -1<x<1, -1 < y < 1. (The point here is that you can’t see the whole sphere).

a. Suppose we shine a directional light on the sphere with direction (0,0,1)
(that is, the light seems to be coming from the camera). If the intensity in
the image at the point (0,0,5) is 100, what will the intensity be at (0,0,.1)?

b. Suppose that instead, we shine two directional lights of equal intensity,
one with the direction (0,.11, .99), and the other with direction (0,-.11,
.99). Suppose the point (0,0,5) still has an intensity of 100. Will any
points in the image have different intensities from the ones they had in
(a)? Explain.

c. Suppose we shine two directional sources on the sphere, in directions l and
m. Give necessary and sufficient conditions that will guarantee that the
white ball will have the same appearance in the image with these sources
that it had in (a). We are looking for a very simple, elegant set of
conditions. Not an answer like: “If we plug these sources into the
Lambertian equation we will get the same value at every pixel.”

3. Suppose we have the same conditions as in problem 2, but the sphere reflects light

using Phong reflectance. We have a single directional source of light with a
direction of (0, .11, .99).

a. What will be the brightest point in the image?
b. Suppose the ratio of the intensity in the image at (0,0,5) to the intensity of

the brightest point is .8845. What is the exponent that we are using for
Phong reflectance?

4. Instead of a point source of light, let’s imagine a continuous light. For example,

consider a line segment of light stretching from (-1,0,0) to (1,0,0). This is a tube
that emits a constant amount of light all along its length. The strength of this light
still falls off with distance, d, at a rate of 1/d2 as it does for any physically real
light.

a. Consider a surface located at the position (x,0,0), for x>1. Determine the
amount of light that reaches this point from our tube of light.

b. Explain why this lighting cannot be produced by a single point source of
light whose strength drops at a rate of 1/d2. Show that it can be produced
by a non-physically real point source of light whose strength attenuates at

a rate of:
2

210

1

dadaa ++
. How would you choose a0, a1, a2, to model this

light?

