
CMSC 426, Fall 2012 
Problem Set 4 

Due October 25 
 
In this problem set you will implement a mincut approach to image segmentation.  This 
algorithm has been discussed in class.  The class web page also contains a reference to 
the paper by Boykov and Jolly which this project is based on.   
 
To get started, download the maxflow code of Boykov and Kolmogorov from: 
http://vision.csd.uwo.ca/code/  The zip file you want is: maxflow-v3.01.zip.  Note that 
this is C++ code.   
 
Next, download Miki Rubenstein’s Matlab interface to the maxflow code from: 
http://www.mathworks.com/matlabcentral/fileexchange/21310-maxflow.  Note that per 
instructions in the readme file, you should place the C++ maxflow code in a subdirectory  
<lib_home>/maxflow-v3.0>.   
 
Follow the instructions in Rubenstein’s README file to make and test the maxflow code. 
 
Hint: The maxflow code is version 3.0.1.  The Matlab interface expects it to be in a 
directory named maxflow-v3.0.  Don’t let this confuse you.  As long as you name the 
directory maxflow-v3.0, they should work together fine. 
 
For this assignment you will need to use sparse matrices.  Look at the documentation for 
them: help sparse.  In particular, you will need to create a sparse matrix that would be 
really huge if it wasn’t sparse.  You won’t be able to do this by creating the full matrix 
and then making it sparse.  The Matlab code you’ve downloaded contains examples that 
should guide you in this. 
 

1) 10 points. Let’s try to use this code in the simplest way we can.  Suppose we have 
a Source node, S, a Sink node, T, and three other nodes, A, B, C.  The edge 
weights are given by:   

 w(A,B) = 8,  
 w(A,C) = 2,  
 w(B,C) = 2.   

This means that nodes A and B are likely to be grouped together, because it is 
expensive to cut the link between them.  Suppose that the edge weights to the 
source and sink are given by: 

 w(S,A) = w(S,B) = 0, w(S, C) = 10 
 w(T,A) = 10, w(T,B) = w(T,C) = 0 

This means that node C has a strong link to the source, while node A is strongly 
linked to the Sink.  Intuitively, this should lead to a segmentation in which Node 
C winds up grouped with the source, while A and B are grouped with the sink.  
Set up and call the maxflow code to show that it achieves this result.  Include your 
code and results in a write-up. 
 



Hint: The test function test1.m, which is included in the Matlab code that you 
downloaded, shows how to do this. 
 

2) 10 points. We’ll now create edge weights that relate to image cues about whether 
or not we want to connect two pixels together into the same group.  We will be 
creating a graph in which every pixel corresponds to a node, and there is an edge 
between two pixels’ nodes if they are 4-connected neighbors (that is, if they are 
neighbors horizontally or vertically; diagonal neighbors do not count).  For 
example, I(x,y) and I(x+1,y) are neighbors, while I(x,y) and I(x+1,y+1) are not 
neighbors.  I’ll call these neighboring nodes A and B, and refer to their intensities 
as I(A) and I(B).  We will define the edge weight between them as:  
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  is a parameter.  Notice that I(A)-I(B) is essentially the image derivative as we 
go from pixel A to B (in this example, in the x direction).  
 
Now you will write a function to compute these edge weights with the form:  
A = image_edge_weights(I, sigma).  I is a grayscale image, and A is a 
sparse matrix that contains the weight between two neighboring pixels.  To create 
a linear sequence of nodes for the pixels, we will number the pixels columnwise.  
That is, if we had a 2x3 image, the pixels would be numbered as: 
 

1 3 5 
2 4 6 

 
Given an image, I that looked like: 
 

40 30 20 
60 50 20 

 

and with = 20, image_edge_weight would produce an A like 
A = 
 
   (2,1)       0.6065 
   (3,1)       0.8825 
   (1,2)       0.6065 
   (4,2)       0.8825 
   (1,3)       0.8825 
   (4,3)       0.6065 
   (5,3)       0.8825 
   (2,4)       0.8825 
   (3,4)       0.6065 
   (6,4)       0.3247 
   (3,5)       0.8825 
   (6,5)       1.0000 
   (4,6)       0.3247 
   (5,6)       1.0000 
 



For example, in computing A(2,1), node 2 in the graph would refer to the pixel at 
location (2,1), while node 1 would refer to the pixel at (1,1).  We would use the 
values 40 and 60 and compute: 
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Test your code by making sure it produces the appropriate result on the small 
image given above. 
 
Hint: Look at the function test2, which comes with the maxflow code.  This 
function has almost everything you need to complete this problem.  In particular, 
it shows how to use the very convenient function, edges4connected, which is also 
included. 
 

3) 30 points. Next we will use these edge weights to segment an image.  Write a 
function of the form:  
S = segment_image_gray(I, F, B, sigma) 
I will be a grayscale image.  F and B will be binary images of the same size as I.  
Where F is equal to 1, a pixel is definitely known to belong to the foreground.  
Where B is 1, the pixel is definitely background.  Other pixels are up for grabs.  
You can encode these constraints in the graph by placing a very strong weight on 
edges that connect the foreground pixels to the source, and edges that connect the 
background pixels to the sink.  Your function should return a binary image, S, 
also of the same size as I.  Where S has the value 1, there is a background pixel; 
where S is 0 there is a foreground pixel.  Test your function using the following 
example of I, F, and B, and with =20.  The resulting S is also shown. 
 
I = 
 
    10    15    10 
    12    42    44 
    48    50    50 
 
 
F = 
 
     0     0     0 
     0     1     0 
     0     0     0 
 
B = 
 
     1     0     0 
     0     0     0 
     0     0     0 
 
S = 
 
           1           1           1 
           1           0           0 
           0           0           0 



 
To further test your program, run it on the grayscale Swan image on the class web 
page.  Assume that all pixels in the rectangle with corners at (200,300) and 
(250,400) are part of the foreground, and all pixels in the rectangle with corners at 
(1,1) and (100,100) are part of the background.  The image swan_segmented 
shows the results of my program on this image. 
Hint: In this problem and the next, if your program is slow, feel free to shrink the 
image and run on a smaller version of it.  However, you will also have to 
appropriately shrink the rectangles that specify foreground and background pixels. 
 

4) 40 points. This works pretty well on the swan because its boundary has pretty 
strong intensity gradients.  Now you will use color information to improve 
performance on color images.  The basic idea (as described in the Boykov and 
Jolly paper) is to tailor the weights between a pixel’s node in the graph and the 
source and sink based on whether the color indicates that this particular pixel is 
foreground or background. 

 
To be more specific, in the last problem segment_image_gray was called with a 
matrix F which indicated pixels that are known to be foreground.  Using only 
these pixels, we create a color histogram.  This can be done with the code you 
wrote for problem set 1.  We can then normalize this histogram so that the value 
in the bins sum to 1 (just divide the value in each bin by the number of foreground 
pixels).  Now, let’s suppose that a particular pixel, p=(i,j), is not known to be 
foreground or background (ie., F(i,j)=0, B(i,j) = 0).  Then, if we find the bin that 
the color of p belongs to, we will get the probability that the foreground would 
produce the color that we see in p.  In the same way, we can figure out the 
probability that the foreground will produce this color. 
 
Let’s look at an example.  For simplicity, I’ll suppose images are grayscale, but 
you will need to follow the same idea with color.  If our image looked like: 
 

30 30 20 
40 30 30 

F looked like: 
1 0 0 
1 0 0 

and B looked like: 
0 0 0 
0 0 1 

And we were trying to classify one of the middle pixels, which has an intensity of 
30, we would say that the foreground produces this intensity with probability ½, 
while the background produces this intensity with a probability of 1. 
 
There is one problem with this.  If we were trying to classify the pixel in the top 
right, which has an intensity of 20, both probabilities would be 0.  This will cause 
our approach to blow up.  So we smooth the histogram before normalizing it, by 



adding a constant value to every bin in the histogram.  I used a constant that is 
equal to the number of pixels in the image divided by 20 times the number of bins. 
 
Finally, for these pixels that aren’t known to belong to the foreground or 
background, we connect them to the source and sink using weights of: 

  Object|colorPrlog  and   Background|colorPrlog  
Pr(color|Object) here is just the value you get from looking up the pixel in the 
normalized histogram, and similarly for the background probability.  Here is 
another parameter.  You can just set it to 1 and get good results, or you can play 
around with it a little. 
 
Implement a color segmentation algorithm of the form: 
S = segment_image_color(I, F, B, lambda, sigma); 
Use your code to segment the dog image on the class web page, using foreground 
and background defined as: 

        F = zeros(size(I,1), size(I,2)); 
        F(100:200, 130:280) = 1; 
        B = zeros(size(I,1), size(I,2)); 
        B(:, 1:50) = 1; 

Here I is the dog image.  The results of running my program are shown on the 
class web page. 
 

5) 10 points. Finally, integrate your code with the GUI.m provided on the class web 
page, looking at the documentation in the gui code.  The gui will allow you to 
interactively mark rectangles in an image as foreground or background.  Using 
this, segment a new image of your own choosing.  You may find it helpful to play 
around with the parameters of the segmentation method to get better results.  For 
example, using lambda = .2 seems to produce a cleaner segmentation.  As always, 
you may want to experiment with smaller images first.  Show the results of your 
segmentation.  Briefly describe the advantages and disadvantages of this 
segmentation tool. 

6) Challenge Problem (up to 20 points): Use this segmentation tool to combine 
two or more images.  To produce a good effect you may need to resize images, or 
even to rotate them (see imrotate).  You might also want to manipulate the colors 
or intensities in an image.  You can also try to get two images to blend together 
better by smoothing the boundary between them.  Feel free to ask me if you want 
some hints on how to do this, or other pointers to references on creating good 
images.  Document all steps you took in creating your image.  A prize will be 
given for the best image. 
 

 
 

 
 
 
 


