
Interacting with Computers 24 (2012) 55–68
Contents lists available at SciVerse ScienceDirect

Interacting with Computers

journal homepage: www.elsevier .com/locate / intcom
Querying event sequences by exact match or similarity search: Design
and empirical evaluation q

Krist Wongsuphasawat a,b,⇑, Catherine Plaisant a, Meirav Taieb-Maimon a,c, Ben Shneiderman a,b

a Human-Computer Interaction Lab, University of Maryland, College Park, MD, USA
b Department of Computer Science, University of Maryland, College Park, MD, USA
c Ben-Gurion University of the Negev, Beer-Sheva, Israel

a r t i c l e i n f o
Article history:
Received 24 May 2010
Received in revised form 11 November 2011
Accepted 19 January 2012
Available online 2 February 2012

Keywords:
Temporal categorical data
Event sequence
Temporal query interface
Similarity search
Similarity measure
Similan
0953-5438/$ - see front matter � 2012 British Inform
doi:10.1016/j.intcom.2012.01.003

q This paper has been recommended for acceptance
⇑ Corresponding author at: Human-Computer In

Maryland, College Park, MD, USA. Tel.: +1 240383254
E-mail addresses: kristw@cs.umd.edu (K. Wongsu

d.edu (C. Plaisant), meiravta@bgu.ac.il (M. Taieb-M
Shneiderman).

URLs: http://www.cs.umd.edu/~kristw (K. Wong
umd.edu/hcil/members/cplaisant (C. Plaisant),
(B. Shneiderman).
a b s t r a c t

Specifying event sequence queries is challenging even for skilled computer professionals familiar with
SQL. Most graphical user interfaces for database search use an exact match approach, which is often effec-
tive, but near misses may also be of interest. We describe a new similarity search interface, in which users
specify a query by simply placing events on a blank timeline and retrieve a similarity-ranked list of
results. Behind this user interface is a new similarity measure for event sequences which the users can
customize by four decision criteria, enabling them to adjust the impact of missing, extra, or swapped
events or the impact of time shifts. We describe a use case with Electronic Health Records based on
our ongoing collaboration with hospital physicians. A controlled experiment with 18 participants com-
pared exact match and similarity search interfaces. We report on the advantages and disadvantages of
each interface and suggest a hybrid interface combining the best of both.

� 2012 British Informatics Society Limited. Published by Elsevier B.V. All rights reserved.
1. Introduction

Life can often be described as a series of time-stamped event se-
quences. If decision-makers have sufficiently powerful tools to
query these event sequences, they can discover important patterns.
Health organizations have Electronic Health Record (EHR) dat-
abases containing millions of records of patient histories, which
document heart attacks, hospital admissions, medication orders,
treatments, lab results, etc. Transportation management systems
keep records of traffic incidents in which each record includes a
sequence of incident management events, such as incident notifi-
cation or arrival time of each unit on the scene. Academic institu-
tions keep detailed records of the educational advancement of
their students, such as completing classes, thesis defense or grad-
uation. Three examples of event sequences are shown below.
atics Society Limited. Published b

by Simone D.J. Barbosa.
teraction Lab, University of
1.
phasawat), plaisant@cs.um-

aimon), ben@cs.umd.edu (B.

suphasawat), http://www.cs.
http://www.cs.umd.edu/~ben
Patient#01 – (6:11 am, Arrive hospital), (6:15 am, Emergency
Room), (9:05 am, ICU), . . .

Incident#243 – (8:05 pm, Incident Notification), (8:10 pm,
Police arrived), . . .

Student#46311621 – (28 August 2007, Enter PhD program),
(30 April 2010, Proposal), . . .

Querying these event sequences to answer specific questions or
look for patterns is an important activity, such as finding patients
who were transferred from an ‘‘Emergency room’’ to the ‘‘ICU
(Intensive Care Unit)’’ and ‘‘Die’’, incidents in which the police
‘‘arrived’’ 2 h after ‘‘incident notification’’ or a PhD student who
‘‘proposed’’ a dissertation topic twice before ‘‘graduated’’. While
this paper focuses on the medical domain because our case study
was done with physicians, the techniques were designed for event
sequences, and thus widely applicable to event sequences in other
fields, such as incident management, academic records analysis,
manufacturing process review, log analysis, or the study of human
activities.

1.1. Example of event sequence analysis

Our physician partners in the Emergency Department at the
Washington Hospital Center are analyzing sequences of patient
y Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.intcom.2012.01.003
mailto:kristw@cs.umd.edu
mailto:plaisant@cs.umd.edu
mailto:plaisant@cs.umd.edu
mailto:meiravta@bgu.ac.il
mailto:ben@cs.umd.edu
http://www.cs.umd.edu/~kristw
http://www.cs.umd.edu/hcil/members/cplaisant
http://www.cs.umd.edu/hcil/members/cplaisant
http://www.cs.umd.edu/~ben
http://dx.doi.org/10.1016/j.intcom.2012.01.003
http://www.sciencedirect.com/science/journal/09535438
http://www.elsevier.com/locate/intcom

56 K. Wongsuphasawat et al. / Interacting with Computers 24 (2012) 55–68
transfers for quality assurance. One of their interests are the mon-
itoring of bounce backs, which occurred when a patient’s level of
care was decreased then increased back again urgently, such as
(1) patients who were transferred from the ICU to the Floor (nor-
mal bed) and then back to the ICU and (2) patients who arrived
at the emergency room then were transferred to the Floor and then
back to the ICU. Time constraints are also associated with these se-
quences (e.g. the bounce backs should occur within a certain num-
ber of hours).

The bounce back patients correspond to a quality metric for the
hospital and are difficult to monitor. The physicians have been
using MS Excel to find these bounce back patients. They exported
data from the database and wrote formulas to express the queries.
An interview with the physician who performed these tasks re-
vealed frustration with the approach because of its complexity
and time-consuming aspects (it took many hours to create the for-
mulas). We also asked about the possibility of performing these
queries using SQL. He explained that SQL was even harder for
him and he was not quite sure how to start (even though he had
earned a computer science undergraduate degree in addition to
his medical degree).
1.2. Motivation for similarity search for event sequences

Specifying temporal queries in SQL is difficult even for com-
puter professionals specializing in such queries. We gave six com-
puting students who had completed a database course, the schema
of a simple dataset and asked them to write a SQL query to find pa-
tients who were admitted to the hospital, transferred to Floor, and
then to ICU (no time constraints were to be specified). Even with
this simplified query, only one participant succeeded after
30 min, adding evidence that SQL strategies are challenging to
use for temporal event sequences.

Researchers have made progress in representing temporal
abstractions and executing complex temporal queries (Snodgrass,
1987, 1995; Clifford and Croker, 1987), but there is little research
that focuses on making it easy for end users such as medical
researchers, traffic engineers, or educators to specify the queries
and examine results interactively and visually.

To the best of our knowledge, existing visual temporal query
tools have used an exact match approach, in which each query is
interpreted as ‘‘every record in the result MUST follow these con-
straints’’. As a result, the tool returns only the records that strictly
follow every constraint in the query. This approach works well
when the users are fairly certain about their query (e.g. ‘‘find all pa-
tients admitted to the emergency room within a week after leaving
the hospital’’).

However, exploratory search (Tukey, 1977; White and Roth,
2009), in which users are uncertain about what they are looking
for, is gaining more attention. When using the exact match, broad
queries return too many results that are not relevant. Narrow que-
ries miss records that may be ‘‘just off’’ (e.g. 7.5 days instead of
7 days as specified in the query). A more flexible query method
could help the exploratory searchers.
1.3. Similarity search for event sequences

A similarity search approach has been used in other systems to
query other types of data, such as images or text. In this approach,
users can sketch an example of what they are seeking and get sim-
ilar results. The users then receive a ranked list of results, sorted by
similarity to the query. The key to this approach is the similarity
measure, which is used to calculate the similarity score between
the query and every record, so all records then can be sorted by
similarity to the query.
Our preliminary work (Wongsuphasawat and Shneiderman,
2009) designed a similarity measure for event sequences called
the Match and Mismatch (M&M) measure. We also introduced a
simple query interface called Similan, that employed the M&M
measure and allowed users to select an existing record in the data-
base as a query and search for similar records. This prototype was
seen as promising by medical researchers.

However, Similan’s usefulness is limited for several reasons: it
only allows the users to select an existing record from the database
as a query (not to specify an example of their choice), the visuali-
zation can be misleading and frustrating to users in some situa-
tions, and the similarity measure is not flexible enough to
support different definitions of similarity for different tasks.

Therefore, to address these limitations, we developed a new
version of the similarity measure and the user interface, which
are both presented in this paper. We present Similan2, a query
interface which allows the users to draw an example of a time-
stamped event sequence by placing events on a blank timeline
and search for records that are similar to their example using the
M&M measure v.2, a new version. The M&M measure v.2 is de-
signed to be faster than the first version and customizable by four
decision criteria, responding to users’ need for richer and more
flexible definitions of similarity. Similan2 allows the users to cus-
tomize the parameters in the M&M measure v.2 via the user inter-
face and also changes how events are visualized on the timeline.

1.4. Motivation for a controlled experiment

Using the Multi-dimensional In-depth Long-term Case Study
methodology (Shneiderman and Plaisant, 2006), We worked with
a physician by assisting him through the analysis of his data using
two query tools: LifeLines2 (Wang et al., 2008, 2009) (an exact
match user interface from our research group) and Similan2 (sim-
ilarity search). The physician reported that he was able to specify
his queries easily in much shorter time than with the spreadsheet,
and that he discovered additional patients who he had missed
using his earlier work with Excel. He clearly stated that visualizing
the results gave him a better understanding of the data, which
could not have been achieved from his spreadsheet or an SQL
query.

He also hinted at advantages and disadvantages of both visual
approaches. For example he felt that similarity search made it eas-
ier to specify the pattern but that looking at the results ranked by
similarity was difficult and sometimes frustrating as he was not al-
ways confident that the similarity measure was adequately com-
puted to fit his needs. (The computation is explained in details
later in this paper.) Those contrasting benefits led us to design
the controlled experiment to see if we could confirm those impres-
sions and better understand which query method is better suited
for different tasks.

In summary, this paper provides the following contributions:

1. Similan2, a similarity query interface for event sequences,
which allows users to draw an example of what they are
looking for directly.

2. The M&M measure v.2, a similarity measure for event
sequences, which can be customized according to users’
need.

3. A controlled experiment to compare the features of the
exact match and similarity search interfaces using Life-
Lines2 and Similan2, respectively. We summarize the
advantages and disadvantages of each interface and discuss
possible directions for combining them.

The rest of this paper is organized as follows: Section 2 reviews
the background and related work, Section 3 describes the user

K. Wongsuphasawat et al. / Interacting with Computers 24 (2012) 55–68 57
interfaces and similarity measure, Section 4 explains the experi-
mental design, Section 5 reports the results from the experiment,
and Section 6 concludes with a suggestion of a hybrid interface.
2. Background and related work

2.1. Query languages

A traditional approach to query temporal data was to use data-
base query languages. According to Chomicki (1994) and Tansel
and Tin (1997), many research projects were conducted on design-
ing temporal databases and extending standard query languages
into temporal query languages. Some of the well-known languages
were TQuel (Snodgrass, 1987), TSQL2 (Snodgrass, 1995) and His-
torical Relational Data Model (HRDM) (Clifford and Croker, 1987).
However, these temporal query languages were built on top of
their specific data models and users had difficulty in learning their
unique syntaxes, concepts, and limitations. They also supported
only exact match.

2.2. Query-by-Example languages

To provide a high-level language that offered a more convenient
way to query a relational database (RDB), the Query-by-Example
languages were introduced. According to Ozsoyoglu and Wang
(1993), the early idea of Query-by-Example was a language that
users entered what they expected to see in a database result table
into a form that looked like a result table instead of writing lengthy
queries, making it simpler for the users to specify a query. The first
was Zloof’s Query-by-Example (Zloof, 1975), which was refined by
others (Chang and Fu, 1980; Klug, 1981; Zloof, 1982; Jacobs and
Walczak, 1983; Ozsoyoglu et al., 1989; Tansel et al., 1989).

Time-by-Example (Tansel et al., 1989) followed the Query-
by-Example idea and adopted subqueries concepts from Aggre-
gates-by-Example (Klug, 1981) and Summary-Table-by-Example
(Ozsoyoglu et al., 1989) to serve historical relational database
(HRDB). HRDB was an extension of RDB that stored the changes
of attribute values over time. For example, a patient entity had
an attribute called room, which was changed every time each
patient was moved to a new room. HRDB could keep track of the
room values and Time-by-Example provided a way to query those
values. For instance, the users could ask queries such as list all
rooms a patient was in or which patient was in an ICU room
between January and March?

However, Time-by-Example supported only exact match, oper-
ated only on top of HRDM and still required the users to learn their
languages for specifying conditions in complex queries, e.g.
‘‘($sal.T overlaps $dept.T overlaps $msal.T overlaps

$m.T) and $sal.v > $msal.v’’.

2.3. Query by Graphical User Interfaces (GUIs)

2.3.1. Exact match approach
As the Graphical User Interfaces (GUIs) were becoming more

common, many GUIs were developed for temporal data (Aigner
and Miksch, 2006; Shahar et al., 2006; Klimov et al., 2009, 2010).
Several GUIs used the exact match approach, in which users specify
exact constraints to construct the queries. These constraints are
often specified via controls, such as sliders or drop-down lists.
The tool then returns only the records that follow every constraint
in the query. Karam (1994) presented a visualization called xtg,
which allowed users to explore temporal data and do simple
searches for events. Hibino and Rundensteiner (1995, 1997)
proposed a visual query language and user interface for exploring
temporal relationships using slider filters with results displayed
in a graph-like visualization. PatternFinder (Fails et al., 2006) al-
lowed users to specify the attributes of events and time spans to
produce pattern queries that are difficult to express with other for-
malisms. LifeLines2 (Wang et al., 2008, 2009) used an alignment,
ranking and filtering (ARF) framework to query for temporal cate-
gorical records. ActiviTree (Vrotsou et al., 2009) provided a tree-like
user interface with suggestions about interesting patterns to query
for sequences of events. QueryMarvel (Jin and Szekely, 2009) uti-
lized and extended the semantic elements and rules of comic strips
to construct queries. Instead of following the exact match ap-
proach, Similan2 followed the similarity search approach (Section
2.3.2), and applied the concept for querying event sequences.

2.3.2. Similarity search approach
Many GUIs followed the similarity search approach, in which

users could draw an example of what they expect to see as a result
of a query. The result from a query was a list of records, sorted by
similarity to the given example. Kato et al. (1992) presented QVE
that accepted a sketch drawn by users to retrieve similar images
or time series from the database. IFQ (In Frame Query) (Li et al.,
1997) was a visual user interface that supported direct manipula-
tion (Shneiderman, 1983) allowing users to combine semantic
expressions, conceptual definitions, sketch, and image examples
to pose queries. Spatial-Query-by-Sketch allowed users to formulate
a spatial query by drawing on a touch screen and translated this
sketch into a symbolic representation that can be processed
against a geographic database. Bonhomme et al. (1999) and Bonho-
mme and Aufaure (2002) discussed the limitations of previous
query-by-sketch approaches and extended the Lvis language,
which was developed for spatial data, to temporal data. The new
language used visual metaphors, such as balloons and anchors, to
express spatial and temporal criteria. QuerySketch (Wattenberg,
2001) allowed users to sketch a graph freehand, then view stocks
whose price histories matched the sketch. (Watai et al., 2007) pro-
posed a web page retrieval system that enables a user to search
web pages using the user’s freehand sketch. WireVis (Chang et al.,
2007) introduced techniques to extracted bank accounts that
showed similar transaction patterns. To the best of our knowledge,
existing event sequence query tools have used an exact match ap-
proach. These systems demonstrated the similarity search concept
in other types of data and inspired us to develop a similarity search
tool for event sequences.

Timesearcher (Hochheiser and Shneiderman, 2004) visualized
multiple timelines as line charts on the same plane, using horizon-
tal and vertical axis to represent time and value, respectively. Users
drew timeboxes, rectangular widgets that could be used to specify
query constraints, on the timeline to query for all time series that
passed through those timeboxes. In Timesearcher, users could
draw an example (timeboxes) to specify the query, but the time-
boxes were converted into exact rules, e.g. January < time < March
and 100 < value < 200, when processing the query in the back-
ground. Similan2 allowed the users to draw an example, but did
not convert the example into any exact rule. Instead, it compared
the example with each record directly and sorted the result by sim-
ilarity to the example.
2.4. Similarity measure

Pattern matching computes a boolean result indicating whether
an event sequence matches the specified pattern, or it does not. In
contrast, similarity measure calculates a real number measurement
that expresses how similar is an event sequence to the specified
pattern.

58 K. Wongsuphasawat et al. / Interacting with Computers 24 (2012) 55–68
2.4.1. Numerical time series
Many similarity measures had been proposed for comparison

between series of numerical values measured over time, such as
stock price. Event sequences, in contrast, are series of categorical
values measured over time. Hence, these approaches were not di-
rectly applicable to event sequences because they were designed to
capture the difference between numerical values, not categorical.

Nevertheless, there were some common concepts that worth
mentioning here. The first concept was lock-step measures, which
compared the ith point of one time series to the ith point of an-
other, such as the well-known Euclidean distance. However, since
the mapping between the points of two time series was fixed, these
measures were sensitive to noise and misalignments in time. The
M&M measure was different from lock-step measures because it
did not fix the mapping of ith events together.

The second concept, elastic measures, allowed comparison of
one-to-many points (e.g., Dynamic time warping (DTW) (Berndt
and Clifford, 1994)) and one-to-many/one-to-none points (e.g.,
Longest Common Substring (LCSS)). The sequences were stretched
or compressed non-linearly in the time dimension to provide a bet-
ter match with another time series. Unlike elastic measures, the
M&M measure did not allow one-to-many mapping.

2.4.2. String and biological sequences
Edit distance is the number of operations required to transform

one string into another string. The lower the number is, the more
similar the strings are. Hamming distance (Hamming, 1950),
Levenshtein distance (Levenshtein, 1966 or Jaro-Winkler distance
Winkler, 1999) are some examples. The best known such distance
is the LCSS distance (André-Jönsson and Badal, 1997). A more com-
pleted survey can be seen from (Navarro, 2001).

One neighbor area is biological sequence searching. There exist
many algorithms for comparing biological sequence information,
such as the amino-acid sequences of different proteins or the
nucleotides of DNA sequences. BLAST (Altschul et al., 1990), FASTA
(Pearson and Lipman, 1988) and the TEIRESIAS algorithm (Rigout-
sos and Floratos, 1998) were some examples.

Mongeau and Sankoff (1990) defined a similarity measure spe-
cifically for comparing musical pieces based on number of transfor-
mations required to transform one into another. They allowed one-
to-many mapping called consolidation/fragmentation, which is sim-
ilar to time warping. Gómez-Alonso and Valls (2008) proposed a
similarity measure for sequences of categorical data (without time)
based on edit distance.

These approaches considered the difference in ordering and
existence, but did not consider the time that events occurred.
Event sequences might occur at non-uniform intervals, which
made the timing become important. Also, more than one events
could occur at the same time while two characters or amino acids
could not occur at the same position in the string or biological
sequence.

2.4.3. Event sequences
Mannila and Ronkainen (1997) introduced a similarity measure

for event sequences based on three edit operations: insert, delete
and move. The move operation was included to incorporate the
occurrence time of the events. This approach allowed only mono-
tonic mapping, which means that the matched events in the target
and candidate sequences must be in similar order, and did not offer
a user interface. Sherkat and Rafiei (2006) binned the timeline into
intervals and compared events within each interval.

The Match & Mismatch (M&M) measure v.1 (Wongsuphasawat
and Shneiderman, 2009) calculated a similarity score from two
types of difference: time difference of matched events and number
of mismatches. It supported matching that may not preserve the
order of event sequence (non-monotonic). This paper continues
the work on the M&M measure. A few projects were also devel-
oped in parallel with the work in this paper. Timed String Edit Dis-
tance (Dobrisek et al., 2009) inserted timed null symbols into event
sequences before matching. It allowed matching between events
with different event types and measured two types of difference:
time difference and event type difference (symbol dissimilarity).
Vrotsou (2010) and Vrotsou and Forsell (2011) identified nine
measures to cover several aspects of similarity. This approach also
considered multiple occurrences of the target sequence in the can-
didate sequence. Obweger et al. (2010) defined single-event similar-
ity by comparing event attributes. Their event sequence similarity
then combined single-event similarities, order of events and time
that the events occurred with weights and more options. However,
their computation time to find the best match is exponential while
others are polynomial.

Some methods extracted ‘‘fingerprints’’ from event sequences
and compared the fingerprints instead of comparing the event se-
quences directly. Mannila and Moen (1999) detected similar event
types by comparing their context. They converted each context
(event sequence around the selected event type) into feature vec-
tors and developed methods for comparing these vectors. Mannila
and Seppänen (2001) mapped event sequences into points in k-
dimensional Euclidean space using a random function and
searched for similar event sequences from their k-dimensional
projections.

The growth of measures for event sequence similarity demon-
strates the importance of these search capabilities in many do-
mains beyond our medical interests, such as human activity
event streams, business transactions, or legal actions.
3. Systems description

This section describes the user interfaces in more detail. Section
3.1 and 3.2 explain the main features of the exact match interface
(Lifelines2) and the similarity search interface (Similan2), respec-
tively. LifeLines2 is a former work which is described here only
for the purpose of the controlled experiment while Similan2 is pre-
sented in this paper for the first time. Similan2 allows the users to
draw an example of event sequence on a blank timeline to query
for similar event sequences using the new M&M measure v.2,
which was designed to address the limitations of the M&M mea-
sure in the preliminary work. The M&M measure v.2 is explained
in Section 3.4.
3.1. Exact match interface: LifeLines2

LifeLines2 (Fig. 1) is a Java application, utilizing the Piccolo 2D
graphics framework (Bederson et al., 2004). In LifeLines2, each re-
cord is vertically stacked on an alternating background color and
identified by its ID on the left. Events appear as triangle icons on
the timeline, colored by their type (e.g. Admission or Exit). Placing
the cursor over an event pops-up a tooltip providing more details.
The control panel on the right side includes filters and other con-
trols. The visibility and color of each event type (category) can be
set in the control panel.

Users can select an event type to align all the records. For exam-
ple, Fig. 1 shows records aligned by the Admit event. When the
alignment is performed, time is recomputed to be relative to the
alignment event.

Users can apply the sequence filter to query records that contain
a particular sequence, e.g. finding patients who were admitted,
then transferred to a special room and exited. The first step is to
select a sequence filter from the ‘‘filter by’’ drop-down list, then
several drop-down lists that contain categories will appear. Users
then set the values of the 1st, 2nd and 3rd drop-down lists to

Fig. 1. Exact match interface (LifeLines2) showing the results of a query for patients who were admitted to the hospital then transferred to the Intensive Care Unit (ICU)
within a day, then to an Intermediate ICU room on the fourth day. The user has specified the sequence filter on the right selecting Admit, ICU and Intermediate in the
menus, and aligned the results by the time of admission. The distribution panel in the bottom of the screen shows the distribution of Intermediate, which gives an overview
of the distribution and has allowed users to select the time range of interest (e.g. on the fourth day) by drawing a selection box on the distribution bar chart.

K. Wongsuphasawat et al. / Interacting with Computers 24 (2012) 55–68 59
Admit, Special and Exit, respectively. The records that pass this
filter will be selected and highlighted in yellow. A click on ‘‘Keep
selected’’ removes the other records.

To query for records that have events occurring at particular
intervals, users have to first display the distribution of selected
events (with the distribution control) then select intervals on the
distribution display. For example, to find patients who were admit-
ted, then transferred to the ICU room on the first day of their stay
and transferred to the intermediate ICU room on the fourth day,
users have to align all the records by Admit, show the distribution
of ICU using the ‘‘Show Distribution of’’ control, then select the 1st
day on the distribution of ICU events at the bottom of the screen
and click on ‘‘Keep selected’’ then show the distribution of Inter-
mediate and draw a selection box from the 1st to the fourth day
and ‘‘Keep selected’’. (See Fig. 1.) A similar process can be used
for consecutive interval specification using different alignments
and filtering.
1 For interpretation of color in Figs. 1–8, the reader is referred to the web version of
this article.
3.2. Similarity search interface: Similan2

Similan2 (Fig. 3), is an Adobe Air Application using the Adobe
Flex 3 Framework. The designs of LifeLines2 and Similan2 have
evolved in parallel.

Its ancestor, Similan (Fig. 2), developed in C#, only allows the
users to select an existing record from the database as a query
(not to specify an example of their choice). Also, according to the
feedback from the usability study, the binned timeline visualiza-
tion in Similan sometimes confused the users and could be mis-
leading in some situations.

Therefore, Similan2 adopted the basic display of the records
from Lifelines2: each record is stacked on the main panel, events
are colored triangle icons, and users can customize the visibility
and colors of each event type (category). Users can also align all
the records by a selected event type (e.g. align by admission to
the hospital in Fig. 3). Similan2 also employed an improved simi-
larity measure (M&M measure v.2), which will be explained in Sec-
tion 3.4.

In Similan2, the panel on the top is called the query panel,
where users can specify their queries. On the right side is the con-
trol panel, which provides controls for users to customize the
search parameters. The largest area on the screen is the main pa-
nel, where all records in the data are listed.

To perform a query users first create or select an existing record.
For example, to find patients who were admitted, transferred to
the ICU room on the first day and then to the intermediate room
on the fourth day, users can start by aligning all records by Admit.
Then users click on the edit button on the query panel to open a
popup window, and drag and drop events on the empty timeline
(i.e. they can select Admit from the list of categories shown in
the popup and click on Add. The cursor will change into a magic
wand and they can drop the event on the line). Fig. 2 shows the
patterns they created Admit, ICU and Intermediate at time 0,
on the first day and fourth day, respectively. (See Fig. 3.) The only
type of time constraint that is currently supported by Similan2 is
specifying when each event occurred.

Users can also select any existing record as a query by dragging
that record from the main panel and dropping it into the query pa-
nel. This is useful for finding patients who exhibit a pattern of
events similar to a particular known patient. A time scope can be
drawn on the top of the timeline (see red1 line in Fig. 3). In our
example query, drawing a scope from the time zero to the end of
the fourth day will exclude all other events outside of the scope
from the search. If no scope is specified, the entire timeline will

Fig. 2. A screenshot of Similan, the predecessor of Similan2. Users can start by double-clicking to select a target record from the main panel. Similan will calculate a score that
indicates how similar to the target record each record is and show scores in the color-coded grid on the left. The score color-coding bars on the right show how the scores are
color-coded. The users then can sort the records according to these scores. The main panel also allows users to visually compare a target with a set of records. The timeline is
binned (by year, in this screenshot). If the users want to make a more detailed comparison, they can click on a record to show the relationship between that record and the
target record in the comparison panel on the top. The plot panel at the bottom shows the distribution of records. In this example, the user is searching for students who are
similar to Student 01. The user sets Student 01 as the target and sorts all records by total score. Student 18 has the highest total score of 0.92 so this suggests that Student 18 is
the most similar student. Student 41 and Student 18 both have one missing paper submission but Student 41 has a lower match score so Student 18 has higher total score.

60 K. Wongsuphasawat et al. / Interacting with Computers 24 (2012) 55–68
selected by default. The unit for time differences (e.g. hours or
days) can be selected from a drop-down list. Event categories that
should be excluded from the search can be unchecked in the con-
trol panel.

After clicking on Search, the records are sorted by their similar-
ity score (with records with the highest scores on the top). Each re-
cord has a score indicator, a rectangle with four sections of different
color (See Fig. 3.), inspired by ValueCharts (Carenini and Loyd,
2004), a visualization to support decision-makers in inspecting lin-
ear models. The length of a score indicator represents total score. It
is divided into four colored parts which represent the four decision
criteria. The length of each part corresponds to the weight ⁄ score.
Placing a cursor over the score indicator brings up an explanation
tooltip.

Users can see a detailed comparison of the query and any other
record by dragging that record into the comparison panel in the
bottom. Lines are drawn between pairs of events matched by the
M&M measure v.2. Moving the cursor over a link displays a tooltip
showing the event type, time of both events and time difference.

By default, the search uses default weights, which means that
all criteria are equally important. However, users may have differ-
ent meanings for similarity in mind. Similan2 allows users to ad-
just the weight of all criteria in the ‘‘Weight’’ tab in the control
panel. (See Fig. 4.) The weight for each decision criterion can be ad-
justed with the slider controls, as well as the weight of each event
type for each decision criteria, A click on ‘‘Apply Weight’’ refreshes
the similarity measures and the order of the records on the display.
For example, if the value of time intervals is not important in this
task (e.g. finding patients who were admitted, transferred to the
special room and exited) the user can set a low weight for ‘‘Avoid
Time Difference’’ to reduce its importance. Because the definition
of weights can be complex, Similan2 includes sets of preset weight
combinations for users to choose from. For instance, one preset is
called ‘‘Sequence’’, which uses a low weight for ‘‘Avoid Time Differ-
ence’’ and a high weight for ‘‘Avoid Missing Events’’.
3.3. The Match and Mismatch (M&M) measure v.1

Many methods for computing a similarity measure between
time series have been proposed. However, modifying them to suit
event sequences remains an open problem. We presented a simi-
larity measure for event sequences called the Match and Mismatch
(M&M) measure (Wongsuphasawat and Shneiderman, 2009) and
used it in Similan. Based on the idea that similar records should
have the same events and the same events should occur almost
at the same time, the M&M measure uses the time difference
and number of missing and extra events as the definition of simi-
larity. The original M&M measure consists of two steps: matching
and scoring.

Fig. 3. Similarity search interface (Similan2) with the same query as in Fig. 1. Users specify the query by placing events on the query panel. To set the time range of interest
and focus on events within this range, users draw a red box. After clicking on ‘‘Search’’, all records are sorted by their similarity to the query. The similarity score is
represented by a number that is the total score and a bar with four sections. A longer bar means a higher similarity score. Each section of the rectangle corresponds to one
decision criterion, e.g. the top two records has longer leftmost section than the third record because it has lower time difference so the Avoid Time Difference Score (AT) is
high, resulting in longer bars. Fig. 4 shows how users can adjust the weight.

Fig. 4. Similan2’s control panel has 2 tabs. The first tab is ‘‘search’’ as shown in Fig. 3. Another tab is weight and detailed weight – The users can adjust the weight of the four
decision criteria using the four sliders in the left figure. For more advanced customization, they can even set the weight for each event type within each decision criterion by
clicking on ‘‘more details’’ (right figure).

K. Wongsuphasawat et al. / Interacting with Computers 24 (2012) 55–68 61

Fig. 5. (left) M&M Matching v.1 (right) M&M Matching v.2 – events in each event type are matched separately.

62 K. Wongsuphasawat et al. / Interacting with Computers 24 (2012) 55–68
(1) Matching: The first step is to match the events in the query
with events in the compared records. The simplest
case is when the events are identical between
records. The problem becomes more complex
when the set of events in the query does not
exactly match those in another record. Since there
can be many possible ways to match the events
between the two records, the matching has to be
carefully chosen. The matching problem can be
reduced to a problem called the assignment prob-
lem (Kuhn, 1955), which is described as follows:

‘‘There are a number of agents and a number of tasks. Any agent
can be assigned to perform any task, incurring some cost that
may vary depending on the agent-task assignment. It is required
to perform all tasks by assigning exactly one agent to each task
in such a way that the total cost of the assignment is minimized.’’

Let the events from one record become agents and the events
from another records become tasks, The matching problem now
becomes the assignment problem. The original M&M measure then
uses the Hungarian Algorithm (Kuhn, 1955; Munkres, 1957) to
solve the assignment problem.

(2) Scoring: After the matching is completed, the scores can be
computed. Scoring is based on a combination of
the number of mismatches and time difference.
In the original M&M measure, the time difference
is converted into a match score while the number
of mismatches (number of events which occur in
the query but do not occur in the compared record,
or vice versa) is converted into a mismatch score.
Match and mismatch scores are combined into
total score, ranging from 0.01 to 1.00 using a
weighted sum. A higher score represents higher
similarity. The weight is a customizable parameter
that can be adjusted by the users.

3.4. The Match and Mismatch (M&M) measure v.2

In this paper, we propose the M&M measure v.2, which im-
proves on the original version in two ways: First, the matching
problem is reduced to a simpler problem than the assignment
problem. Therefore, the matching algorithm can be improved by
using dynamic programming instead of the Hungarian Algorithm.
Second, the M&M measure v.2 considers more types of differences.
It splits the number of mismatches into number of missing events
and number of extra events and also includes number of swaps.
Moreover, it increases the flexibility by adding more customizable
parameters. The M&M measure v.2 still consists of two steps:
matching and scoring.

(1) Matching: The M&M measure does not allow matching
between events in different categories and allows
only one-to-one matching. For example, event A

can only match with event A and cannot match
with event B or C. (See Fig. 5.) Therefore, the
matching can be reduced into a simpler problem
by separating the matching for each event type.

The notation below is used to describe an event sequence re-
cord, which is a list of time-stamped events (t, c). The ith event
in the record is denoted by xi or (ti, ci).

X ¼ fðt; cÞ t 2 Time and c 2 Categoriesg ð1Þ

The M&M measure v.2 splits each record into several lists, one
list for each event type. For example, these two records X and Y

X ¼ fðt1; \A"Þ; ðt2; \A"Þ; ðt3; \B"Þg
Y ¼ fðu1; \A"Þ; ðu2; \B"Þ; ðu3; \B"Þg
\A"; \B" 2 Categories

are split into XA, XB and YA, YB, respectively.

XA ¼ fðt1; \A"Þ; ðt2; \A"Þg; XB ¼ fðt3; \B"Þg
YA ¼ fðu1; \A"Þg; YB ¼ fðu2; \B"Þ; ðu3; \B"Þg

ð2Þ

The problem of ‘‘matching events between two records’’ is then
reduced to ‘‘matching events between two lists that contain only
events in the same event type’’ multiple times, which is simpler.
(See Fig. 5.) For example, matching X and Y is reduced to matching
XA with YA, and XB with YB. A faster algorithm based on dynamic
programming can be used instead of the Hungarian algorithm to
find the matching between XA and YA that produces the minimum
time difference.

Fig. 6. M&M Matching v.2 – dynamic programming table.

K. Wongsuphasawat et al. / Interacting with Computers 24 (2012) 55–68 63
Dynamic Programming Matching Fig. 6 shows a dynamic pro-
gramming table. The value in each cell (cell(i, j)) is the minimum
cost of matching subsequences X[1 . . . i] and Y[1 . . . j]. X must be
longer or has equal length with Y. Cross symbols mark the cells
that cannot be used because the matches would yield non-perfect
matchings for Y. For example, matching y2 with x1 will cause y1 to
have no match.

The M&M Matching v.2 algorithm (Algorithm 1) starts from the
top-left cell and fills the cells from left to right, row by row. For
each cell, the cell value is equal to the minimum between:

1. Cost of matching xi to yj(d(xi, yj) = jxi.time � yj.timej) plus
minimum cost of matching the prefixes (upper-left cell:
cell(i � 1, j � 1)).

2. Minimum cost of matching yj to some x before xi (left cell:
cell(i � 1, j)) which can be represented by this formula:

cellði; jÞ ¼ min
dðxi; yjÞ þ cellði� 1; j� 1Þ
cellði� 1; jÞ

�
ð3Þ

If choice 1 is selected, that cell maintains a link to its upper-left
cell. If choice 2 is selected, that cell maintains a link to its left cell.
After filling the entire table, the minimum matching cost is the va-
lue of the bottom-right-cell. The matching that produces the min-
imum cost can be retrieved by backtracking the link, beginning
from the bottom-right cell.

Algorithm 1. M&M Matching v.2
1:
 n length (X)

2:
 m length (Y)

3:
 diff n �m

4:
 c array[diff + 1][m]

5:
 for j :¼ 0 to m � 1 do

6:
 for i :¼ 0 to diff do

7:
 cost d(xj+i, yj)

8:
 if j > 0 then

9:
 cost cost + c[i][j � 1]
10:
 end if

11:
 if i > 0 then

12:
 c[i][j] min(cost, c[i � 1][j])

13:
 else

14:
 c[i][j] cost

15:
 end if

16:
 end for

17:
 end for
Time Complexity If the number of events in XA and YA are nA and
mA, and nA > mA, the time to match the events between XA and YA

with dynamic programming is

OððnA �mAÞ �mAÞ ð4Þ

Using the matching v.1 based on the Hungarian algorithm, the
time complexity of matching events between X and Y is

OððmaxðnA;mAÞ þmaxðnB;mBÞ þmaxðnC ;mCÞ þ � � � Þ3Þ ð5Þ

Using the matching v.2, the time complexity is reduced to:

OððnA �mAÞ �mA þ ðnB �mBÞ �mB þ ðnC �mCÞ �mC þ � � �Þ ð6Þ
(2) Scoring Once the matching is completed. The scores can be
derived from the matching. The first version of the
M&M measure considers only two types of difference:
time difference and number of mismatches (missing
or extra events). In this second version, we decided
to split the number of mismatches into number of
missing and extra events because these two numbers
can have different significance. For example, users
may not care about extra events but want to avoid
missing events, or vice versa. We also included the
number of swaps because sometimes the users want
the events in order but sometime the order is not sig-
nificant. Therefore, the M&M measure v.2 considers
four types of difference and allows users to customize
each type of difference in more details for each event
type. The four types of differences are listed as
follows:

1. A match event is an event that occurs in both the
query and the compared record. The time difference
(TD) is a sum of time differences within each pair of
matched events. The time difference is kept sepa-
rately for each event type. Users also can specify what
time unit they want to use for the time difference.

2. A missing event is an event that occurs in a query
record but does not occur in a compared record. The
number of missing events (NM) is counted for each
event type.

3. An extra event is an event that does not occur in a
query record but occurs in a compared record. The
number of extra events (NE) is counted for each event
type.

4. A swapping event occurs when the order of the events
is reversed. The number of swapping events (NS) is
counted for each pair of event categories. For example,
in Fig. 7, the query has A followed by B then C but
record#5 has A followed by A then C then B. If you
draw a line from query’s C to record#5’s C and do
the same for B, it will create one crossing. So, the
number of swaps between B and C (NSB,C) is 1 while
NSA,B and NSA,C are both 0.

Since the time difference may be not equally important for all
categories, the total time difference ð

P
TDÞ is a weighted sum of

time difference from each event type. Users can adjust what is
important by setting these weights ð

P
wTD ¼ 1Þ.X

TD ¼ wTD
A � TDA þwTD

B � TDB þ � � � ð7Þ

Fig. 7. Four types of difference: time difference, missing events, extra events and
swaps.

64 K. Wongsuphasawat et al. / Interacting with Computers 24 (2012) 55–68
Likewise, the total number of missing events ð
P

NMÞ, total num-
ber of extra events ð

P
NEÞ and total number of swapping ð

P
NSÞ are

calculated from weighted sums.

X
NE ¼ wNE

A � NEA þwNE
B � NEB þ � � � ð8ÞX

NM ¼ wNM
A � NMA þwNM

B � NMB þ � � � ð9ÞX
NS ¼ wNS

A;C � NSA;C þwNS
B;C � NSB;C þ � � � ð10Þ

Four Decision Criteria The 4 types of differences are normalized
into a value ranging from 0.01 to 0.99 and called penalties. The total
time difference ð

P
TDÞ, total number of missing events ð

P
NMÞ,

number of extra events ð
P

NEÞ and total number of swappings
ð
P

NSÞ are normalized into TD penalty, NM penalty, NE penalty
and NS penalty, respectively. The 4 penalties are converted into
these four decision criteria:

1. Avoid Time Difference (AT) = 1 � TD penalty.
2. Avoid Missing Events (AM) = 1 � NM penalty.
3. Avoid Extra Events (AE) = 1 � NE penalty.
4. Avoid Swapping Events (AS) = 1 � NS penalty.

Total Score The total score is a weighted sum of the four decision
criteria. The users can adjust the weights (wAT, wAM, wAE, wAS) to set
the significance of each decision criteria ð

P
w ¼ 1Þ.

T ¼ wAT � AT þwAM � AM þwAE � AEþwAS � AS ð11Þ

The total score (T) is from 0.01 to 0.99. The higher score repre-
sents higher similarity. We selected the weighted sum model to
combine the score because of its simplicity and ease of presenta-
tion to the users.
4. Evaluation

We conducted a controlled experiment comparing 2 interfaces:
LifeLines2, an exact match interface, and Similan2, a similarity
search interface. Our goal was not to determine which tool was
superior (as they are clearly at different stages of refinement and
represent different design concepts), but to understand which
query method was best suited for different tasks. Another goal
was to observe the difficulties that users encountered while using
the interfaces to perform given tasks. Both interfaces were simpli-
fied by hiding certain controls to focus on the query features we
wanted to compare.
4.1. Research questions

The evaluation was conducted to answer these research
questions:

(1) Are there statistically significant differences in performance
time and performance accuracy between the two interfaces
while performing different tasks?

(2) Are there statistically significant differences in performance
time and performance accuracy between the different tasks
while using each interface?

(3) Is there a statistically significant difference between the sub-
jective ratings given by the users to the two interfaces?

4.2. Participants

Eighteen graduate and senior undergraduate students partici-
pated in the study. We recruited computer science students who
are assumed to have high level of comfort with computers but no
knowledge of either interface. The participants included 13 men
and 5 women, 20–30 years of age. Participant received $20 for their
90-min participation. To provide the motivation to perform the tasks
quickly and accurately, an additional nominal sum was promised to
the fastest user with the fewest errors of each interface.

4.3. Apparatus

The participants were required to perform the given tasks with
the two interfaces: LifeLines2 and Similan. The two software inter-
faces were running on an Apple Macbook Pro 15’’ with Windows
XP operating system. The participants controlled the computer
using a standard mouse.

4.3.1. Tasks
The tasks were designed based on real scenarios provided by

physicians and simplified to make them suitable for the time limit
and participants who had never used the interfaces before. Partic-
ipants were requested to find patients in the database who satis-
fied the given description. To avoid the effect of alignment
choice, all tasks contained an obvious sentinel event (e.g. Admit).
We considered these factors when designing the tasks:

1. Query type: Either a sequence description was provided or
an existing record was used as a query.

2. Time constraint: Present or not.
3. Uncertainty: Yes or No, e.g. the number of events may be

precise or not, the time constraint may be flexible or not.

The tasks that were used in the experiment are listed as follows:

Task type 1 – Description without time constraint, no uncertainty.
1: ‘‘Find at least one patient who was admitted, trans-

ferred to Floor then to ICU.’’
1.2: ‘‘Count all patients who fit task 1 description’’.

Task 1 was designed to observe how quickly the partic-
ipants can use the interface to specify the query while
task 1.2 focused on result interpretation and counting.

Task type 2 – Description with time constraints, no uncertainty.

2: ‘‘Find at least one patient who was admitted and

transferred to Intermediate on the second day then
to ICU on the third day.’’

2.2: ‘‘Count all patients who passed task 2 description.’’
Task type 3 – Description with uncertainty, without time
constraint.

K. Wongsuphasawat et al. / Interacting with Computers 24 (2012) 55–68 65
3: ‘‘Find a patient who best matches the following condi-
tions: Admitted and then transferred to special room
approximately 2 times and transferred to ICU room
after that. If you cannot find any patient with exactly
2 transfers to the special room, 1–3 transfers are
acceptable.’’

3.2: ‘‘Count all patients who passed task 3 description.’’
Fig. 8. Performance time a function of the interface type and the tasks (1–5).
Vertical bars denote 0.95 confidence intervals.
Task type 4 – Description with uncertainty and time constraint:
‘‘Find a patient who best matches the following condi-
tions: Admitted, transferred to Floor on the first day,
ICU approximately at the end of the third day. The best
answer is the patient who was transferred to ICU clos-
est to the given time as possible.’’

Task type 5 – Existing record provided as query:
‘‘Find a patient who was transferred with the most
similar pattern with patient No. xx during the first
72 h after being admitted. Having everything the same
is the best but extra events are acceptable.’’

4.3.2. Data
We used a modified version of the deidentified patient transfer

data provided by our partners. The data contained information
about when patients were admitted (Admit), transferred to Inten-
sive Care Unit (ICU), transferred to Intermediate Care Unit (Inter-
mediate), transferred to a normal room (Floor), and exited (Exit).

4.3.3. Questionnaire
A 7-item, 7-point Likert-scale questionnaire was devised by the

experimenter to measure the learnability and ease or difficulty of
using the interfaces while performing the different tasks, and the
level of confidence of the answers they provided for the different
tasks. The highest (positive, such as ‘‘very easy’’ or ‘‘very confi-
dent’’) score that could be attained on the measure was 7; the low-
est (negative, such as ‘‘very hard’’ or ‘‘not confident’’) score was 1.
Thus, higher scores reflected more positive attitudes toward the
interfaces.

Q1: Is it easy or hard to learn how to use?
Q2: Is it easy or hard to specify the query with sequence only?
Q3: Is it easy or hard to specify the query with time

constraint?
Q4: Is it easy or hard to specify the query with uncertainty?
Q5: Is it easy or hard to specify the query in the last task?
Q6: How confident is your answer for finding at least one, best

answer tasks?
Q7: How confident is your answer for counting tasks?

4.4. Design

The independent variables were: Interface type (2 treatments):
exact match and similarity search, Task (8 treatments).

The dependent variables were: The time to complete each task,
error rate for each task, and subjective ratings on a 7-point Likert
scale.

The controlled variables were: Computer, mouse and window
size. We used equivalent datasets for each interface.

To control learning effects, the presentation order of the Life-
Lines2 and Similan2 interfaces was counterbalanced. To avoid the
situations that the users would always find repeating the tasks
on the second system easier, since they already know the answer,
we also used two sets of questions and datasets, one for each inter-
face. The questions in the two sets are different but have same dif-
ficulty level, for example: ‘‘Find at least one patient who was
admitted, transferred to Floor then to ICU.’’ and ‘‘Find at least
one patient who was admitted, transferred to Floor then to IMC.’’
Half of the participants started with LifeLines2 while another half
started with Similan2.

4.5. Procedure

Participants were given training which included a brief descrip-
tion of the data and 10-min tutorials of how to the first interface.
Then, the participants had to complete two training tasks. When
the participants could answer the training questions correctly, they
were considered ready to perform the study tasks. Next, the partic-
ipants were asked to perform eight tasks using the first interface.
After that, the experimenter followed the same procedure (tutorial,
training tasks, study tasks) for the second interface.

Upon completion of the tasks, the participants were asked to
complete the 7-point Likert scale questionnaire.

At the end of the experiment, we debriefed the participants to
learn about their experience while using the interfaces for the dif-
ferent tasks and their suggestions for improving the interfaces.

5. Results

5.1. Performance time

To examine the effects of the type of interface and the task on
time to perform tasks 1–5, we conducted a two-way ANOVA with re-
peated measures. The time to perform the task was the dependent
variable and the type of interface and the task were within partici-
pants independent variables. The results of the analysis showed that
the main effect of the task was significant (F(4, 68) = 15.15, p < .001).
The two-way interaction (interface � task) was also significant
(F(4, 68) = 6.63, p < .001). The main effect of the interface was not
found to be significant (F(1, 17) = 1.60, p = .22).

Fig. 8 shows the performance time as a function of the interface
and the task. It can be seen that for tasks 1–3, the performance
times using the two interfaces are very similar and increase for
the tasks with time constraint (2) and uncertainty (3) (M ± SD of
26.83 ± 10.90 s, 39.58 ± 23.92 s and 58.67 ± 33.60 s, respectively).
However, the average performance times of tasks 4 and 5 are
shorter using the similarity search interface (M ± SD of
51.73 ± 13.21 s and 37.74 ± 18.63 s, respectively) than while using
the exact match interface (M ± SD of 68.33 ± 31.18 s and
72.05 ± 34.41 s, respectively). It can also be observed that the vari-
ances in the performance time of tasks 2–5 are larger while using
the exact match.

Table 1
Results of the analysis of subjective ratings given by the participants to the two
interfaces while performed the different tasks. ‘‘X’’ denotes exact match while ‘‘S’’
denotes similarity search. ‘‘�’’ indicates preferred interface.

Question Average rating ± SD t(17) p-Value

X S

Q1: Easy to learn 5.67 ± 1.37 5.44 ± 1.29 0.61 .55
Q2: Query for sequence only 6.89 ± 0.32⁄ 5.50 ± 1.20 4.74 <.001
Q3: Query with time constraint 4.94 ± 1.51 6.00 ± 1.19⁄ �2.82 <.05
Q4: Query with uncertainty 4.11 ± 1.37 5.78 ± 1.06⁄ �5.15 <.001
Q5: Query similar records 3.94 ± 0.43 6.78 ± 0.43⁄ �7.99 <.001
Q6: Confidence-Find most similar 5.83 ± 0.99 5.78 ± 1.17 0.15 .88
Q7: Confidence-Count 6.72 ± 0.75⁄ 4.83 ± 1.10 6.78 <.001

66 K. Wongsuphasawat et al. / Interacting with Computers 24 (2012) 55–68
A post hoc Duncan test showed that the performance times of
tasks 4 and 5 are significantly shorter while using the similarity
search interface (p < .05). When using the exact match, there were
significant differences in performance time between two homoge-
nous groups: tasks 1–2 versus tasks 3–5 (p < .001). When using the
similarity search, the main significant differences in performance
time were between task 3 to tasks 1 and 5 (p < .05).

Similar analytic procedures were followed in the analysis of the
effects of the interface type and the task on time to perform the
counting tasks (1.2, 2.2 and 3.2). The results of the analysis showed
that the only effect that was found to be significant was the main
effect of the interface (F(1, 17) = 23.65, p < .001). The average per-
formance time while interacting with the exact match was signif-
icantly shorter than with the similarity search (M ± SD of
2.32 ± 3.75 s and 15.20 ± 25.10 s, respectively) The main effect of
the task (F(2, 34) = 2.05, p = .14) and the interaction effect
(F(2, 34) = 2.03, p = .15) were not found to be significant.

5.2. Error rates

To compare the error rates between the two interfaces while
performing the different tasks, we performed a McNemar’s test,
which is a non-parametric test that is used to compare two popu-
lation proportions that are related or correlated to each other.
Since the error rates of tasks 1–3 were zero for both interfaces,
we conducted this analysis only for tasks 4 and 5 (4 and 2 incorrect
answers using the exact match, respectively and no error while
using the similarity search). The results of the analysis showed that
there was no significant difference between the two interfaces in
the error rates of task 4 (v2(1) = 3.06, p = .08) and 5 (v2(1) =
1.13, p = .29).

5.3. Subjective ratings

To compare the difference between the subjective ratings given
by the participants to the two interfaces, we conducted a paired-
sample t-test for each question. The results of the analysis are pre-
sented in Table 1. The results showed that there was no significant
difference for the ease of learning how to use the two interfaces
(Q1). The participants reported the exact match to be significantly
easier to use than the similarity search for the task with sequence
only (task 1) (Q2). However, for the tasks with only time constraint
(task 2) (Q3) or only uncertainty constraint (task 3) (Q4), they re-
ported the similarity search to be significantly easier to use than
the exact match. They also reported the similarity search to be sig-
nificantly easier to use than the exact match in the task that re-
quired them to find a patient which is the most similar to the
given patient (Q5). There was no significant difference between
the confidence levels of the answers for the tasks which required
finding at least one, best answer (tasks 1–5) (Q6). However, the
participants were significantly more confident while using the ex-
act match than the similarity search to find the answers for the
counting tasks (tasks 1.2, 2.2 and 3.2) (Q7).

5.4. Debriefing

When asked about what they liked in LifeLines2, the partici-
pants said that it is easy for finding a sequence (‘‘Easy to find se-
quence’’, ‘‘Very easy to query with sequence’’ ‘‘Very intuitive to
specify sequence’’) and counting (‘‘Show only matched records
make it easy to count’’, ‘‘It gives confidence’’).

However, when asked about what they did not like in Life-
Lines2, they explained that it is difficult for uncertain and more
complex tasks because they had to change the query and some-
times, more than one filter is needed. (‘‘It doesn’t find the similar
case when it can’t find the case I want’’, ‘‘Difficult for complex tasks
or tasks with uncertainty’’, ‘‘Hard to find approximate best match’’,
‘‘Harder in LifeLines2 because I had to change the query [for the
uncertain task]’’, ‘‘In order to find a patient, sometimes more than
one filter is needed.’’)

When asked about what they liked in Similan2, the participants
said that it is more flexible and easier to find similar patients.
(‘‘Very easy to find the similar pattern.’’, ‘‘Similan is more flexible.’’,
‘‘The similarity measure makes it FAR easier to find the best
matches.’’, ‘‘Excellent in finding ‘at least one’ type results when for-
mulating the query is harder [in LifeLines2] due to ambiguity.’’)
They also said that it is easier to specify the time constraints in a
query and that specifying how the answers should look like makes
the search process more transparent. (‘‘Query with time constraint
is very easy.’’, ‘‘Time constraint searches are easier to input.’’, ‘‘the
search process is more transparent.’’, ‘‘Drag and drop triangles gave
me better control of how the specific sequences should look like.’’)

However, when asked about what they did not like in Similan2,
the participants expressed difficulty in using it for the counting
tasks because it is difficult to separate between the exact match re-
sults and the similar results. (‘‘No easy way to count’’ ‘‘not sure
[whether] the top rows are the only answers.’’) Also, sometimes
it is unclear where to place the events on the timeline. (‘‘In Simi-
lan2, it is not immediately obvious where to place the icon for
the ‘second day’.’’) Two participants also mentioned that similarity
search responded slightly slower than exact match.

Common suggestions for improvement included: ‘‘LifeLines2
should have a list of previous actions and undo button’’, ‘‘A counter
in Similan for all patients that had a match of X score or better
could be helpful.’’, ‘‘Have individual weight for events in the query
in Similan, so the users can specify if some events are more impor-
tant than others.’’, ‘‘Have more weight presets to choose from.’’
6. Conclusions and future work

Event sequence data are continuously being gathered by vari-
ous organizations. Querying for time-stamped event sequences in
those data sets to answer questions or look for patterns is a very
common and important activity. Most existing temporal query
GUIs use an exact match approach, which returns only records that
match the query. However, in exploratory search, users are often
uncertain about what they are looking for. Too narrow queries
may eliminate results which are on the borderline of the con-
straints. On the other hand, the similarity search approach allows
users to sketch an example of what they are seeking and find sim-
ilar results, which provides more flexibility.

This paper makes these contributions:

1. We presented Similan2, an interface to specify an event
sequence example and search for records that are similar
to the example, following the similarity search approach.

K. Wongsuphasawat et al. / Interacting with Computers 24 (2012) 55–68 67
2. We introduced the M&M measure v.2 which is faster and
can be customized by four decision criteria, increasing its
performance and flexibility from the first version.

3. We conducted a controlled experiment that assessed the
benefits of exact match and similarity search interfaces
for five tasks, leading to future directions for improving
event sequences query interfaces that combine the benefits
of both interfaces.

Our experiment showed that exact match had advantages in
finding exact results. Users preferred to use it to find a simple se-
quence without time constraint or uncertainty more than the sim-
ilarity search. The exact match also gave more confidence to the
users in tasks that involve counting. However, users felt that it
was more complex to use for tasks with time constraints or uncer-
tainty (probably because it required many steps to add each con-
straint to construct a query).

On the other hand, similarity search had advantages in the flex-
ibility and intuitiveness of specifying the query for tasks with time
constraints or uncertainty, or tasks that ask for records that are
similar to a given record. Users felt that it is easier to specify the
time constraints in a query and that specifying how the answers
should look like makes the search process more transparent be-
cause they could see the big picture of their query. However, sim-
ilarity search was more difficult for tasks that involve counting.
The participants requested a better way to support counting tasks.

Further work is needed to address these two points:
First, the exact match and similarity search interfaces each have

their advantages. How can we combine the best features from
these two interfaces to create a new interface that can support
queries with uncertainty and time constraints as well as simpler
and counting tasks? Based on the results of the experiment and
our observations during the longitudinal study with our partners,
we list several ideas for hybrid query interfaces that should be ex-
plored in the future:

(1) Draw an example. Specifying the query by placing event
glyphs on a timeline seems closer to users’ natural prob-
lem-solving strategy and the visual representation of the
query also helps users compare results with the query to
notice and correct errors.

(2) Sort results by similarity to the query but do not return all
records and allow users to see more if necessary. Showing all
records, even those that do not fit the query, confuses users
and reduces confidence in the results. However, users may
want to see more results at certain times. One possible strat-
egy is to show only exact results first (i.e. like exact match)
and have ‘‘more’’ button to show the rest or the next n
records. Another strategy is to add a borderline that sepa-
rates the exact results from the near matches. This may
increase confidence and still be useful for exploratory search.

(3) Allow users to specify what is flexible and what is not. Even in a
query with uncertainty, users may have some parts of the
query that they are certain about, e.g. patients must be
admitted to the ICU (i.e. do not even bother showing me
records with no ICU event). These certain rules can be
applied strictly to narrow down the result set without sacri-
ficing the flexibility of the other parts of the query.

(4) Weights. Whether users would be able to translate more
complex data analysis goals into proper weight settings
remains an open issue. One idea to prevent manual weight
adjustment is to provide presets of weights that capture
common definitions of similarity.

(5) Avoid too many alternative ways to perform the same task. This
can lead to confusion. In the experiment, we found many
users used more filters than necessary.
Second, while this paper focuses on medical examples, all de-
sign principles are based on event sequences, which are not spe-
cific to the medical domain. Therefore, we believe that these
concepts are applicable to event sequences in other domains, such
as traffic incidents logs, student records, researchers’ publication
list, US bill status, web logs, usability logs, criminal investigations,
and many more topics. Part of our future work will include more
user studies that show applications of these concepts to other
domains.

We believe that querying event sequences will become an
increasingly common and important task. The growing effort on
query languages and similarity measures is helpful, but this paper
advances research by developing interfaces and evaluating them in
a rigorous way with five tasks.
Acknowledgements

We appreciate support from the National Institutes of Health
(NIH) Grant CA147489 and Washington Hospital Center, and col-
laboration from our physician partners at the Washington Hospital
Center, especially Dr. Phuong Ho, Dr. Mark Smith and David
Roseman, and would like to thank Dr. Vibha Sazawal, Dr. Jen
Golbeck, Dr. Taowei David Wang and Sureyya Tarkan for their
thoughtful comments, and all participants in the studies for their
participations.
References

Aigner, W., Miksch, S., 2006. CareVis: integrated visualization of computerized
protocols and temporal patient data. Artificial Intelligence in Medicine 37, 203–
218.

Altschul, S., Gish, W., Miller, W., Myers, E., Lipman, D., 1990. Basic local alignment
search tool. Journal of Molecular Biology 215, 403–410.

André-Jönsson, H., Badal, D.Z., 1997. Using signature files for querying time-series
data. In: Proceedings of the First European Symposium on Principles of Data
Mining and Knowledge Discovery (PKDD). Springer, pp. 211–220.

Bederson, B., Grosjean, J., Meyer, J., 2004. Toolkit design for interactive structured
graphics. IEEE Transactions on Software Engineering 30, 535–546.

Berndt, D.J., Clifford, J., 1994. Using dynamic time warping to find patterns in time
series. In: AAAI-94 Workshop on Knowledge Discovery in Databases, pp. 229–
248.

Bonhomme, C., Aufaure, M.A., 2002. Mixing icons, geometric shapes and temporal
axis to propose a visual tool for querying spatio-temporal databases. In:
Proceedings of Working Conference on Advanced Visual Interfaces (AVI). ACM,
pp. 282–289.

Bonhomme, C., Trépied, C., Aufaure, M.A., Laurini, R., 1999. A visual language for
querying spatio-temporal databases. In: Proceedings of ACM International
Symposium on Advances in Geographic Information Systems (GIS). ACM, pp.
34–39.

Carenini, G., Loyd, J., 2004. ValueCharts: analyzing linear models expressing
preferences and evaluations. In: Proceedings of Working Conference on
Advanced Visual Interfaces (AVI). ACM, pp. 150–157.

Chang, N., Fu, K., 1980. Query-by-pictorial-example. IEEE Transactions on Software
Engineering 6, 519–524.

Chang, R., Ghoniem, M., Kosara, R., Ribarsky, W., Yang, J., Suma, E., Ziemkiewicz, C.,
Kern, D., Sudjianto, A., 2007. WireVis: visualization of categorical, time-varying
data from financial transactions. In: Proceedings of IEEE Symposium on Visual
Analytics Science and Technology (VAST). IEEE, pp. 155–162.

Chomicki, J., 1994. Temporal query languages: a survey. In: Proceedings of
International Conference on Temporal Logic. Springer, pp. 506–534.

Clifford, J., Croker, A., 1987. The historical relational data model (HRDM) and algebra
based on lifespans. In: Proceedings of IEEE International Conference on Data
Engineering (ICDE). IEEE, pp. 528–537.

Dobrisek, S., Zibert, J., Pavesić, N., Mihelic, F., 2009. An edit-distance model for the
approximate matching of timed strings. IEEE Transactions on Pattern Analysis
and Machine Intelligence 31, 736–741.

Fails, J., Karlson, A., Shahamat, L., Shneiderman, B., 2006. A visual interface for
multivariate temporal data: finding patterns of events across multiple histories.
In: Proceedings of IEEE Symposium on Visual Analytics Science and Technology
(VAST). IEEE, pp. 167–174.

Gómez-Alonso, C., Valls, A., 2008. A similarity measure for sequences of categorical
data based on the ordering of common elements. In: Torra, V., Narukawa, Y.
(Eds.), Modeling Decisions for Artificial Intelligence, vol. 1. Springer, pp. 134–
145 (Chapter 13).

Hamming, R.W., 1950. Error detecting and error correcting codes. The Bell System
Technical Journal 29, 147–160.

68 K. Wongsuphasawat et al. / Interacting with Computers 24 (2012) 55–68
Hibino, S., Rundensteiner, E., 1995. A visual query language for identifying temporal
trends in video data. In: Proceedings of International Workshop on Multi-Media
Database Management Systems. IEEE, pp. 74–81.

Hibino, S., Rundensteiner, E.A., 1997. User interface evaluation of a direct
manipulation temporal visual query language. In: Proceedings of ACM
International Conference on Multimedia (MULTIMEDIA). ACM, pp. 99–107.

Hochheiser, H., Shneiderman, B., 2004. Dynamic query tools for time series data sets:
timebox widgets for interactive exploration. Information Visualization 3, 1–18.

Jacobs, B., Walczak, C., 1983. A generalized query-by-example data manipulation
language based on database logic. IEEE Transactions on Software Engineering
SE-9, 40–57.

Jin, J., Szekely, P., 2009. QueryMarvel: a visual query language for temporal patterns
using comic strips. In: Proceedings of IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC). IEEE, pp. 207–214.

Karam, G., 1994. Visualization using timelines. In: Proceedings of ACM SIGSOFT
International Symposium on Software Testing and Analysis. ACM, pp. 125–137.

Kato, T., Kurita, T., Otsu, N., Hirata, K., 1992. A sketch retrieval method for full color
image database-query by visual example. In: Proceedings of IAPR International
Conference on Pattern Recognition. IEEE, pp. 530–533.

Klimov, D., Shahar, Y., Taieb-Maimon, M., 2009. Intelligent selection and retrieval of
multiple time-oriented records. Journal of Intelligent Information Systems 35,
261–300.

Klimov, D., Shahar, Y., Taieb-Maimon, M., 2010. Intelligent visualization and
exploration of time-oriented data of multiple patients. Artificial Intelligence
in Medicine 49, 11–31.

Klug, A.C., 1981. Abe: a query language for constructing aggregates-by-example. In:
Proceedings of LBL Workshop on Statistical Database Management (SSDBM).
Lawrence Berkeley Lab, pp. 190–205.

Kuhn, H.W., 1955. The Hungarian method for the assignment problem. Naval
Research Logistics Quarterly 2, 83–97.

Levenshtein, V.I., 1966. Binary codes capable of correcting deletions, insertions and
reversals. Soviet Physics Doklady 10, 707–710.

Li, W.S., Candan, K.S., Hirata, K., Hara, Y., 1997. IFQ: a visual query interface and query
generator for object-based media retrieval. In: Proceedings of IEEE International
Conference on Multimedia Computing and Systems. IEEE, pp. 353–361.

Mannila, H., Moen, P., 1999. Similarity between event types in sequences. In:
Proceedings of International Conference on Data Warehousing and Knowledge
Discovery (DaWaK). Springer, pp. 271–280.

Mannila, H., Ronkainen, P., 1997. Similarity of event sequence. In: Proceedings of
International Workshop on Temporal Representation and Reasoning (TIME), pp.
136–139.

Mannila, H., Seppänen, J., 2001. Finding similar situations in sequences of events via
random projections. In: Proceedings of SIAM International Conference on Data
Mining, Citeseer, pp. 1–16.

Mongeau, M., Sankoff, D., 1990. Comparison of musical sequences. Computer and
the Humanities 24, 161–175.

Munkres, J., 1957. Algorithms for the assignment and transportation problems.
Journal of the Society for Industrial and Applied Mathematics 5, 32–38.

Navarro, G., 2001. A guided tour to approximate string matching. ACM Computing
Surveys 33, 31–88.

Obweger, H., Suntinger, M., Schiefer, J., Raidl, G., 2010. Similarity searching in
sequences of complex events. In: Proceedings of International Conference on
Research Challenges in Information Science (RCIS). IEEE, pp. 631–640.

Ozsoyoglu, G., Wang, H., 1993. Example-based graphical database query languages.
Computer 26, 25–38.

Ozsoyoglu, G., Matos, V., Ozsoyoglu, M., 1989. Query processing techniques in the
summary-table-by-example database query language. ACM Transactions of
Database Systems 14, 526–573.

Pearson, W.R., Lipman, D.J., 1988. Improved tools for biological sequence
comparison. Proceedings of National Academy of Sciences of the United
States of America, 2444–2448.
Rigoutsos, I., Floratos, a., 1998. Combinatorial pattern discovery in biological
sequences: the TEIRESIAS algorithm. Bioinformatics 14, 55–67.

Shahar, Y., Goren-Bar, D., Boaz, D., Tahan, G., 2006. Distributed, intelligent,
interactive visualization and exploration of time-oriented clinical data and
their abstractions. Artificial Intelligence in Medicine 38, 115–135.

Sherkat, R., Rafiei, D., 2006. Efficiently evaluating order preserving similarity queries
over historical market-basket data. In: Proceedings of International Conference
on Data Engineering (ICDE), pp. 19–30.

Shneiderman, B., 1983. Direct manipulation: a step beyond programming
languages. Computer 16, 57–69.

Shneiderman, B., Plaisant, C., 2006. Strategies for evaluating information
visualization tools. In: Proceedings of AVI Workshop on Beyond Time and
Errors Novel Evaluation Methods for Information Visualization (BELIV). ACM,
pp. 1–7.

Snodgrass, R., 1987. The temporal query language TQuel. ACM Transactions of
Database Systems 12, 247–298.

Snodgrass, R.T., 1995. The TSQL2 Temporal Query Language. Kluwer Academic
Publishers.

Tansel, A., Tin, E., 1997. The expressive power of temporal relational query
languages. IEEE Transactions on Knowledge and Data Engineering 9,
120–134.

Tansel, A., Arkun, M., Ozsoyoglu, G., 1989. Time-by-example query language for
historical databases. IEEE Transactions on Software Engineering 15,
464–478.

Tukey, J.W., 1977. Exploratory Data Analysis. Addison-Wesley.
Vrotsou, K., 2010. Everyday Mining Exploring Sequences in Event-based Data. Ph.D.

thesis. Linkoping University.
Vrotsou, K., Forsell, C., 2011. A qualitative study of similarity measures in event-

based data. In: Proceedings of Human Interface and the Management of
Information. Interacting with Information Symposium on Human Interface,
Springer. pp. 170–179.

Vrotsou, K., Johansson, J., Cooper, M., 2009. ActiviTree: interactive visual exploration
of sequences in event-based data using graph similarity. IEEE Transactions on
Visualization and Computer Graphics 15, 945–952.

Wang, T.D., Plaisant, C., Quinn, A.J., Stanchak, R., Murphy, S., Shneiderman, B., 2008.
Aligning temporal data by sentinel events: discovering patterns in electronic
health records. In: Proceedings of Annual SIGCHI Conference on Human Factors
in Computing Systems (CHI). ACM, pp. 457–466.

Wang, T.D., Plaisant, C., Shneiderman, B., Spring, N., Roseman, D., Marchand, G.,
Mukherjee, V., Smith, M., 2009. Temporal summaries: supporting temporal
categorical searching, aggregation and comparison. IEEE Transactions on
Visualization and Computer Graphics 15, 1049–1056.

Watai, Y., Yamasaki, T., Aizawa, K., 2007. View-based web page retrieval using
interactive sketch query. In: Proceedings of IEEE International Conference on
Image Processing. IEEE, pp. 357–360.

Wattenberg, M., 2001. Sketching a graph to query a time-series database. In:
Proceedings of Annual SIGCHI Conference on Human Factors in Computing
Systems (CHI) – Extended Abstracts. ACM, pp. 381–382.

White, R.W., Roth, R.A., 2009. Exploratory search: beyond the query-response
paradigm. In: Synthesis Lectures on Information Concepts, Retrieval, and
Services, pp. 1–98.

Winkler, W.E., 1999. The State of Record Linkage and Current Research Problems.
Technical Report. Statistical Research Division, US Census Bureau.

Wongsuphasawat, K., Shneiderman, B., 2009. Finding comparable temporal
categorical records: a similarity measure with an interactive visualization. In:
Proceedings of IEEE Symposium on Visual Analytics Science and Technology
(VAST). IEEE, pp. 27–34.

Zloof, M.M., 1975. Query by example. In: Proceedings of National Computer
Conference and Exposition (AFIPS). ACM, pp. 431–438.

Zloof, M., 1982. Office-by-example: a business language that unifies data and word
processing and electronic mail. IBM Systems Journal 21, 272–304.

	Querying event sequences by exact match or similarity search: Design and empirical evaluation
	1 Introduction
	1.1 Example of event sequence analysis
	1.2 Motivation for similarity search for event sequences
	1.3 Similarity search for event sequences
	1.4 Motivation for a controlled experiment

	2 Background and related work
	2.1 Query languages
	2.2 Query-by-Example languages
	2.3 Query by Graphical User Interfaces (GUIs)
	2.3.1 Exact match approach
	2.3.2 Similarity search approach

	2.4 Similarity measure
	2.4.1 Numerical time series
	2.4.2 String and biological sequences
	2.4.3 Event sequences

	3 Systems description
	3.1 Exact match interface: LifeLines2
	3.2 Similarity search interface: Similan2
	3.3 The Match and Mismatch (M&M) measure v.1
	3.4 The Match and Mismatch (M&M) measure v.2

	4 Evaluation
	4.1 Research questions
	4.2 Participants
	4.3 Apparatus
	4.3.1 Tasks
	4.3.2 Data
	4.3.3 Questionnaire

	4.4 Design
	4.5 Procedure

	5 Results
	5.1 Performance time
	5.2 Error rates
	5.3 Subjective ratings
	5.4 Debriefing

	6 Conclusions and future work
	Acknowledgements
	References

