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ABSTRACT
Event sequence analysis is an important task in many do-
mains: medical researchers may study the patterns of trans-
fers within the hospital for quality control; transportation ex-
perts may study accident response logs to identify best prac-
tices. In many cases they deal with thousands of records.
While previous research has focused on searching and brows-
ing, overview tasks are often overlooked. We introduce a
novel interactive visual overview of event sequences called
LifeFlow. LifeFlow is scalable, can summarize all possi-
ble sequences, and represents the temporal spacing of the
events within sequences. Two case studies with healthcare
and transportation domain experts are presented to illustrate
the usefulness of LifeFlow. A user study with ten partici-
pants confirmed that after 15 minutes of training novice users
were able to rapidly answer questions about the prevalence
and temporal characteristics of sequences, find anomalies,
and gain significant insight from the data.
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INTRODUCTION
Event sequences are series of timestamped events. For exam-
ple, Electronic Health Records (EHRs) contain doctor visits,
lab results, medication orders, transfer among hospital de-
partments etc. Highway incident logs, student records, web
logs, usability study logs, are other examples.
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Patient – (6:11, Arrive Hospital), (6:15, Emergency Room), (9:05, ICU), ...
Incident – (8:05, Incident Notification), (8:10, Police arrived), ...
Student – (28 Aug’07, Enter PhD program), (30 Apr’10, Proposal), ...

Event sequence analysis looks at (1) the sequence of events
(e.g. Arrival→Intensive Care Unit (ICU)→Floor) and (2)
time gaps between events (e.g. Emergency Room (and af-
ter 5 hours)→ Transfer to ICU). Medical researchers might
be interested in analyzing transfer sequences in hospitals to
improve the quality of care, while traffic managers are inter-
ested in analyzing incident logs to identify best practices.

Previous work on temporal data visualization can support
many types of analysis, ranging from examining a single
record in details to various ways of filtering and searching
multiple records. They can answer questions regarding the
number of records that include a specific event sequence but
questions requiring an overview are not adequately supported.
E.g., a question such as “What are the most common trans-
fer patterns between services within the hospital?” requires
examination of all records one by one. Being unable to see
all records on the screen at once makes it difficult to spot any
pattern. Squeezing a billion records into a million pixels [30]
is a great challenge in information visualization. In this pa-
per we introduce a novel interactive visual overview of event
sequences called LifeFlow, which is scalable and can sum-
marize not only all possible sequences but also the temporal
spacing of the events within sequences. We first describe a
motivating example from the medical domain, then introduce
the LifeFlow visualization, review related work, describe the
user interface interactive features, and finally present the re-
sults of our evaluations (two case studies and a laboratory
study with ten participants). While the examples in this pa-
per focus on the medical domain, the technique is widely
applicable to other fields, such as incident management, log
analysis, or the study of human activities in general. To gain
a further understanding of the interactive experience, see the
videos at http://www.cs.umd.edu/hcil/lifeflow.

MOTIVATING CASE STUDY
The use of information visualization to support patient care
and clinical research is gaining momentum [1, 19, 9]. We
have been working with physicians from the Washington Hos-
pital Center for several years, and continuously identifying
case studies that inform the design of our tools and help us
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evaluate the usefulness of our approaches. This section de-
scribes a particular case study that motivated the original de-
sign of LifeFlow. It was conducted with Dr. Phuong Ho,
a practicing physician in the emergency department, who
was interested in analyzing sequences of patient transfers be-
tween departments for quality assurance.

Event Definitions
These terms will be used when describing the case study.
1) ER: Emergency Room, the section of a hospital intended
to provide treatment for victims of sudden illness or trauma
2) ICU: Intensive Care Unit, a hospital unit in which patients
requiring close monitoring and intensive care are kept
3) IMC: Intermediate Care, a level of medical care in a hos-
pital that is intermediate between ICU and Floor
4) Floor: a hospital ward where patients receive normal care

Example question
One of Dr. Ho’s particular interests was the monitoring of
bounce backs, which occurred when a patients’ level of care
is decreased then increased back again urgently. E.g., a pa-
tient’s condition might have improved enough to have him
transferred from the ICU to Floor, but his condition wors-
ened again and he had to be sent back to intensive care within
48 hours, suggesting he might have left the ICU too early.
This pattern corresponds to a hospital quality metric that is
very rarely monitored. Dr. Ho had been using an MS Excel
spreadsheet to find these patients. In an interview he de-
scribed the complex and time consuming effort to create the
formulas and view the data. This is due in part to the fact that
there are many room types and special conditions for using
those rooms. We had previously worked with Dr. Ho us-
ing LifeLines2 [35] and Similan [39] to locate patients with
specific known event sequences such as the one described
above. Once it had become easy to search for specific known
sequences we identified other questions that could not be an-
swered as easily; e.g.: what typically happens to patients af-
ter they leave the ER, or the ICU; what are the most common
transfer patterns, what is the percentage of patients trans-
ferred from ICU to Floor and how long does it take, are there
any unexpected sequences? All those new questions require
a summary of all the transfer sequences and their temporal
attributes. To this end, we propose LifeFlow to provide an
overview of all transfer sequences.

LIFEFLOW DISPLAY
Figure 1 illustrates the conversion from four records of event
sequences to the LifeFlow display. Raw data are displayed
on a horizontal timeline with colored triangles representing
events (in the same approach as LifeLines2 [35]). Each row
represents one record. The transformation into LifeFlow takes
two steps: aggregation and visualization.
1) Aggregation – All records are aggregated into a tree-based
data structure called a tree of sequences based on the pre-
fixes of their event sequences. For example, a record that
contains event sequence Arrival→ ER→ ICU and a record
that contains event sequence Arrival → ER → Floor, share
the same prefix sequence Arrival → ER. The records are
grouped event-by-event from the beginning of the event se-
quences to the end. In Figure 1, all records start with the

Figure 1. This diagram explains how a LifeFlow display can be con-
structed to summarize four records of event sequences. Raw data are
represented as colored triangles on a horizontal timeline (using the tra-
ditional approach also used in LifeLines2). Each row represents one
record. The records are aggregated by sequence into a data structure
called a tree of sequences. The tree of sequences is then converted into
LifeFlow visualization. Each tree node is represented with an event bar.
The height of the bar is proportional to the number of records while its
horizontal position is determined by the average time between events.

Figure 2. The Icicle Tree Visualization - the inspiration for Lifeflow -
is used to display hierarchical information. The biggest rectangle on
the top represents the root node. The children nodes are placed under
their parent nodes. Each node’s width is determined by a sum of its
children’s width.
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blue event so they are grouped together (indicated by dashed
rectangle) in to a blue tree node. Then, they all also have
the pink event, so they are still grouped together into a pink
node. In the next step, two of them have red events while
the other two have green events so they are split into red and
green nodes. Then do the same for the rest of the event se-
quences. In some situations, users may chose to group con-
secutive events of the same type together when building the
tree of sequences. For example, two consecutive transfers to
Floor can be treated as one transfer with the second transfer
ignored. A record with sequence Arrival→ ER→ Floor→
Floor → ICU is treated as Arrival → ER → Floor → ICU.
This aggregation option can be turned on or off as needed.

2) Visualization – Once the tree of sequences is created, it
can be visualized into the LifeFlow display. Each node of
the tree is represented with a color-coded event bar, match-
ing the color of the event type. The height of a bar is deter-
mined by the number of records in that node proportionally
to the total number of records. E.g., the red node contains
two out of four records so the height of its corresponding
event bar is 50% of the total height. The horizontal gap be-
tween a bar (e.g. pink bar) and its parent (the blue bar on its
left) is proportional to the mean time between the two events
(blue→ pink). By default, the representative time gap is the
mean, but users can select other metrics, such as the median.

The LifeFlow display is scalable because it does not require
additional space for a larger number of records. Users can
display hundreds of records or millions of records using the
same amount of screen space.

RELATED WORK
Temporal Data Visualization
Single-Record Visualization – There has been a long history
of visualizing event sequences. Many systems were designed
for analyzing a single record [10, 14, 18, 26, 4, 2]. The most
common approach is to use a timeline-based representation.
Events are placed on a horizontal timeline according to their
time. One record consists of multiple rows, one for each cat-
egory of events. Spiral timelines – in which angle represents
time interval (time of day, days of week, months, or years)–
were inspired by the cyclic nature of how we organize time
and used to reveal periodic patterns in time series [8, 16, 37].

Visualization of multiple records in parallel – To support the
analysis of multiple records, a common technique is to stack
instances of single-record visualizations. [11, 33]. Weber et
al.’s spiral-based visualization [37] also supports multiple
records by showing each record as one ring. Those tools
typically provide searching and filtering mechanisms [35,
39, 34]. In the context of our case study, users of those
tools could find patients who were transferred with a spe-
cific known sequence, or find patients who were admitted to
the ICU at least once, but could not find out what the com-
mon sequences are or spot anomalous sequences. Some tools
allowed the users to organize records into hierarchy [7] or
groups [25]. Timeline Tree [7] is a tree with timelines at the
leaf nodes. Progressive Multiples [25] allow users to man-
ually place multiple timelines in folders. However, unlike
LifeFlow which provides one visual abstraction that repre-
sents multiple timelines, they do not provide any abstraction.

Visualization of combined records – To overcome the scala-
bility issue and provide an overview, some systems provide
an abstraction of multiple records [15, 3, 36]. Continuum [3]
shows a histogram of frequency of events over time while
LifeLines2 [36] has a temporal summary, which is a stacked
bar chart that shows the distribution of event types within
each period of time. These methods can provide the distribu-
tion of events by time, which answers the questions related to
the distribution, such as which type of event occurred most
frequently in January 2007 or which type of event usually
occurred within the first week after patients arrived at the
hospital? However, the event sequences within the records
are obscured and thus, it cannot answer questions related to
sequences, such as where did the patient usually go directly
after arrival or what is the most common transfer sequence?

Hierarchy Visualization
In LifeFlow, all records are first grouped into a hierarchical
structure called a tree of sequences. Many visualizations can
display hierarchical structures [32]. The most common way
is to display a node-link layout in 2D [5, 38, 27], or 3D [28]
or hyperbolic space [21, 24]. Space-filling techniques use
implicit containment and geometry features to present a hi-
erarchy [17, 20, 12, 6, 32]. Icicle tree [20, 12, 6], also called
Icicle plot, displays hierarchical data as stacked rectangles,
usually ordered from top to bottom. This visualization di-
rectly inspired our LifeFlow design (Figure 2). The root
takes the entire width. Each child node is placed under its
parent with the width proportional to the percentage it con-
sumes relative to its siblings. Using these methods, the se-
quences of events can be represented. However, the length of
time between events – which is important in many analyses
– is not represented. A phylogenetic tree [22] is a branch-
ing diagram showing the inferred evolutionary relationships
among various biological species. The edge lengths in some
phylogenetic trees may be interpreted as time estimates, but
each node in the tree represents only one species while each
node in LifeFlow represents multiple records of event se-
quences. VizTree [23] uses a tree-based representation to de-
tect patterns within a very long event sequences (like EKGs).
For example, for a record that contains sequence of events
“A,B,A,B,B,B”, VizTree creates a prefix tree of all subse-
quences (ABA, BAB, ABB, ...), then displays the prefix
tree using edge thickness to represent frequency, which can
reveal frequent and rare subsequences. As with other tree-
based approaches, VizTree also ignores the duration of the
time gap between events. Also, VizTree focused on analyz-
ing event sequences of length n in a single very long record
rather than providing an overview of millions of records.

In summary, LifeFlow represents a new and powerful ap-
proach to aggregate event sequences, much like a compact
Table of Contents is a powerful addition when there is only
a search box for a full length book. LifeFlow allows users to
see not only all possible sequences but also their prevalence
and summarize information about the time gap between events,
which is not supported by other visualizations.

LIFEFLOW INTERACTIVE FEATURES
Our working prototype of LifeFlow (Figure 3) includes the
following interaction features to support exploration:
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Figure 3. This screenshot of LifeFlow shows a random sample of patient transfer data based on real de-identified data (as used in the user study).
The way to read sequences in LifeFlow is to read the colors (using the legend). For example the sequence (A) in the figure is Arrival (blue), Emergency
(pink), ICU (red), Floor (green) and Discharge-Alive (light blue). The horizontal gap between colored bars represents the average time between
events, showing that it takes approximately 4 days on average for patients to go from ICU to the floor in that (A) sequence . The height of the bars
is proportional to the number of records, therefore showing the relative frequency of that sequence. The bars (e.g. Floor and Die) with same parent
(Arrival→ Emergency→ ICU) are ordered by frequency (tallest bar on top), as you can see that Floor (green bar) is placed above Die (black bar). To
find the most frequent pattern is to find the tallest bar at the end. Here it shows that the most common sequence is Arrival, Emergency then Discharge
alive. Surprisingly, two patients were reported dead before transferred to ICU which indicates a data entry problem. (Please note that this is only a
sample dataset and does not reflect the real performance of any hospital.)

Figure 4. Here LifeFlow is used side-by-side with LifeLines2 so that individual records can be reviewed by scrolling. When a user clicks on a sequence
in LifeFlow, the sequence is highlighted and all corresponding records are also highlighted and moved to the top in LifeLines2, allowing the user to
examine them in more details.
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Figure 5. a) LifeFlow with alignment – The same data with Figure 3 was aligned by ICU. The user can see that the patients were most likely to die
after a transfer to the ICU than any other sequence. (Please note that this is a random sample dataset and does not reflect the real performance of
any hospital.) b) LifeFlow with traffic incidents data – The incidents are separated by agencies (A-G). Only “Incident Notification” and “Return to
normal (aggregated)” events are shown. Other events are hidden. The agencies are sorted by a simple measure of agency performance (average time
from the beginning to the end). Agency C seems to be the fastest to clear its incidents, followed by E, A, H, D, F, B and finally G.

1) Zooming – The horizontal zoom changes time granularity
while the vertical zoom allows the users to see rare sequences
in more detail.
2) Tooltip – When users move the mouse cursor over an event
bar (Figure 3), a tooltip displays the full sequence of events,
and some statistical information, such as mean time between
events, standard deviation, etc.
3) Overlay distribution of gap between events – Hovering
the cursor over a bar displays the distribution of time gaps
overlaid on the Lifeflow. Figure 5a shows the distribution of
length of stay in the ICU before the patients died.
4) Sort – Users can sort the sequences with the same parent
in different ways: by the number of records that the bars rep-
resent (tallest bar on top) (Figure 3) or by the average time
to previous event (shortest time on top) (Figure 5b). The de-
fault is to sort by number of records.
5) Integration with LifeLines2 – LifeFlow can function as
a standalone tool but combining with LifeLines2 facilitates
exploration by allowing users to review individual records as
details on demand [29]. By clicking on any event bar, users
select all records that are included in that bar (Figure 4). Se-
lected records are highlighted in the LifeLines2 view. Users
can then choose to keep only the selection and remove every-
thing else, or vice versa. In a symmetrical fashion, selecting
a record in the LifeLines2 view highlights the pattern con-
tained in that record in the LifeFlow view, allowing the users
to find other records that contain the same sequence.
6) Align – Inspired by LifeLines2, LifeFlow allows users to
choose any event type to be the alignment point. This sup-
ports tasks such as “what happened to the patients before and
after they went to the ICU?” By default, the alignment point
is not specified, so all records are aligned by the first event
in the record. When users chose an alignment event, two

trees of sequences are built: one tree for the sequences be-
fore the alignment (from right to left) and another tree for the
sequences after the alignment (from left to right). Figure 5a
shows LifeFlow with alignment. The vertical dashed line
marks the aligned event. The left and right side are what hap-
pened before and after the reference point, respectively. Now
one can see that in this dataset, patients most often come to
ICU from Floor. After that, they often died.
7) Including non-temporal attributes – Records usually also
contain non-temporal attributes, e.g., patient’s gender. While
LifeFlow does not focus on displaying those attributes, it
allows users to select a non-temporal attribute and groups
records by that attribute before the sequences are aggregated.
LifeFlow in Figure 5b groups traffic incident records by agency
before aggregating by sequence, therefore allowing simple
comparison between agencies.
8) Include/Exclude event types – Using the legend on the left
side of the screen users can check or uncheck event types
to include or exclude them from the sequences. This simple
functionality allows powerful transformations of the display
to answer questions. E.g., in Figure 5b, the user unchecked
all event types except “Incident Notification” and “Return to
normal”, i.e. the beginning and end of incidents. All other
events that could occur during an incident are ignored and
LifeFlow regenerated to show only those two event types, al-
lowing rapid comparisons between the agencies in terms of
number of incidents and average time to clear the incidents.
9) Displaying all event bars with equal height – When data
includes a large number of sequences, it could be difficult to
review the rare sequences because they are represented with
very thin bars. This option displays all leaf nodes using equal
height regardless of the number of records, makes it easier to
review and select rare sequences.
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EVALUATION
We reported two case studies in two different domains fol-
lowing the Multi-Dimensional In-Depth Long-Term Case Stud-
ies (MILC) [31] approach. The two studies were done in
collaboration with the physicians at the Washington Hospital
Center and the Center for Advanced Transportation Technol-
ogy Laboratory at the University of Maryland, respectively.
In addition, we conducted a user study with 10 participants.

CASE STUDY I: MEDICAL DOMAIN
As discussed in the beginning of the paper, the design of
LifeFlow was motivated by the patient transfer case study.
As we developed LifeFlow we continued to work with Dr.
Phuong Ho to analyze more patient transfer data, and in more
details. We had a 1-2 hours meeting with him approximately
every two weeks for 3 months. Before the meeting he pro-
vided us with the data that he wanted to analyze, and a few
initial questions. We converted the data and during the meet-
ing sat down and looked at the data together. After discussing
the questions sent in advance, he would come up with addi-
tional questions and gave feedback about the user interface,
therefore closely guiding our development. We summarized
the results as follows:

First impression – The first time we showed LifeFlow to Dr.
Ho using patient transfer data, he was immediately enthusi-
astic and confident that the tool would be useful for look-
ing at all patients who came to the hospital and in particular
the emergency room (ER). He knew that many people would
want to see the typical flow of the patients and the trans-
fer time between rooms. In another meeting, we received
additional feedback from the director of the Emergency De-
partment. Finding the bounce back patients visually in the
display elicited comments such as “Oh! This is very cool!”
and led to a discussion of the possibilities of using this tool
to analyze hospital data in the long run.

Understanding the big picture – One of the datasets we re-
ceived included all 7,041 patients who came to the ER in
Jan 2010. Each record contains room assignments, time that
the patient was assigned to each room, and how he/she was
discharged from the hospital: dead, alive, leave without be-
ing seen (LWBS) and absence without leave (AWOL). We
preprocessed the data by grouping the room numbers (e.g.
ER15-P, 2G06-P) into types of room (ER, ICU, IMC, Floor).
In the meeting, we showed LifeFlow and Dr. Ho could re-
view the flow of patients in the hospital. The first thing that
he noticed was the most common pattern, Arrival→ ER→
Discharge-Alive. 4,591 (65.20%) of the patients were not
admitted to the hospital (discharged directly from the ER).
This is regular and consistent with what he had expected be-
cause most of the patients who visited the ER were not in
severe condition and could leave immediately after they re-
ceived their treatment, so we removed these 4,591 patients
from the visualization to analyze other patterns. The second
most common pattern, Arrival→ ER→ Floor→ Discharge-
Alive (1,016 patients, 14.43%), now became more obvious.
We decided to remove it too because it was also regular. We
followed the same strategy, selecting regular common se-
quences and removing them from the visualization to detect
the uncommon cases that might be irregular. Our partner no-

ticed that 193 patients (2.74%) left without being seen while
38 patients (0.54%) were absence without leave. These two
numbers could be compared with the hospital standard for
quality control. Then, our partner saw two patterns that he
was interested in (Arrival → ER → Floor → IMC and Ar-
rival → ER → Floor → ICU). These patterns correspond
to another quality control metric called step ups, which oc-
curs when the patients were admitted to a lower level of care
(Floor), but later transferred to a higher level of care (IMC or
ICU). Dr. Ho could quickly see from the visualization that
the patients were transferred from Floor to ICU faster than
Floor to IMC on average so he used the tooltip to see the dis-
tribution. He captured screenshots to compare with practices
reported in the research literature, but also commented that
the average time seemed quite good from his knowledge.

We also demonstrated the alignment and used it to analyze
the transfer flow before and after the patients were admitted
to the ICU. From the total 181 ICU patients, 85 (46.96%)
of them were transferred from the ER and 119 (66.75%) of
them were transferred to the Floor after that. However, 6
patients were transferred back from Floor to ICU (bounce
backs). We saw from the distribution that one patient was
transferred back in less than a day. Dr. Ho requested to
see these 6 patients in more details so we clicked on the
bar, which highlighted these patients in LifeLines2 view and
noted down these patients’ ID. In addition, he also noticed
some anomalous sequences, e.g. a few patient records showed
a transfer to ICU after being discharged dead, pointing to
obvious error in data entry or at least reflecting the possi-
ble delays in data entry. Although we did not identify other
surprising transfers (which on the other hand, reflected good
quality of care), this still showed that the tool is useful for
monitoring the patient transfer flow. We also received addi-
tional questions from Dr. Ho after the meeting. Some ques-
tions included clear request for alignments (“I want to see
this in LifeFlow. Specifically I want to see a view that shows
me where all my [ICU] patients are coming from.”) indicat-
ing that he could understand what the tool is capable of and
how to use it for his task.

Measuring the transfer time – Because LifeFlow can easily
calculate an average time, Dr. Ho formulated many queries
asking about average time, such as “Of patients who came
to the ICU from the ER, what was the average time it took
for transfer of the patient to the ICU? More specifically, if
they went to the ICU, how long did it take from the time
they had arrived at the ER to get to the ICU? Same question
for IMC...” or “For all the quarters, Jan-Mar 09, Apr-Jun 09,
Jul-sep 09, Oct- Dec 09 and Jan-Mar 10, I want average time
from ER to 2G [which is a specific type of ICU room].”

Comparison – Another use of LifeFlow was to compare dif-
ferent data sets by inspecting the difference between two
side-by-side LifeFlow visualizations. Dr. Ho had a hypoth-
esis about whether IMC patients were transferred faster dur-
ing the day (7am-7pm) than during the night. We opened
the same dataset in two windows and filtered the records by
time-of-day filtering, making the two windows contain only
patients who arrived during the day and during the night, re-
spectively. We inspected the difference between the two vi-
sualizations but no significant difference was found. In an-
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other case, we compared patients who were admitted to the
IMC at least once in four quarters: Jan-Mar, Apr-Jun, Jul-
Sep and Oct-Dec 2008. We opened the four datasets in four
LifeFlow windows and noticed a difference in the patients
who were transferred from ER to the ICU. In the first, third
and fourth quarter, these patients were later transferred to
IMC and Floor, with majority were transferred to the IMC.
However, in the second quarter, all patients were later trans-
ferred to the IMC, suggesting further investigation whether
this occurred by chance or any particular reason.

Discussion
We found that our domain expert was able to understand
LifeFlow rapidly and that LifeFlow was useful to provide
an overview of the entire data set, and to compare and mea-
sure the transfer times. Once the data was loaded, he could
quickly see the big picture and find anomalies. Dr. Ho ex-
pressed that being able to formulate queries easily gave him
more time to look at the data and formulate new hypotheses
or think about other interesting questions. Although he might
have been able to answer of some of the questions in SQL, it
would be very difficult and error prone. He also mentioned
that LifeFlow would be very useful for long-term monitor-
ing and quality control because it provides a quick way to
inspect the data from the overview. Another researcher who
recently started a case study with us also gave this comment
on LifeFlow: “Statistical techniques for dealing with longi-
tudinal data generally focus on changes in continuous vari-
ables over time, and the problem of identifying patterns of
sequence and temporal spacing in categorical events is not
handled by standard techniques and software. This problem
arises a lot in analysis of health care data, and this tool opens
up a kind of study that just hasn’t been possible before.”

CASE STUDY II: TRANSPORTATION DOMAIN
To illustrate how LifeFlow is not in anyway limited to med-
ical applications, we describe a second case study currently
underway with the Center for Advanced Transportation Tech-
nology Lab (CATT Lab) at the University of Maryland [13].
We are using LifeFlow to examine a data set from the Na-
tional Cooperative Highway Research Program (NCHRP) that
includes 203,214 traffic incidents from 8 agencies. Each in-
cident record includes a sequence of incident management
events: Incident notification –when the agency is first noti-
fied of the incident, Incident Arrival –when the emergency
team arrives the scene, Lane Clearance –when the lanes are
opened, but the incident scene may be not completely cleared,
Incident cleared, Incident clearance, and Return to normal
–all denote the end of incidents. For ease of analysis, we ag-
gregated all three into the new event type Return to normal
(aggregated). A typical sequence should start with “Inci-
dent Notification” and finish with “Return to normal (aggre-
gated)”, with the possibility of having “Incident Arrival” and
“Lance Clearance” in between. In addition, the traffic inci-
dents data includes two attributes: the agency (represented
with a letter from A to H for anonymity) and the type of in-
cident (e.g. Disabled Vehicle, Fatal Accident, etc.)

Quantifying data quality issues – After loading the dataset in
LifeFlow, we immediately noticed that the Agency B con-

tains a sequence that was more than 110 years long with
6,712 incidents. Investigating further, we found that Agency
B reported the “Incident Arrival” of those incidents as Jan-
uary 1th 1900. Since this date is commonly used as the initial
date in computer systems, this suggested that the system the
Agency used to register this event might have used it as a
default value. Considering these incidents as corrupted data,
we removed all of them from the dataset. While it was easy
to spot this problem, such anomalies can often remain unde-
tected, and skew the results of even the simplest of analysis
such as calculating the mean time to clearance. Similarly,
we found and removed 48 incidents from Agency D that are
about 10 months long, in which the “Incident Arrival” occurs
before the “Incident Notification”.

The next thing we noticed from the data was that there were
many incidents that lasted exactly 24 hours, which seemed
unlikely. Using the Align, Rank and Filter operators, we
found that those 24-hours-long incidents have “Incident ar-
rival” events occur in the first hour of the day (e.g. 12:30AM
April 10 2009) and “Incident notification” events happened
in the last hour of the same day (e.g. 11:50PM April 10
2009). This observation seemed to suggest that there were
data entry problems with those incidents, indicating that the
operator failed to – or was not able to – record the correct
date of an event (e.g. 12:30AM Apr 11, 2009 as opposed to
12:30AM Apr 10, 2009). Similar errors were discovered for
paths that are about 12 hours long, in which case the errors
seem to be problems choosing between AM and PM in the
date. Those anomalies were found quite easily by the com-
puter scientist developer, who had no experience in trans-
portation data. Finding such errors using traditional tools
like SQL or manual analysis can be very difficult and time
consuming, and requires experienced analysts who would
suspect the existence of such errors.

Ranking the agencies’ performance – In this study, we used
the time from when the agencies were notified to the final
clearance of the incidents as a performance measure. The
time when the agency was notified can be indicated by the
“Incident Notification” event. In order to compare the agen-
cies performance, we first removed the inconsistent data (in-
cidents that do not start with “Incident Notification”), which
could be performed easily using the equal height overview
feature. After the steps above, the visualization of the data
can be seen in Figure 5b. Incidents are grouped by agencies.
We showed only two event types (“Incident Notification” (or-
ange) and “Return to Normal (Aggregated)” (blue)), so the
horizontal length of each agency’s path represents the aver-
age time from incident notification to final clearance, which
reflects the performance measure for that agency. We then
sorted the agencies according to the length of their paths, re-
sulting in the fastest agency (shortest path) on the top and the
slowest agency (longest path) in the bottom. From Figure 5b
we could see that Agency C was the fastest agency to clear
its incidents, taking about 5 minutes in average, while the
slowest one was Agency G with an average of about 2 hours
27 minutes. To investigate deeper into Agency C’s data, we
removed the data from other agencies and looked into the
different incident types reported. We found that most of the
incidents that Agency C reported are “Disabled Vehicles”
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which had in average a time to clear of about 1 minute. Look-
ing at the event distribution, we also found that a large num-
ber of the incidents reported “Clearance” immediately after
“Incident Notification”. This observation made us wonder if
there is any explanation for these immediate clearances, and
encouraged further analysis. In a similar fashion, we inves-
tigated Agency G, which seemed to be the slowest agency.
Agency G classified their incidents in only two types “Non-
ATMS Route Incident” and simply “Incident”. The “Inci-
dent” incidents had an average length of about 38 minutes,
which is a very good time compared to the other agencies.
However, the “Non-ATMS Route Incident” incidents took
in average 5 hours 14 minutes to clear. So we realized that
when using the average time of all incidents from Agency
G without considering the incident types, Agency G seemed
to be slower than other agencies. While in fact, Agency G
performed quite well for incident type “Incident”.

Discussion
Although our data analysis in the case study was limited and
preliminary, domain experts from the CATT Lab are con-
ducting a more formal analysis of the data. They reviewed
our work and stated that they wished LifeFlow was available
earlier on when they started their own analysis. They con-
firmed the existence of anomalies that we had found in the
data, and stated that their elimination was non-trivial when
using SQL because they had to expect the errors in advance
and be careful to exclude them from their analysis. How-
ever excluding all the possible erroneous sequences in a SQL
query would be very difficult. In the end, they needed to re-
view the results of SQL queries to ascertain that there were
no longer any errors. Without LifeFlow, this kind of review
and identification of unexpected sequences would be almost
impossible. Finally, they mentioned that LifeFlow would al-
low them to ask more questions faster, and probably richer
questions about the data. LifeFlow was also able to reveal
unexpected sequences that may have been overlooked, but
the tool also suggested that their prevalence is limited. We
believe that using LifeFlow can assist analysts explore large
datasets, such as the NCHRP traffic incident information, in
ways that would be very difficult using traditional tools and
might allow analysts to find richer results in less time.

USER STUDY
Our goal in this study was to investigate if LifeFlow was easy
to learn, and if users could use the interface efficiently to an-
swer representative questions. We also wanted to observe
what strategies users chose and what problems they would
encounter, and gather feedback and suggestions for further
improvement. We used a dataset that included 91 records
of hospital patient transfer (a subset of our real de-identified
data, which included known anomalies to see if participants
could find them). Because medical professionals have very
little availability, are hard to recruit for a user study, and the
data used in the study is simple enough to be understood by
students, the participants we used for this study were gradu-
ate students (5 male and 5 female) from various departments
of the University of Maryland. None of them was a member
of the LifeFlow development team.

Procedure, Tasks and Results
Training consisted of a 12-minute video and five training
questions. When the participants could answer the questions
correctly, they could start the study tasks. The order of the
tasks was randomly permuted across participants. The tasks
were representative of the questions proposed by our domain
experts during the case study, and designed to test the us-
ability of the main interaction techniques of LifeFlow. We
encouraged participants to think aloud while performing the
tasks. For the first 14 tasks, observers recorded completion
time and errors, if any. Because the participants needed time
to understand the tasks, we gave them time to read the task
description before starting the timer.

Tasks 1-9: Simple Features – The first 9 tasks required un-
derstanding the LifeFlow display and using simple interac-
tive features such as tooltips or zooming. The tasks included
questions about frequent sequences (e.g. “Where usually did
the patient go after they arrived?”, “What is the most com-
mon pattern?”), number of records in specified sequences
(e.g. “How many patients went from arrival directly into
ICU?”), time between events (e.g. “How long is the average
time from ER to ICU?”) and comparison between sequences
(e.g. “After arriving to the ER, patients might be transferred
to Floor or the ICU. Were the patients transferred from the
ER to the ICU faster than from the ER to the Floor?”).

Task 10-14: Advanced Features – Four tasks required using
advanced features, such as alignment or using LifeFlow and
LifeLines2 in combination (e.g. “Usually, where were the
patients before they were admitted to the ICU for the first
time?”, “Retrieve the IDs of all patients with this transfer
pattern.” or ”How many patients had the same transfer pat-
tern as patient no.10010010?”).

Results for tasks 1-14: The participants were able to perform
the simple and advanced tasks quickly. They were able to
use the interactions to adjust the visualization and retrieve
information that was not presented in the initial view. The
average ± SD completion time for the simple and advanced
tasks were 14.9 ± 12.7 seconds and 15.8 ± 12.5 seconds,
respectively. Please note that the participants were also nar-
rating their actions while performing the tasks, which might
have slowed them down. Only one participant made one mis-
take in a complex task: while retrieving the IDs of all pa-
tients who were transferred with a particularly long sequence
she misread a color and could not find the correct sequence.
However, she knew what she needed to do to retrieve the IDs
after the sequence was found.

Task 15: Overall analysis and finding anomalies – In the
last task, we asked the participants to imagine themselves as
a manager who was trying to evaluate the performance of
the hospital. We gave them 10 minutes to find any surpris-
ing, exceptional or impossible sequences that might indicate
a problem in data entry or in hospital procedures, and ex-
plain why they thought it was a problem. We told them to
report as many insights as they could in 10 minutes. We had
planted three (realistic) data anomalies: 1) A few patients
who died before being transferred to ICU. 2) Patients who
bounce back and forth between the ICU and Floor several
times. 3) Patients who stayed in the Floor for 3 months.
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Results: Eight out of ten participants were able to detect all
three anomalies. Two participants reported only the first two
anomalies, but when we directed their attention towards the
third anomaly, they explained that they had noticed it but did
not think it was abnormal because some patients (e.g., cancer
patients) might stay in the hospital for a long time. In addi-
tion, they also provided insight about other sequences that
were possible, but undesirable from a manager’s perspec-
tive, such as there were many patients who died in the Floor.
They also reported surprising patterns, such as many patients
were discharged alive directly from the ICU. We also ob-
served the following common strategies: 1) Examine things
that catch the eye first. 2) Scan all sequences systematically
top to bottom – When they saw the normal sequence, e.g.,
ICU to Floor, they noted that this is good and moved on to
the next sequence. 3) Align by each type of event 4) Hov-
ering over bars with the mouse to explore distribution and
detect outliers from the distribution 5) Check for more de-
tails in LifeLines2 – Although we did not display LifeLines2
at the beginning of this task, several participants opened it to
use the combined view. All participants used strategies 1-3
consecutively. Three participants also followed with strategy
4. Four participants followed with strategy 5.

Debriefing: During the debrief, typical comments included:
“The tool is easy to understand and easy to use.”, “very easy
to find common trends and uncommon sequences”, “The align-
ment is very useful.”, “In LifeFlow, it is easier to see the
high level picture. With LifeLines2, you can check individ-
uals. LifeFlow provides a great summary of the big picture.”
Common suggestions for improvement included increasing
the bar width to make it easier to select and reorganizing the
tooltip to make it more readable. Two participants also asked
to analyze the data from their own research with LifeFlow.

Summary
Results suggest that users can learn to use LifeFlow in a short
period of time and that LifeFlow’s overview of the data al-
lows them to understand patterns and find anomalies. There
were several common strategies used when performing data
analysis but not every participant used all strategies, which
indicated the need for a framework to support data analysis.

CONCLUSIONS AND FUTURE WORK
Analyzing large numbers of event sequences is an important
and challenging task. We introduced a new scalable visual-
ization called LifeFlow that provides an overview of event
sequences to support users’ exploration, and reported on two
case studies and one user study. One case study was con-
ducted with the physicians whose questions motivated our
research. The feedback from the physician was very posi-
tive. They could see clearly how this tool could be used for
quality assurance in the hospital. Also, our physician part-
ner spent less time figuring out how to specify queries and
more time thinking about other interesting questions. An-
other case study was conducted with traffic incidents data
to demonstrate the generality of the approach goes well be-
yond the medical domain. We were able to eliminate many
errors in the data and compare different agencies’ perfor-
mance, thereby generating positive feedback from the do-

main experts. Finally, we report on a user study with ten
participants which confirmed that even novice users with 15
minutes of training were able to learn to use LifeFlow and
rapidly answer questions about the prevalence of interest-
ing sequences, find anomalies, and gain significant insight
from the data. We believe that LifeFlow can be applied to
many other fields, where event sequences are the main focus,
such as student progress analysis, usability study or web log
analysis, and human activities log analysis in general. The
next step of our research will focus on creating a framework
to guide the data analysis, supporting comparison between
datasets, integration with searching and filtering and includ-
ing new interaction techniques.
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