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Abstract Dynamic query interfaces (DQIs) are a recently developed
database access mechanism that provides continuous real-time feedback to
the user during query formulation. Previous work shows that DQIs are
an elegant and powerful interface to small databases. Unfortunately, when
applied to large databases, previous DQI algorithms slow to a crawl. We
present a new incremental approach to DQI algorithms and display updates
that works well with large databases, both in theory and in practice.

Keywords Data Structure, Algorithm, Database, User Interface, In-
formation Visualization, Direct Manipulation, and Dynamic Query.

1 Dynamic Querying

Dynamic query interfaces (DQIs) are a recently developed mech-
anism for specifying queries and visualizing their results [1, 2, 5,
6, 7, 9, 8, 12, 14]. Unlike textual query languages such as SQL,
DQIs are graphical. A great advantage of DQIs is that they provide
continuous feedback to the user as the query is being formulated.
Experiments have shown that querying with DQIs is faster, easier,
more pleasant, and less error-prone than with other querying in-
terfaces [2, 14]. A sample DQI is presented in Figure 1 (created
by [8]).

Queries are made using widgets, such as range sliders (for con-
tinuous data attributes), alphanumeric sliders (for textual attributes),
toggles (for binary attributes), and check boxes (for discrete multi-
valued attributes), to specify each attribute (dimension) of the data.
Output is provided via a starfield display (a 2-dimensional projec-
tion of the set of hits), bars (such as a preview bar that displays the
number of hits), and charts (which provide other aggregate infor-
mation). The widgets are tightly coupled: as the hit set varies all the
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Figure 1: Spotfire: sample DQI (www.ivee.com). The user speci-
fies a query using the widgets along the left, bottom, and right of the
display. The hit set for the current query is displayed as a starfield
on the left. This example does not contain a bar giving aggregate
information about the database but the hit set size is shown as a
count at the bottom.

widgets are updated to show the hit set’s bounding rectangle, so the
widgets provide a limited form of output as well. If desired, we can
even display a histogram on each widget to show the distribution
of data in its dimension. The user may click on an individual point
on the starfield for “details on demand”.

Range sliders are used to manipulate continuous attributes. See
Figure 2 for a sample range slider. A range slider contains a pair of
arrows, one at each end. The user selects a range slider by clicking
on it, and the user adjusts the range by dragging either arrow with
the mouse. As the range is being adjusted, the starfield, bars, and
charts are updated. Histograms and states of the other widgets can
also be updated. Thus, for each tiny increment of the range slider,
much information must be computed rapidly.



Figure 2: A sample range slider. By moving the arrows, the user
specifies a range, which is represented by the white rectangle. The
numbers above the arrows give the current range. The numbers
on the far ends of the range slider are the extreme values that the
attribute can take.

Toggles allow the user to specify a binary attribute of the data.
On the display they look like boxes. Internally they can be imple-
mented directly without much trouble or treated as a nearly trivial
special case of range sliders. List boxes, radio buttons, and various
other discrete widgets can be handled with similar ease.

Alphanumeric sliders allow the user to specify a range of strings.
Although our auxiliary data structures apply to them as well, the
fine granularity of alphanumeric data seems to necessitate additional
implementation ideas that are best described in a separate paper.

We propose a new approach to DQI algorithms that can handle
larger databases than previous implementations. This paper ex-
pands our previous note [13] by providing a detailed explanation
and evaluation of our DQI algorithms. We present our approach
in general in Section 2. We give a detailed explanation of the data
structures and algorithms in Section 3. We analyze the complexity
of our algorithm in Section 4. We evaluate our approach experi-
mentally in Section 5. We state our conclusions and future work in
Sections 6 and 7.

2 The Incremental Approach

In DQIs queries are formed in an incremental fashion. For exam-
ple: to set a range on a slider, the user drags the two arrows of
the slider to desired positions on the display. This enables the user
to visualize intermediate results until a desired final set of posi-
tions is reached. Also, a query can be formed via a conjunction
(or disjunction) of constraints on more than one or two attributes.
This also produces numerous intermediate results to be displayed.
Therefore, we chose the incremental query formulation paradigm
in our designs for algorithms and data structures for DQIs.

The incremental approach gains its efficiency from the follow-
ing innovations:

Active subset We define an “active” subset of the database, of
limited size, which we store in main memory. (While in principle
the size of main memory may seem like a severe limitation, in
practice DQI algorithms seem to be limited more by time than by
space).

Auxiliary data structures We augment the active subset
with data structures that facilitate continuous querying (users can
tolerate a response time of about 0.1 seconds for continuous opera-
tions [1]).

Reprocessing The auxiliary data structures change only when
the user clicks on a widget. After such an action the user will
accept a delay of approximately 1 second or less, during which we
reconstruct the auxiliary data structures.

Incremental display Slight changes in the query tend to
cause only slight changes in the output. By computing and display-
ing the difference, we can update the display continuously.

We envision using the DQI algorithms in tandem with a query
previewer [3] that allows the user to browse a huge database and
select a manageably small subset to scan. Once the user selects
such a subset, the query previewer passes its bounding rectangle
to the DQI, which then takes control. The bounding rectangle for
the active subset determines the extreme values for each attribute.
Therefore, the query preview approach can also be considered as an
application of the incremental querying paradigm (in a more broad
sense). If, at some later time, the user wants to look outside the
active subset, then the simplest solution is for the DQI to return
control to the query previewer. This will be considered in a future
paper on the interaction between the DQI and the query previewer.
The data structures and algorithms are given in the following section
with an example on range sliders.

3 Data Structures and Algorithms

Our DQI algorithms perform three major operations: setup, selec-
tion, and querying.

Setup occurs when the query previewer passes control to the
DQI. During setup, the widgets, starfield display, bars, and charts
are initially drawn on the display. The DQI reads the active subset.
In addition, it makes a copy of the active subset and re-scales
each attribute to the range �1� p� where p is the number of pixels
in the attribute’s range slider. This step is important because we
need this re-scaled information frequently. Because setup occurs
infrequently, we can allow several seconds for it.

Selection occurs when the user clicks on a range slider. Dur-
ing selection, the algorithm computes the auxiliary data structures,
which depend on the currently selected attribute and the current
ranges for the other attributes. Various experiments with user in-
terfaces show that we must respond to the mouse click in about 1
second in order not to annoy the user. At the cost of a factor of
2 in memory, we could precompute the auxiliary data structures
whenever the mouse is moved close to a new range slider. Using
somewhatmore memory, we could steal cycles from the query oper-
ation in order to precompute the auxiliary data structures for several
sliders. Thus 1 second may be an overly conservative bound on the
time for selection.

Querying occurs continuously as the user drags the mouse to
update the selected range slider. During querying, the algorithm
recomputes the hit set and updates the output on the display. For
the purpose of timing, we say that a single query occurs each time
the DQI detects a change in the position of the mouse on the range
slider. Experiments show that DQIs must process each query in
about 0.1 seconds in order to give a continuous response [1].

During the selection operation, the DQI computes the maximum
hit set, which is the hit set determined by the extreme values for
the selected attribute and the current ranges for the other attributes.
Then it partitions the maximum hit set into p buckets, one for each
user-specifiable value for the current attribute. This is essentially a
linear time counting sort of the maximum hit set. We store the size
of each bucket and all left-to-right partial sums of these sizes (an
example range slider with bucket information included is given in
Figure 3).
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Figure 3: A sample range slider with bucket information. This
example shows 10 records distributed on the range slider sorted in
ascending order for the related attribute. The arrows from the range
slider to the hit set show the related positions in the sorted maximum
hit set that each discrete pixel position of the range slider maps to
where the numbers in this hit set give the values of the records for
that attribute represented by the slider. The lower array of boxes
represents the partial sums of counts for a given pixel position of
the range slider. This example contains only 7 hypothetical pixels
for simplicity.

In selection, we also compute the information that facilitates
computation of histograms and tight coupling of range sliders, i.e.,
the redisplay of all slider ranges when any range is changed. To
achieve this goal a two dimensional array for each slider is kept
(i.e., size p2, shown in Figure 4).

Thus, any time the range slider is updated, even by a large
number of pixels (as might happen if the user moves the mouse
extremely fast), we can determine the number of hits in constant
time. We can also determine ranges for the other sliders in constant
time per slider, and histograms for the other sliders in constant time
per point. Changes to the display are determined by scanning the
buckets between the older attribute value and the new one. The
display is updated in time that is linear in the number of changes.

If the user changes the axis parameters for the starfield display,
then the hits are redisplayed (projected on the new pair of coordi-
nates) but none of the internal data structures is changed. The only
thing that is updated is the starfield information.

The starfield information is equivalent to a two dimensional
“dirty-pixel” array where for each starfield pixel we keep a count.
Whenever a pixel count reaches zero that pixel color is set to the
background color (and visa versa i.e., if it was zero and becomes
a positive integer then we plot that pixel on the starfield display
using the foreground color). Programmers can use these counts to
give another form of histogram information to the user. Also, they
can immediately find the necessary pixels on the starfield display
that must be updated (i.e., only the pixel positions where the counts
vary).
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Figure 4: A table containing the histogram and the tight coupling
information. This figure uses the same data and example as Figure 3.
Each box in the square holds a count. The user sets the range for
attribute 1. For a given specified range of attribute 1 we can find
the valid range for attribute 2 by projecting the hit set’s bounding
rectangle onto attribute 2. Each row is a prefix sum of counts from
left to right. So if we subtract column j from column i we can use
the resulting difference array to find the valid range for attribute 2.
The highest nonzero row (k) and the lowest nonzero row (m) give
the valid range for attribute 2. Note that the histogram information
for attribute 2 is just the difference array.

4 Theoretical Complexity

Let r denote the number of records in the active subset, a the
number of attributes, and b the number of bytes needed to store the
value of a single attribute. Let p denote the length in pixels of each
range slider, f the area in pixels of the starfield, and u the average
number of pixels that need to be updated in the starfield display per
query (this number depends in a nontrivial way on the size of the
starfield, the velocity of the range slider, and the clustering of data
in the active subset). Let m denote the number of records in the
maximum hit set.

The active subset occupies r � a � b bytes. The rescaled active
subset occupies O�r � a� bytes. The bucket partition also occupies
O�r�a� bytes. The data structures for tight coupling occupyO�a�p�
bytes. The data structures for range histograms occupy O�a � p2�
bytes. The starfield occupies f bytes.

Setup takes time O�r � a � b�.
There are four components to the time for selection. Determin-

ing the maximum hit set takes time O�r �a�. Sorting the maximum
hit set takes time O�m� (there is no log factor becausewe discretize
the data). Computing the auxiliary data structures for tight coupling
takes time O�a � p�m � a�. Computing the auxiliary data struc-
tures for histograms takes time O�a � p2 �m � a�. Thus, the total
time for selection is O�a � �r �m� p2�� � O�a � �r � p2��.

There are three components to the time for querying. Tight
coupling takes time O�a�. Computing histograms takes time O�a �

p�. Updating the starfield takes time O�u�. Thus the total time for
querying is O�a � p� u�.



5 Experiments

Preliminary experiments show that the incremental approach can
deal with an active subset consisting of 100,000 records with 10
attributes each [13]. In comparison, the pioneering work in the
area, the Film Finder program [1], could handle a databaseof 10,000
records with 10 attributes, and some of the standard data structures
analyzed in [10] and tested in [11] demonstrated scalability up to
20,000 records with 10 attributes.

The following subsections describe the experimentation on an
implementation made by using our methods and show the results.
First, we describe the implementations and the environment for the
experiments. The experimentation method and the results are pre-
sented next. After this we show the derivation of the experimental
run time behavior (complexities) obtained from the experiments.
Then we test the validity of these experimental complexities and
finally state some conclusions.

5.1 Experimentation Environment
We implemented a sample DQI using range sliders. The interface
consisted of a starfield display, a preview bar (to show aggregate
information about the query that is being formed), and a number
of range sliders depending on the number of attributes in the input
dataset. The starfield display and the points in the starfield display
could have variable sizes. Also the range slider sizes could vary.

We used a SUN SPARC Station 5 with 32MB of RAM that runs
a standard UNIX operating system for our experiments. Motif and
C were used in our implementations.

We timed the setup, selection, and querying separately by con-
sidering CPU time spent for each operation (to avoid defects that
might come from a multiuser environment). File read, data structure
setup, and similar sub-setup and sub-selection times were also mea-
sured. Also all the experiments were repeated without a preview
bar and a starfield display to measure the querying time (without
giving any visual output to the user, this is the “pure” querying
time).

We varied the total number of attributes, the total number of
records, the starfield size, the point sizes on the starfield, the range
slider sizes, and the jump sizes (the displacements, in pixels, of a
single side of a range slider between consecutive queries). The ex-
periments were controlled by a batch process. This was necessary
to get accurate timings using exact jump sizes. We generated ran-
dom numbers according to a uniform distribution for our datasets
in our experiments. This was also necessary because the starfield
display has its slowest performance when there are many pixels to
be updated on the display. To make a worst case analysis, we tried
to reduce the number of overlaps on the display. Although this
might eliminate some of the computations for updating the over-
lapping points, it increases the starfield update times which is more
expensive than the count updates.

We considered the worst case that might occur in a single se-
lection operation. This occurs when m is equal to r that might
not occur very frequently in real applications. So our experiments
show some over-estimated times for querying, selection, and setup.
In real-life applications we expect to observe better performances
from our experiments.

5.2 Experiments and Results
We ran 7200 experiments to assess the performance of our imple-
mentations. 3600 of them ran with the starfield display and the
preview bar enabled and the other 3600 ran with them disabled.
The following values were used in our experiments:

Number of attributes (a)
2, 4, 6, 8, or 10

Starfield size (f )
4002, 5002, or 6002 pixels

Point size (d)
12, 32, 52, or 72 pixels

Range slider size (p)
150, 200, or 250 pixels

Dataset size (r)
10� 000, 25�000, 50�000, 75�000, or 100� 000 records

Jump size/range slider size (j�p)
1�50, 1�25, 1�10, or 1�5

In the first 3600 experiments we measured the time to update
the internal data structures (without any user interface updates). In
general we observed that the “pure” querying time is no more than
20 milliseconds (average of 10 milliseconds). This was negligible,
with respect to the starfield display times obtained, especially when
the number of records got larger (with a starfield display that does
not use our methods, querying time becomes even less significant
with respect to the update times for the starfield display). This
suggests that the starfield update times must be optimized first for
a faster DQI.

The second set of 3600 experiments were used to measure the
querying times including the starfield display update times. The
complexity analysis depends on these remaining 3600 experiments,
which we present in the following subsections (Figure 5).

5.3 Experimental Complexity
Let se denote the estimated setup time. Let so denote the setup
time observed from our experiments. In an ideal analysis we must
always observe an equality between the two times. Obviously
there are some errors in the experiments and in the formula itself
(due to neglecting some low-order terms). We ran a multiple linear
regressionon our experiments where jso�sej is minimized over all
the experiments. This is equivalent to finding the best constants for
se � A�B �r �a formula (again over all the experiments) whereA
andB are the constantsand r�a term is obtained from the theoretical
complexities given inOnotation in previous sections. The setup has
a constantA as we need to represent file open and close times spent
in the experiments. After the regression we obtainedA � 1�16 and
B � 0�0000177. Hence, se � 1�16� 0�0000177 � r � a.

We did a similar analysis with the selection times. Let Se
denote the estimated selection time. Let So denote the selection
time observed from our experiments. Therefore, we can get the
formula Se � B � r � a � C � a � p2. Selection does not have
a constant like A as we had in setup so A � 0. The regression
produced B � 0�00000121 and C � 0�00000116. Hence, Se �
0�00000121 � r � a� 0�00000116 � a � p2.

Finally, let Qe denote the estimated querying time. Let Qo

denote the querying time observed from our experiments. Again
using the theoretical complexities we can get Qe � A � B � a �
p � Cu. Due to initialization routines, we found the existence of
A appropriate in this formula (eventually it turned out to be a small
value). Unfortunately, the analysis for querying is not trivial, as we
have to find an estimate for u in terms of display size, point size,
and etc. We saw that the u term is directly proportional to the jump
size and the number of records needed to be updated on the starfield.
Since we paint more than one pixel per point (in general) the formula
counts the number of pixels that are updated. So our estimate for
u is r � j � d2�p where d2 is the number of pixels to be painted per
each point and j is the jump size. Hence,Qe � A�B �a � p�Cu
becomes Qe � A � B � a � p � C � r � j � d2�p for our case.
Similarly, the regression producedA � 0�00528,B � 0�0000157,
and C � 0�000000263. Hence, Qe � 0�00528� 0�0000157 � a �
p� 0�000000263 � r � j � d2�p.
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Figure 5: A subset of experiments (25 experiments out of 3600):
The starfield size is 5002 pixels, the range slider size is 200 pixels,
the point size is 52 pixels, and the jump size is 200 � 1�25 � 8
pixels (which forms the average case for our experiments). The
querying times given in this graph show that the average case for
our experiments is an order of magnitude faster than the ones ob-
served in the previous experiments with other data structures and
algorithms.

5.4 Evaluation
To evaluate the approach we used two methods. The first one is to
run the X2 test to assess the correlation between our experiments
and the theoretical terms. Then we ran another set of experiments to
see whether we can estimate the outcomes of these new experiments
with our old formulas (and hence with the old constants) or not.

The X2 test, for all of the three measurements (setup, querying,
selection), showed that the estimated values and the actual values
obtained from the experiments were highly correlated.

We ran 1000 new experiments and obtained the same times
with the similar methods used for the previous set of experiments
(the starfield display was always active in this set of experiments).
We had a random combination of the following values for our
experiments: point size varied between 12 to 102, jump size varied
from 1 to 50, display size varied from 3002 to 6002 (with range
sliders of size 250 pixels a user interface with a starfield of 6002

pixels nearly fills the display), and the slider sizes varied from
150 to 250. The only values that were fixed during these new set of
experiments (i.e., same values with the previous set of experiments)
were the dataset sizes and the attribute counts (as it is practically
impossible to generate all the possible (random) datasets (either in
terms of time or space) on the fly for these new set of experiments).
The differences between the estimates and the actual times were
obtained. The average deviation observed for setup time was 9�50
percent; for selection, 3�97 percent; for querying, 16�63 percent.

5.5 Discussion

Using the incremental approach we achieved better querying times
than previous implementations (that had standard data structures for
querying which were not specifically designed for DQIs). We also
consumed less memory as we created the data structures whenever
they were needed. The new approach enabled us to give preview
bar, histogram, and tight coupling information to the user without
making any additional queries or spending additional processing
times. The size of the main memory that is being used by the
implementations remained as a secondary problem. We saw that
there are problems in the selection times before we reached to the
memory limits of our architecture (more than 1 second generally
annoys the user). The selection times were mostly around 1 second.
Hence, memory still remained as a secondaryproblem for DQIs. As
r increases, terms that contain the r factor become more significant.
The starfield display times were significant for huge r’s and our
approach gains its power from the incremental starfield display
updates (but huge jumps in range sliders can still cause high display
update times).

The average deviation for the selection times was smaller than
we expected for the random set of experiments. The setup times
were also acceptable as the disk input caused fluctuations in setup
times. The querying time estimates were less accurate than we
expected but were again acceptable. The reason for this was the
high precision measurements that were made on a system that has
lower precision settings than the required ones.



6 Conclusions

The new incremental approach for queries and display updates in-
troduces a better way of dealing with large databases. Experiments
show that this approach is faster than previous approaches and can
deal with an order of magnitude of larger datasets (i.e., 100�000
records with 10 attributes). The querying time is dominated by
the starfield update time (also observed in [11, 13]). The incre-
mental approach enables faster display because only the difference
between consecutive queries is updated in the data structures and
on the starfield display.

7 Future Work

Our goal is to make another order of magnitude increase in the size
of the datasets that DQIs can deal with (1� 000�000 records with 10
attributes). We plan to:

� implement other widget types, e.g., alphanumeric sliders.

� try spatial data structures like k-D trees to see how they
effect the times for selection and querying. (As a general
non-worst-case rule of thumb, spatial data structures answer
range queries in time O�jHj1�1�a� where H is the set of hits
and a is the number of attributes in the input dataset. This
could be good for selection, because it is sub-linear. But it
could be bad for querying, because it is close to linear, and
prior work seems to confirm this doubt [10, 11, 13]. Instead,
we will use an incremental approach where we compute the
difference ΔH between consecutive hit sets,which in practice
should take time only O�jΔHj1�1�a�.)

� combine our DQIs with a query previewer [3] in order to
produce a new state of the art in interactive dynamic database
access.
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