
Incremental Data Structures and Algorithms for
Dynamic Query Interfaces*

Egemen Tanin t
U. Maryland

Richard Beigel*
U. Maryland and Yale

Ben Shneiderman§
U. Maryland

A b s t r a c t Dynamic query interfaces (DQIs) form
a recently developed method of database access that
provides continuous realtime feedback to the user
during the query formulation process. Previous
work shows that DQIs are elegant and powerful in-
terfaces to small databases. Unfortunately, when
applied to large databases, previous DQI algorithms
slow to a crawl. We present a new approach to DQI
algorithms that works well with large databases.

K e y w o r d s Data Structure, Algorithm, Database,
User Interface, Information Visualization, Direct Ma-
nipulation, Dynamic Query.

1 Our Innovations

We propose a new approach to dynamic query inter-
face (DQI) algorithms that can handle much larger
databases than previous implementations. Our ap-
proach gains its efficiency from the following inno-
vations:

A c t i v e s u b s e t We define an "active" subset of
the database, of limited size, which we store in main
memory. (While in principle the size of main mem-
ory may seem like a severe limitation, in practice
DQI algorithms seem to be limited more by time
than by space. Our current implementation han-
dles an active subset that is an order of magnitude

*This paper will be presented at the Workshop on New
Paradigms in Information Visualization and Manipulation,
Nov. '96. Address for authors: Human-Computer Inter-
action Laboratory, Dept. of Computer Science, University
of Maryland, College Park, MD 20742-3251. Research sup-
ported by NASA grant NAG 52895.

tegemen@cs.umd.edu, partially supported by NASA
grant NAG 52895.

tbeigel@cs.umd.edu, partially supported by NSF grants
CCR-8958528 and CCR-9415410 and by NASA grant NAG
52895. on sabbatical from Yale University until 8/1/97.

§ben.~cs.umd.edu, partially supported by NSF grant
EEC-9402384, also affiliated with the Center for Automa-
tion Research and the Institute for Systems Research.

larger than the databases that previous implemen-
tations could handle.)

A u x i l i a r y d a t a s t r u c t u r e s We augment the ac-
tive subset with data structures that facilitate con-
tinuous querying (users can tolerate a response time
of about 0.1 seconds for continuous operations).

R e p r o c e s s i n g The auxiliary data structures
change only when the user clicks on a widget. Af-
ter such an action the user can tolerate a delay of
approximately 1 second or less, during which we re-
construct the auxiliary data structures.

I n c r e m e n t a l d i s p l a y Slight changes in the query
tend to cause only slight changes in the output. By
computing and displaying the difference, we can up-
date the display continuously.

2 Background on Dynamic Queries

DQIs were developed recently by [1, 7, 8] as a
mechanism for visualizing multidimensional data.
DQIs are graphical (as opposed to textual languages
such as SQL) and provide continuous feedback to
the user as the query is formulated. Experiments
show that querying with DQIs is faster, easier,
more pleasant, and less error-prone than with other
database interfaces [8]. (See Figure 1 for a sample
DQI by [1]. Some demos are available from [3.4].)

Queries are made using widgets, such as range
sliders (for continuous data attributes), alphanu-
meric sliders (for textual attributes), toggles (for
binary attributes), and check boxes (for discrete
multi-valued attributes), to specify each at tr ibute
(dimension) of the data. Output is provided via a
starfield display (a 2-dimensional projection of the
set of hits), bars (such as a preview bar that dis-
plays the number of hits), and charts (which provide
other cumulative information). We perform tight
coupling among range sliders: as the hit set varies
all the range sliders are updated to show the hit

SIGMOD Record, Vol. 25, No. 4, December 1996 21

Figure 1: Film Finder [1]: a sample DQI. The large square is the starfield display. The widgets on the left,
bottom, and right are for querying. This example does not contain an explicit preview bar or chart.

100 120 200 220

Defined Range

Figure 2: A sample range slider. By moving the
arrows, the user specifies the range, which is repre-
sented by the white rectangle. The numbers above
the arrows give the current range. The numbers
on the far ends of the range slider are the extreme
values that the attribute can take.

set's bounding rectangle, so tile range sliders pro-
vide a limited form of output as well. If desired, we
can even display a histogram on each range slider
to show the distribution of data in its dimension.
Furthermore, the user may click on an individual
point in the starfield for details on demand. (See
Figure 2 for a sample range slider.)

A range slider contains a pair of arrows, one at
each end. The user selects a range slider by clicking
on it, and the user adjusts the range by dragging
either arrow with the mouse. As the range is ad-

justed, the starfield display, bars, and charts are up-
dated continuously. Ranges or histograms for other
range sliders are updated as well. Thus, for each
tiny increment of the range slider, much informa-
tion must be computed rapidly.

Toggles allow the user to specify a binary at-
tribute of the data. On the screen they look like
boxes. Internally they can be implemented directly
without much trouble or treated as a nearly trivial
special case of range sliders. List boxes and radio
buttons can be handled with similar ease. There is
no need to discuss them further in this paper.

Alphanumeric sliders allow the users to specify a
range of strings. Although our auxiliary data struc-
tures apply to them as well, the fine granularity of
alphanumeric data seems to necessitate additional
implementation ideas that are best described in a
separate paper.

3 Descript ion of the A lgo r i t hm

We envision using tile DQI algorithm in tandem
with a query previewer [2] that will allow the user
to browse a huge database and select a manageably
small subset to scan. Once the user selects such a
subset, the query previewer will pass its bounding

22 SIGMOD Record, Vol. 25, No. 4, December 1996

rectangle to the DQI, which will then take control.
The bounding rectangle for the active subset deter-
mines the extreme values for each attribute.

If, at some later time, the user wants to look out-
side the active subset, then the simplest solution
is for the DQI to return control to the query pre-
viewer. (However, a more sophisticated DQI might
allow the user to update the active subset without
using the query previewer. The DQI could query
the database about the size of the user's proposed
new active subset. If it is not too large, the DQI
could repeat the setup operation. This will be con-
sidered in a future paper on the interaction between
the DQI and the query previewer.)

Our DQI algorithm performs three major opera-
tions: setup, selection, and querying.

S e t u p occurs when the query previewer passes
control to the DQI. During setup, the widgets,
starfield display', bars. and charts are initially drawn
on the screen. The DQI reads the active subset. In
addition, it makes a copy of the active subset and
re-scales each at tr ibute to the range [1, p] where p is
the number of pixels in the at t r ibute 's range slider.
Because setup occurs infrequently, we can allow sev-
eral seconds for it.

S e l e c t i o n occurs when the user clicks on a range
slider. During selection, the algorithm computes
the auxiliary data structures, which depend on the
currently selected at tr ibute and the current ranges
for the other attr ibutes. Various experiments with
user interfaces show that we should respond to the
mouse click in about 1 second in order not to annoy
the user. At the cost of a factor of 2 in memory,
we could precompute the auxiliary data structures
whenever the mouse is moved close to a new range
slider. Using somewhat more memory, we could
steal cycles from the query operation in order to
precompute the auxiliary data structures for several
sliders (chosen according to some heuristic). Thus
1 second may be an overly conservative bound on
the time for selection.

Q u e r y i n g occurs continuously a.s the user drags
the mouse to update the selected range slider. Dur-
ing querying, the algorithm recomputes the hit set
and updates the output on the screen. For the pur-
pose of tinting, we say that a single query occurs
each time the DQI detects a change in the posi-
tion of the mouse on the range slider. Experiments
have shown that DQIs should process each query in
about 0.1 seconds or less in order to give the ap-
pearance of a continuous response [1].

4 D a t a S t r u c t u r e s

Because of the resolution of the screen we can as-
sume that a range slider is no more than 250 pix-
els long. During the selection operation, the DQI
computes the m a s ' i m u m hi t se t , which is the hit set
determined by the extreme values for the selected
at tr ibute and the current ranges for the other at-
tributes. Then it partitions the max imum hit set
into p buckets, one for each user-specifiable value
for the current at tr ibute. This is essentially a lin-
ear t ime counting sort of the max imum hit set. We
store the size of each bucket, and all left-to-right
partial sums of these sizes. We also store informa-
tion that facilitates computat ion of histograms and
tight coupling of range sliders, i.e., the redisplay of
all slider ranges when any range is changed. Tight
coupling will be discussed in the full version of this
paper.

Thus. any t ime the range slider is updated, even
by a large number of pixels (as might happen if the
user moves the mouse extremely fast), we can deter-
mine the number of hits in constant time. We can
also determine ranges for the other sliders in con-
stant t ime per slider, and histograms for the other
sliders in constant t ime per point. Changes to the
display are determined by scanning the buckets be-
tween the older at tr ibute value and the new one.
The display is updated in t ime that is linear in the
number of changes.

If the user changes the axis parameters for the
starfield display, then the hits are redisplayed (pro-
jected on the new pair o,f coordinates) but none of
the internal data structures is changed.

5 C o m p l e x i t y

Let r denote the number of records in the active
subset, a the number of attributes, and b the num-
ber of bytes needed to store the value of a single
attr ibute. Let p denote the length in pixels of each
range slider, f the area m pixels of the starfield,
and u the average number of pixels that need to
be updated in the starfield display per query (this
number will depend in a nontrivial way on the size
of the starfield, the velocity of the range slider, and
the clustering of data in the active subset.)

The active subset occupies r • a . b bytes. The
re-scaled active subset occupies 0(7'- a) bytes. The
bucket parti t ion also occupies O(r - a) bytes. The
data structures for tight coupling occupy O (a • p)

bytes. The data structures for range histograms
occupy O (a . p~') bytes. The starfield occupies f
bytes.

Setup takes t ime O (r . a • b).

S I G M O D R e c o r d , Vol . 25, No . 4, D e c e m b e r 1996 23

There are three components to the time for selec-
tion. Determining the maximum hit set takes time
O(r). Sorting the maximum hit set also takes time
O(r) (really, there is no log factor because we dis-
cretize the data.) Computing the auxiliary data
structures for tight coupling takes time O(a. p).
Computing the auxiliary data structures for his-
tograms takes time O(a • p~'). Thus, the total time
for selection is O(r + a • p2).

There are three components to the time for query-
ing. Tight coupling takes time O(a). Comput-
ing histograms takes time O(a. p). Updating the
starfield takes time O(u). Thus the total time for
querying is O(a . p + u).

6 O u r R e s u l t s a n d C o m p a r i s o n t o
P r i o r W o r k

Our preliminary experiments were successful with
an active subset consisting of 100,000 records with
10 attribute each. On average, selection took about
1 second, and querying took about 0.1 second (on a
SUN Microsystems SPARC 5 with 32 megabytes of
main memory). It is notable that the querying time
is dominated by the starfield update time. When
only summary information is displayed, querying
takes about 0.02 seconds.

In comparison, the pioneering work in the area,
the Film Finder program [1]. could handle a
database of 10,000 records with 10 attributes, and
some of the standard data structures analyzed in [5]
and tested in [6] demonstrated scalability up to
20,000 records with 10 attributes.

7 F u t u r e D i r e c t i o n s

We plan to:

perform comprehensive experiments to determine
the running time for various parts of our opera-
tion as functions of the database size, screen size,
range slider velocity and other parameters.

• implement alphanumeric sliders.

try" spatial data structures like k-D trees to see
how they effect the times for selection and query-
ing. (As a general non-worst-case rule of thumb,
spatial data structures answer range queries in
time O(IH] 1-1/a) where H is the set of hits. This
could be good for selection, because it is sublin-
ear. But it could be bad for querying, because it
is close to linear, and prior work seems to con-
firm this doubt [5, 6]. Instead, we will use an

incremental approach where we compute the dif-
ference AH between consecutive hit sets, which
in practice should take time only O(lAH[t-l/a).)

* extend our work to active subsets consisting of
about 10 ~ records. (Querying (including updat-
ing the starfield display), tight coupling, and his-
tograms will scale up without difficulty, because
their complexity does not depend on the number
of records in the active subset. Selection, how-
ever, seems to be a problem, because its com-
plexity is proportional to the size of the active
subset. By stealing cycles and precomputing, we
plan to hide some of the time for selection: how-
ever, we will have to experiment with actual users
to see how nmch this helps. Spatial auxiliary data
structures may help as well.)

. ultimately combine our DQI with a query pre-
viewer [2] developed at the Human-Computer In-
teraction Laboratory in order to produce a new
state of the art in interactive dynamic database
a c c e s s .

References

[1] Ahlberg, C. and Shneiderman, B., Visual Infor-
mation Seeking: Tight Coupling of Dynamic Query
Filters with Starfield Displays, Proc. ACM Human
Factors in. Comput. Systems "9/~, 1994. pp. 313-317.

[2] Doan, K., Plaisant, C., and Shneiderman. B..
Query Previews ill Networked Information Systems,
CfAR Tech. Report, University of Maryland, Col-
lege Park, CAR-TR-788, Oct. 1995.

[3] HCIL, ffp://ftp.cs.umd.edu/pub/hcil/Demos/
DQ/dq-home.zip. Downloadable PC demo.

[4] IVEE Development AB, http://www.ivee.com/.
Online Java demo and downloadabte demos for var-
ious platforms.

.[5] Jain. V. and Shneiderman, B., Data Structures
for Dynamic Queries: An Analytical and Exper-
imental Evaluation, 6:f.4R Tech. Report. Univer-
sity of Maryland, College Park, CAR-TR-685. Sep.
1993.

[6] Pointek. J., personal communication. 1995.

[7] Shneiderman, B., Dynamic Queries for Visual
Information Seeking, IEEE Software, Vol. 11, No. 6.
1994. pp. 70-77.

[8] Williamson, C. and Shneiderman. B., The Dy-
namic HomeFinder: Evaluating Dynamic Queries
in a Real-Estate Information Exploration System,
Proc. ACM SIGIR '9:2, 1992. pp. 339-346.

24 S I G M O D Record , Vol. 25, No. 4, Decemb er 1996

