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A b s t r a c t  Dynamic query interfaces (DQIs) form 
a recently developed method of database access that  
provides continuous realtime feedback to the user 
during the query formulation process. Previous 
work shows that  DQIs are elegant and powerful in- 
terfaces to small databases. Unfortunately, when 
applied to large databases, previous DQI algorithms 
slow to a crawl. We present a new approach to DQI 
algorithms that  works well with large databases. 
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1 Our Innovations 

We propose a new approach to dynamic query inter- 
face (DQI) algorithms that  can handle much larger 
databases than previous implementations. Our ap- 
proach gains its efficiency from the following inno- 
vations: 

A c t i v e  s u b s e t  We define an "active" subset of 
the database,  of limited size, which we store in main 
memory.  (While in principle the size of main mem- 
ory may seem like a severe limitation, in practice 
DQI algorithms seem to be limited more by time 
than by space. Our current implementation han- 
dles an active subset that  is an order of magnitude 
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larger than the databases that  previous implemen- 
tations could handle.) 

A u x i l i a r y  d a t a  s t r u c t u r e s  We augment the ac- 
tive subset with data structures that  facilitate con- 
tinuous querying (users can tolerate a response time 
of about 0.1 seconds for continuous operations). 

R e p r o c e s s i n g  The auxiliary data  structures 
change only when the user clicks on a widget. Af- 
ter such an action the user can tolerate a delay of 
approximately 1 second or less, during which we re- 
construct the auxiliary data  structures. 

I n c r e m e n t a l  d i s p l a y  Slight changes in the query 
tend to cause only slight changes in the output.  By 
computing and displaying the difference, we can up- 
date the display continuously. 

2 Background on Dynamic Queries 

DQIs were developed recently by [1, 7, 8] as a 
mechanism for visualizing multidimensional data. 
DQIs are graphical (as opposed to textual languages 
such as SQL) and provide continuous feedback to 
the user as the query is formulated. Experiments 
show that  querying with DQIs is faster, easier, 
more pleasant, and less error-prone than with other 
database interfaces [8]. (See Figure 1 for a sample 
DQI by [1]. Some demos are available from [3.4].) 

Queries are made using widgets, such as range 
sliders (for continuous data attributes),  alphanu- 
meric sliders (for textual attributes),  toggles (for 
binary attributes), and check boxes (for discrete 
multi-valued attributes), to specify each at tr ibute 
(dimension) of the data. Output  is provided via a 
starfield display (a 2-dimensional projection of the 
set of hits), bars (such as a preview bar that  dis- 
plays the number of hits), and charts (which provide 
other cumulative information). We perform tight 
coupling among range sliders: as the hit set varies 
all the range sliders are updated to show the hit 
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Figure 1: Film Finder [1]: a sample DQI. The large square is the starfield display. The widgets on the left, 
bottom, and right are for querying. This example does not contain an explicit preview bar or chart. 

100 120 200 220 

Defined Range 

Figure 2: A sample range slider. By moving the 
arrows, the user specifies the range, which is repre- 
sented by the white rectangle. The numbers above 
the arrows give the current range. The numbers 
on the far ends of the range slider are the extreme 
values that the attribute can take. 

set's bounding rectangle, so tile range sliders pro- 
vide a limited form of output as well. If desired, we 
can even display a histogram on each range slider 
to show the distribution of data in its dimension. 
Furthermore, the user may click on an individual 
point in the starfield for details on demand. (See 
Figure 2 for a sample range slider.) 

A range slider contains a pair of arrows, one at 
each end. The user selects a range slider by clicking 
on it, and the user adjusts the range by dragging 
either arrow with the mouse. As the range is ad- 

justed, the starfield display, bars, and charts are up- 
dated continuously. Ranges or histograms for other 
range sliders are updated as well. Thus, for each 
tiny increment of the range slider, much informa- 
tion must be computed rapidly. 

Toggles allow the user to specify a binary at- 
tribute of the data. On the screen they look like 
boxes. Internally they can be implemented directly 
without much trouble or treated as a nearly trivial 
special case of range sliders. List boxes and radio 
buttons can be handled with similar ease. There is 
no need to discuss them further in this paper. 

Alphanumeric sliders allow the users to specify a 
range of strings. Although our auxiliary data struc- 
tures apply to them as well, the fine granularity of 
alphanumeric data seems to necessitate additional 
implementation ideas that are best described in a 
separate paper. 

3 Descript ion of the  A lgo r i t hm 

We envision using tile DQI algorithm in tandem 
with a query previewer [2] that will allow the user 
to browse a huge database and select a manageably 
small subset to scan. Once the user selects such a 
subset, the query previewer will pass its bounding 
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rectangle to the DQI, which will then take control. 
The bounding rectangle for the active subset deter- 
mines the extreme values for each attribute. 

If, at some later time, the user wants to look out- 
side the active subset, then the simplest solution 
is for the DQI to return control to the query pre- 
viewer. (However, a more sophisticated DQI might 
allow the user to update  the active subset without 
using the query previewer. The DQI could query 
the database about  the size of the user's proposed 
new active subset. If  it is not too large, the DQI 
could repeat the setup operation. This will be con- 
sidered in a future paper on the interaction between 
the DQI and the query previewer.) 

Our DQI algorithm performs three major  opera- 
tions: setup, selection, and querying. 

S e t u p  occurs when the query previewer passes 
control to the DQI. During setup, the widgets, 
starfield display', bars. and charts are initially drawn 
on the screen. The DQI reads the active subset. In 
addition, it makes a copy of the active subset and 
re-scales each at tr ibute to the range [1, p] where p is 
the number of pixels in the at t r ibute 's  range slider. 
Because setup occurs infrequently, we can allow sev- 
eral seconds for it. 

S e l e c t i o n  occurs when the user clicks on a range 
slider. During selection, the algorithm computes 
the auxiliary data structures, which depend on the 
currently selected at tr ibute and the current ranges 
for the other attr ibutes.  Various experiments with 
user interfaces show that we should respond to the 
mouse click in about  1 second in order not to annoy 
the user. At the cost of a factor of 2 in memory, 
we could precompute the auxiliary data structures 
whenever the mouse is moved close to a new range 
slider. Using somewhat  more memory, we could 
steal cycles from the query operation in order to 
precompute the auxiliary data structures for several 
sliders (chosen according to some heuristic). Thus 
1 second may be an overly conservative bound on 
the time for selection. 

Q u e r y i n g  occurs continuously a.s the user drags 
the mouse to update  the selected range slider. Dur- 
ing querying, the algorithm recomputes the hit set 
and updates the output  on the screen. For the pur- 
pose of tinting, we say that  a single query occurs 
each time the DQI detects a change in the posi- 
tion of the mouse on the range slider. Experiments 
have shown that  DQIs should process each query in 
about 0.1 seconds or less in order to give the ap- 
pearance of a continuous response [1]. 

4 D a t a  S t r u c t u r e s  

Because of the resolution of the screen we can as- 
sume that  a range slider is no more than 250 pix- 
els long. During the selection operation, the DQI 
computes the m a s ' i m u m  hi t  se t ,  which is the hit set 
determined by the extreme values for the selected 
at tr ibute and the current ranges for the other at- 
tributes. Then it partitions the max imum hit set 
into p buckets, one for each user-specifiable value 
for the current at tr ibute.  This is essentially a lin- 
ear t ime counting sort of the max imum hit set. We 
store the size of each bucket, and all left-to-right 
partial sums of these sizes. We also store informa- 
tion that  facilitates computat ion of histograms and 
tight coupling of range sliders, i.e., the redisplay of 
all slider ranges when any range is changed. Tight  
coupling will be discussed in the full version of this 
paper. 

Thus. any t ime the range slider is updated, even 
by a large number of pixels (as might happen if the 
user moves the mouse extremely fast), we can deter- 
mine the number of hits in constant time. We can 
also determine ranges for the other sliders in con- 
stant t ime per slider, and histograms for the other 
sliders in constant t ime per point. Changes to the 
display are determined by scanning the buckets be- 
tween the older at tr ibute value and the new one. 
The display is updated in t ime that  is linear in the 
number of changes. 

If the user changes the axis parameters  for the 
starfield display, then the hits are redisplayed (pro- 
jected on the new pair o,f coordinates) but none of 
the internal data  structures is changed. 

5 C o m p l e x i t y  

Let r denote the number of records in the active 
subset, a the number of attributes, and b the num- 
ber of bytes needed to store the value of a single 
attr ibute.  Let p denote the length in pixels of each 
range slider, f the area m pixels of the starfield, 
and u the average number of pixels that  need to 
be updated in the starfield display per query (this 
number will depend in a nontrivial way on the size 
of the starfield, the velocity of the range slider, and 
the clustering of data  in the active subset.) 

The active subset occupies r • a . b bytes. The 
re-scaled active subset occupies 0(7'-  a) bytes. The 
bucket parti t ion also occupies O( r  - a) bytes. The 
data structures for tight coupling occupy O ( a  • p)  

bytes. The data  structures for range histograms 
occupy O ( a .  p~') bytes. The starfield occupies f 
bytes. 

Setup takes t ime O (  r . a • b ). 
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There are three components to the time for selec- 
tion. Determining the maximum hit set takes time 
O(r). Sorting the maximum hit set also takes time 
O(r) (really, there is no log factor because we dis- 
cretize the data.) Computing the auxiliary data 
structures for tight coupling takes time O(a.  p). 
Computing the auxiliary data structures for his- 
tograms takes time O(a • p~'). Thus, the total time 
for selection is O(r + a • p2). 

There are three components to the time for query- 
ing. Tight coupling takes time O(a). Comput- 
ing histograms takes time O(a. p). Updating the 
starfield takes time O(u). Thus the total time for 
querying is O(a . p + u). 

6 O u r  R e s u l t s  a n d  C o m p a r i s o n  t o  
P r i o r  W o r k  

Our preliminary experiments were successful with 
an active subset consisting of 100,000 records with 
10 attribute each. On average, selection took about 
1 second, and querying took about 0.1 second (on a 
SUN Microsystems SPARC 5 with 32 megabytes of 
main memory). It is notable that the querying time 
is dominated by the starfield update time. When 
only summary information is displayed, querying 
takes about 0.02 seconds. 

In comparison, the pioneering work in the area, 
the Film Finder program [1]. could handle a 
database of 10,000 records with 10 attributes, and 
some of the standard data structures analyzed in [5] 
and tested in [6] demonstrated scalability up to 
20,000 records with 10 attributes. 

7 F u t u r e  D i r e c t i o n s  

We plan to: 

perform comprehensive experiments to determine 
the running time for various parts of our opera- 
tion as functions of the database size, screen size, 
range slider velocity and other parameters. 

• implement alphanumeric sliders. 

try" spatial data structures like k-D trees to see 
how they effect the times for selection and query- 
ing. (As a general non-worst-case rule of thumb, 
spatial data structures answer range queries in 
time O(IH] 1-1/a) where H is the set of hits. This 
could be good for selection, because it is sublin- 
ear. But it could be bad for querying, because it 
is close to linear, and prior work seems to con- 
firm this doubt [5, 6]. Instead, we will use an 

incremental approach where we compute the dif- 
ference AH between consecutive hit sets, which 
in practice should take time only O(lAH[t-l/a).) 

* extend our work to active subsets consisting of 
about 10 ~ records. (Querying (including updat- 
ing the starfield display), tight coupling, and his- 
tograms will scale up without difficulty, because 
their complexity does not depend on the number 
of records in the active subset. Selection, how- 
ever, seems to be a problem, because its com- 
plexity is proportional to the size of the active 
subset. By stealing cycles and precomputing, we 
plan to hide some of the time for selection: how- 
ever, we will have to experiment with actual users 
to see how nmch this helps. Spatial auxiliary data 
structures may help as well.) 

. ultimately combine our DQI with a query pre- 
viewer [2] developed at the Human-Computer In- 
teraction Laboratory in order to produce a new 
state of the art in interactive dynamic database 
a c c e s s .  
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