
- Display Strategies -
for Program Browsing:
Concepts and Experiment
Ben Shneiderman, Philip Shafer, Roland Simon, and Linda Weldon
University of Maryland

The new, larger CL oftware maintenance is an impor- nomical information presentation -
tant part of a programmer's work information that has now become more

display screens s and a product's life cycle, yet it complex, since the size of the available

can improve program remains one of the most troublesome of work area presumably interacts with many
comprehension-if tasks. Even existing, newly developed tech- other aspects of the display. Thus, like largeMP niques are not of much use, since only time programs, large displays need new strate-

the added space can determine their value. Thus, instead of gies for sound and efficient display

is usedfor mome presenting another new maintenance tool formats.
effective presenta- or management technique, we focus on In this article we deal with coordinated

strategies for improving the presentation of window systems, in which the windows and
tion, notjust more information - specifically, on the new, their contents appear and scroll automat-

code or larger type. larger display screens* ically as a result of user activities. In most
User interfaces in the software environ- other window systems, the user creates,

ment are much like spices in good recipes; positions, and manipulates windows and
the right arrangement mustbe found or the their contents. In coordinated window sys-
food will not show its full flavor. Factors tems, the user is freed from such tedious
such as data availability and complexity chores. We present four strategies for coor-
and the size ofthe display must be carefully dinated window systems:
weighed and accounted for in the design of Fusion - shows continuous text over
any software environment. multiple windows.

For example, in maintenance tasks, Synchronized scrolling -shows object-
many types ofinformation must be easily to-object relationships and provides linked
available. A study of programmers doing views.
maintenance tasks' shows that program- Embedded selection - shows detailed
mers want more information than is cur- information and provides a microscopic
rently available on the display, but they are view.
not sure what exactly would be most help- Hierarchical browser - shows design
ful. Today, faster and larger displays are information and provides a macroscopic
becoming more readily available, and we view.
have the opportunity to add more informa- To analyze these strategies and show
tion. The immediate problem then is what their benefits for maintenance tasks, we
information to add and how to display it. use a model taken from Rombach, Basili,
One way is to provide multiple views of and Chang.3 Error, fault, and failure have

the program, as the Pecan2 system has the meanings defined in Standard Glossary
done. Our attention is directed at discover- of Software Engineering Terminology.4
ing which views are most beneficial. This model partitions maintenance tasks

However, bear in mind that large dis- into five phases:
plays are not simply extensions of small Detection- detecting a failure or a fault
displays, any more than large programs are of the program.
simply extensions of smaller ones. Writing Isolation - finding the related fault(s)
large programs requires new techniques in the program responsible for the failure.
and management schemes to control com- Design changes- designing the neces-
plexity. The same is true for large displays. sary changes to correct the fault(s).
Large displays must be designed for eco- Correction - implementation of the

changes.
Validation - validate whether the

*An earlier version of the material in this article was changed product meets the specification.
presented at CSM-85. Recent experimental results have The examples given in the following dis-
been added. cussion were implemented at the Univer-

May 1986 0740-7459/86/0500/0007$01.00 (1986 IEEE 7

sity of Maryland's Human-Computer ification. When programmers view the thesizer.6 The windows show the input,
Interaction Laboratory for use in experi- entire routine, they can make corrections output, related data objects, and the code
mental research aimed at determining the more easily and with greater accuracy. manipulating them. Programmers can
usefulness of these and other techniques. Seeing the full area in which the correction have the interpreter step through the code
The equipment used consisted of an IBM is made allows them to see the impact of one statement at a time. They can then see
3290 plasma display workstation, which many modifications. the input being read, the data objects being
displays 62 lines of 160 characters, but the manipulated, and the output being pro-
strategies themselves can be applied to any duced. Use of such an environment allows
large display. We have also implemented Synchronized scrolling programmers to see precisely where the
many ofthese strategies on small personal Synchronized scrolling allows the dis- data is incorrectly modified. Synchronized
computer displays. play of two or more files of related infor- scrolling is also helpful in isolation and

mation and automatically positions all detection, since it can present multiple
files whenever the user moves any file. As views of the same object.

Fusion the user scrolls one file, all other files scroll Another use of this approach is to have
The simplest coordination strategy is as well. No new commands are needed to the same comment appear in a flowchart,

fusion, in which many lines of code are dis- use synchronized scrolling. The complex- its PDL, and the related code. Synchro-
played in sequence on multiple windows. ity of the relationship between the files nized movement is proportional between
We can better understand the concept of determines the complexity of the synchro- these token comments. Comprehension
fusion if we think of the windows as one nization program. Synchronized scrolling becomes much easier, since we have mul-
logical screen. Let us look at an implemen- can be useful in viewing two versions of a tiple levels of complexity for context. This
tation of fusion on an IBM 3290 worksta- program or in evaluating test cases and particular use is reflected in the hierarchi-
tion. The 160-column, 62-line screen layout their results. cal browser, which is discussed later.
was vertically bisected to give two 80-
column, 62-line windows, shown left and Fixed ratio. The simplest synchroniza-
right for a total of 120 lines. The program- tion method is based on a constant ratio Embedded selection
mer could then turn one or two pages of between the number of lines that should be When viewing source code, program-
code at a time, either bringing up the next scrolled in each window. Perhaps the com- mers are not simply reading the text; they
two pages or bringing up one page and ments and code for a program are in sepa- are also attempting to understand its struc-
moving the other page over to keep the rate files. Blank lines may be used to keep ture. Only a limited number ofunique sym-
pages in left-to-right order. Fusion allows a one-to-one ratio between the files, so a bols appear in the code, and these are either
for normal editor commands to move par- synchronized editor can be called with that user-defined or system or language key-
tial pages or perform string searches. ratio. In the same manner, a file contain- words. User-defined symbols include rou-

Fusion may be most helpful when work- ing a description of maintenance changes tine names and variables and type and
ing with large portions of code that must to a program could be viewed along with constant identifiers. System- or language-
be considered as a whole to fully compre- the code and design specification for that defined symbols are predefined elements,
hend the meaning. When viewing large code. built-in variables, types, constants, and
routines on a normal 24-line screen, library routine names.
programmers waste time switching con- Unique objects. A more flexible and Each symbol, whether user- or system-
texts and get lost in turning pages back and complex synchronization technique is defined, has properties associated with it,
forth. The strength of fusion comes in its required to define a relationship between such as what it is, what it does, and what
ability to present entire routines for con- two or more files. If the relationship can be importance it has. For variables and types,
sideration so that the viewing context is stated as a rule, then it can be made into a these properties would include the specifi-
kept constant. routine to facilitate synchronized scrolling. cation of composite types. For routines,

If the routine is larger than fusion can For example, a text formatter transforms its these properties would include a descrip-
display, the number of context switches is input using the rules of the format lan- tion of the parameter list andwhat type of
still reduced. Fusion lessens the need for guage. A synchronizing routine can be value is returned. With library items, these
tedious navigational and page turning written to link two windows, one contain- properties might include the location ofthe
commands. Programmers can concentrate ing the source document and the other dis- original source, if possible.
on comprehending the program without playing the formatter output. Scrolling one All this information must be easily avail-
learning new commands. All they need is window moves the other so that the same able to the programmer through direct
a larger screen. information appears in both. selection of the appropriate symbol, or
A study by Boehm' shows that the size Synchronized windows are also a logical direct embedded selection. The program-

of the modification is proportional to the extension of an environment for an inter- mer simply moves the cursor onto the sym-
chance ofmaking an error during the mod- preted language, such as the Cornell syn- bol in the context shown on the screen and

8 IEEE SOFTWARE

The Bettmann Archive

presses a select key. This selection causes manual entry for the keyword selected may Another approach is to stress the struc-
the properties associated with that symbol be displayed, as was done with system rou- ture of the statement selected. When an ele-
to be presented in a second window. The tines. However, other displays may result. ment of an If statement is selected, that
symbol is selected in context so that only For example, if a symbol from Ada's statement's If, Then, Else, and Endlf sym-
the proper definition of the symbol is con- Accept statement is selected, the basic syn- bols are highlighted. The programmer can
sidered, regardless of its definition in tax with notes on its usage is shown. A then determine the exact extent ofthe state-
another context. complex language such as Ada makes this ment. For example, if the Endlf high-

information most valuable, and its availa- lighted is not the one that logically goes
Identifiers. When a user-defined varia- bility is helpful to programmers who work with the If statement, the error can be more

ble, type, or constant is selected, the decla- with many languages. easily identified. This technique connects
ration of that identifier surrounds the
point at which it is declared (Figure 1). The
declaration should include some comment
on usage, but this inclusion is at the discre-
tion of the programmer. If the Ada lan- Const
guageis used, a second type of selection MNum = -1000; (Equals-(Numberof numbers + 10)}guage ls used, a second type of selectlon Type

could be implemented to allow the pro- MNType = Array I MNum.. -10] of Boolean;
grammer to see the attributes available for Var
use with an identifier. Mn: MNType; { Markp Array for Number Table }
When a language-defined variable, type,

or constant is selected, a brief explanation Procedure MaglcMarker(I: Integer);
of that identifier is shown, perhaps the {This procedure recursivelychecks to see if there is something that
manual entry. should be saved from collection. }

Let us look at an implementation using Begin { MagicMarker }
Pascal. If the select key is pressed while the If (< = -10) Or (I > O) Then Begin
cursor is on a user-defined identifier, a new If (I < = -10)ThenT.II.): = True
window is opened and the declaration of If(Else Beginwindo is oened nd th declratio oflf(lI < = MSym)Then Begin
that identifier is displayed. Ifthe select key If (S(.l.).T < Undefd) Then MagicMarker(S(.l.).V)
is pressed a second time, the window is EInodElseBMegin)Th Bei
closed. M(.l.): = True;

MagicMarker(A(.l.));
MagicMarker(D(.I.));User-defined routines. As with identi- End

fiers, when a user-defined routine is End
End

selected, the declaration of that routine is End
presented, including formal parameters End; (MagicMarker
and a header comment describing the pur-
pose and function of the routine. Again, Begin { Rubbish }
such comments are assumed to be written Write('Please excuse the delay. Garbage collection');
with the code. Writeln(is required and must be performed.'); Writeln;

For I: = I to MSym Do Begin
If (S(.l.).T < Undefd) Then MagicMarker(S(.l.).V)

System-defined routines. If built-in or End;
system routines are selected, the manual ForM i=ctrkAp(DsoBeg(in).F)
entry for that routine is displayed. This lan- MagicMarker(Assoc(.l.).T);
guage support helps to eliminate the need For i 1 to Tp Do MagicMarkerEdT(.1.))
for interrupting work to locate documen- (Time to reconstruct the various free space lists }
tation. As system information becomes Forc: =Low0 to HighB Do Begin
more readily available, the programmer is If (Not Ml II) Then Begin
freed to concentrate on the problem and is >= =
no longer required to remember possibly
arcane search commands. = ===> Command line

Keywords. Each keyword has a wealth Figure 1. An example of embedded selection. The highlighted variable (gray box) has
of language-specific information asso- been selected, and all elements composing its declaration are displayed at the top of the
ciated with it. If a keyword is selected, the screen.

May 1986 9

the symbols to the objects they represent, assignment operator might tell you its code. A second routine may also be eas-
making it easier for the programmer to whether the assignment is valid. This infor- ily selected and inspected. Having a ques-
check for semantic mistakes. mation is especially valuablewhen floating tion about a type, the programmer selects

point precision is needed, as in scientific it and its declaration is displayed. The pro-
Operators. When operators are selected, calculations. grammer can check on the exact syntax of

some information is provided, but the the Do statement by selecting it and is able
nature of that information varies accord- Remarks. An extension of embedded to see both the manual and the source at
ing to the language. In Pascal, a program- selection offers a convenient way of view- the same time. A wealth ofinformation is
mer might want to learn the resulting type ing a program. The first view shows the easily available, with no tricky interface or
of an expression. In Ada, where operators main program body. The programmer additional syntax to master.
can be overloaded, the declaration of the inspects it and selects a routine to display. With direct selection, details can be
operators should be shown, since the oper- The programmer is then shown the decla- found easily, permitting the programmer
ators are really functions. Selecting the ration of that routine, and is able to inspect to concentrate on the higher level struc-

tures. On-line help for rarely used state-
ments relieves the programmer from
hunting for documentation. All these

---------- --- Representation- ------------------------------------- benefits aid the programmerindetecting
** P<rogram Lisp(tnput,Output); and correcting
* << Retract>> an orcigfaults.

** Procedure Rubbish;
< < Expand > >

> Function Upper(S: OLine): neine; Hierarchical browser
Procedure Getin (var M : lOLine);Hir ch alb o s

** Procedure lnit ;^* Function Newloc: Integer; Browsers are already in use in such sys-
Function NewSym: Integer; tems as SmallThlk-80,' Cedar,s and Mag-
Function NewNum: Integer;
Procedure Balance(h, i,j: Integer); Pie.9 The browser described here is a
Function Ins (N :Name): Integer; hierarchical browser that makes the pro-

** Procedure Setintrinsics;
** Function InsNum (L: Name): Integer; gram's structure more visible.

Function EGet: Integer;
** Function SRead (P: Integer): Integer; A hierarchical browser is a representa-

Procedure AddFile;
Function Eval (I Integer) :Integer; tion of the high-level information structure
Procedug-re .Ch>> that may be used to access the source code

** Procedure Dump; ofa program or other text. (This definition
** Procedure Directive; is a generalization of one given in the

-- Source -- description of the SmallTalk-80 environ-
Function Upper(S: lOLine): lOLine; ment.) The table of contents of a book is

(Self-explanatory ~ an excellent example of a hierarchical
Var browser. It provides a structured image of
Inte~e;bo
0: LOLine; a book by dividing it into chapters and sec-
C: Char; tions. The page number associated with

Begin (Upper} each chapter or section is a short path to
For I: 1 to Length(S) Do Begin each element of the structure.
If(Sillinl 'a..iV,j..Yr,' .'Z1
Then C: Chhr(Ord(SI I) - Ord('a') + Ord(A)) The editor we developed based on the
Else C: = Sl l); hierarchical browser has two windows: a

End;= l Str(C) representation window and a source win-

EnT Upper: dow. The source window displays the pro-
gram code in a normal editor window-

ProcedureGetln(VarM OLine); in our case, VM/CMS's XEDIT. The rep-
= = = = > resentation window displays the headings

of the program routines and their nesting
level. The programmer sees only the
highest level routines at first. If a routine

= = = =>: Command line Nesting level is local to a-giobal routine, it is not shown
---> Last Routine selected * : Cursor in the initial display. This structure may be

expanded to include lower levels of nesting.
Figure 2. An example of a hierarchical browser. The program displayed is a Lisp inter- Figures 2 and 3 show the hierarchical
preter written in Pascal. The source window displays the last routine selected (->). browser and an expanded structure. Figure
The cursor is on a special line that provides access to the internal routines. 4 shows an implementation on the IBM

10 IEEE SOFTWARE

The Bettmann Archive

3290. The representation window allows gram to find a small portion of code. input line to upper case?" and the answer
the programmer to select the routine to be When the source code is directly acces- is a candidate routine. The programmer
displayed in the source window. Note that sible through the representation window, displays the source code for that routine
this approach clearly supports the top- the programmer is freed from the tedious and reads it. Even if the wrong routine is
down design methodology, because the manipulation and switching of contexts. chosen, information is learned because the
representation is one level closer than the The question becomes, "Which element of programmers move to known routines
source code to the program design. the design is responsible for converting an rather than meaningless line numbers.

Isolation and design changes. The hier-
archical browser strategy helps the pro-

grammerunderstand the program intwo- -------------------------------------- Representation -----------------------------
ways: * Program Lisp (Input, Output);

(l) It facilitates comprehension of the ** Prcedure Rubbish
program by showing structured informa- *** < Expand >»
tion and the underlying design. ** ---> Function Upper(S : OLine): lOLine;Procedure Getln (Var M : IOLine);

(2) It supports working methods related ** Procedure Init;
to standard software design techniques. ** Function NewSycm integer;

Structured information is easier to ** Function NewNum Integer;
understand, and high-level information * Procedure Balance(h, i, j Integer);

10-12 Thehierarchical ** ~~~~~Function Ins (N :Name): Integer;aids comprehension. 10-12 The hierarchical Procedure Setlntrinsics;
browser acts as a table of contents for the ** Function InsNum (L Name): Integer;
program, thus showing a structured view ** Function SRead (P: Integer): Integer;
for the reader. It is hard to think of read- Procedure AddFile;
ing a reference or system manual without FunicRtioEal (nee Itgr

table of contents, but a program never t ii** - inte iflg r

Studies conducted on reading text have CProcedure Chco
shownthatknowledge of the structure is ---Source---

important to text comprehension.'34 We Function Upper(S: lOLine): lOLine;
think the same principle should work {Self-explanatory }
strongly in program comprehension. It is Var
much easier for a programmer to find the n: Integer;
design scheme in the structured elements c: Char;
than in the bare source code. Green's has Begin--Upper}
observed an inverse correlation between on= '
the amount of information shown and ForlSl-epltorLengtyh() DoBegin
comprehension. Then C:= Chr(Ord(S i)-Ord(a) + Ord(A))
Most modern software design tech- ElseC: S- I]l;

niques would benefit from access to high- End;t

Uper: =0in;

level structural elements via a representa- CUpper ;
tion window. Normally, to find an object Be Ue r
in a program, the programmer must rely on Pe G a
paging, string searchigorm sin ine num- = I== =
bers. As programs grow larger, paging
starts to be difficult, line numbers are for- i v
gotten or changed, and the results of string
searches are unpredictable. Locating the - = ==>: Comnmand line * CuNestiglee

Elast Routin seete Cro

answer to a simple question such as,
"Where is the input line converted from
lower case to upper case?" requires time Figure 3. Expansion in the representation window of a hierarchical browser. The line
and guessing for someone who did not pointed at by the cursor in Figure 2 has been selected. The internal routines of the func-
write or design the program. To get the tion Eval are revealed. The special line has now changed from Expand to Retract to allow
answer, the programmer must interrupt his the user to remove the information. Note that the nesting level (*) of Retract/Expand
primary task of understanding the pro- lines corresponds to the level of the internals.

May 1986 -11

The hierarchical browser strategy pro- These characteristics, while particular to his environment, so multiple representa-
vides two important features: a structured our environment and experimental goals, tions should be available, such as data flow
presentation of the program to the reader reflect common-sense objectives that apply or execution flow.
and access to the source code through this to any environment: The representation
structure. These two features reduce the should be sensible, and it should strongly Integration of tools. Hierarchical
complexity of the program, delineate the reduce the information displayed. browsers help promote the smooth integra-
design, and support working methods Several levels of representation might be tion of tools and techniques in a software
related to software design techniques. needed. For example, in a 100,000-line pro- environment. The representation window

gram with 1000 routines, seeing only the can display information obtained from
Methods of representation. Choosing routines would be better but not sufficient. other tools, such as a cross-reference table,

how to represent the program is clearly crit- These routines would have to be clustered a debugger, or an interpreter.
ical to the hierarchical browser strategy. In into modules to reach a manageable size Many tools provide information that
our implementation, we used routine for the programmer, and then each mod- can be best understood only in context. For
headers for simplicity. Our decision was ule would contain a reasonable number of example, a programmer needing to verify
based on a number of reasons. routines. The better the program design, where a variable is referenced commonly

* Programmers are familiar with this the better the language can support the uses a cross-reference table. A cross-
representation. design and the better this strategy will reference table gives the programmer the

* Routine headers map the representa- work. list of line numbers on paper or a way to
tion in the order of the paper listing. Obviously, we cannot define a represen- jump from location to location when used

* The amount of information is greatly tation that every individual can call sensi- interactively. But it provides little context,
reduced compared with the amount in ble. A programmer who has never used a and the programmer must remember many
the program. A 1500-line Pascal pro- PDL will not find any immediate benefit things.
gram has a representation of about 30 from seeing such a representation. The rep- If a hierarchical browser showing high-
lines. resentation needs to be defined according level information, such as routine headers,

* Routine headers are very simple to to the environment and background of the is used, all routines containing an occur-
implement. No graphic capability is programmer. Moreover, representations rence of the desired variable can be high-
required from the terminal. need to evolve with the programmer and lighted, giving a general overview at a

glance. The programmer can see if the vari-
able is widely used or is just mentioned in
a single routine. Correlating this informa-
tion with the current focus of attention
helps the programmer to understand the
purpose of that variable. The programmer
can then select the most interesting routine,
whether highlighted or not, in any order
requested.

If execution fails, the programmer calls
the debugger for help. One of the first
actions is to trace the routine calls to find
the history of execution. A hierarchical
browser with an execution flow represen-
tation displays that information instantly,
providing the necessary context for the pro-
grammer. Thus, information is naturally
presented, freeing the user from tedious
manipulation and allowing full concentra-
tion on the problem.

Empirical test
We conducted a preliminary experiment

to determine the efficacy of a hierarchical
browser display. The display had 24 lines
in the representation window and 24 lines

Figure 4. Photograph of the hierarchical browser on the IBM 3290 Plasma Display. in the source window. We then compared

12 IEEE SOFTWARE

The Bettmann Archive

the browser mode to a listing display mode Results and discussion. A total of 320 These uniformly positive comments are
of 48 lines of program text on the screen in questions were answered by 16 subjects for surprising considering that the subjects
a simple editor. Under both treatments two programs. Table I shows the means and had never before seen the browser. The
subjects scrolled the program and did standard deviations of the times to answer browser's wide acceptance, even in a first-
string searches. We used a split-plot fac- the questions per subject in minutes. time use, proves that it is helpful in study-
torial design to test the differences between There was a statistically significant inter- ing 1400-line Pascal programs, and possi-
the browser and listing modes. 16 With this action at the .05 level between the display bly others, to answer comprehension
design, we tested subjects in both condi- mode, programs, and order of presenta- questions. Because the performance speed
tions, using two sets of experimental tion. A post-hoc analysis showed that the of the browser was faster and the subjec-
materials and four orders of presentation. difference could be attributed to the diffi- tive response more favorable than the list-
Two Pascal programs were used. One pro- culty subjects had in the listing mode when ing strategy, we believe that users prefer
gram, called Pretty Printer, did Pascal they were given the Pretty Printer program hierarchical views of programs, databases,
program formatting. It had 1467 lines in 67 first. knowledge bases, text, and visual informa-
modules with a maximum nesting level of A review of the questions indicated a dif- tion such as maps.
four. The other program was a Lisp inter- ficulty with one question that required Unfortunately, in spite of these results
preter, which had 1416 lines in 27 modules using the browser to locate a module at the there were some problems. Browser users
with a maximum nesting level of three. Ten fourth level of nesting. Some subjects did had difficulty locating information in rou-
comprehension questions, such as "Which not fully comprehend how to open the tines that were several levels down in the
routine removes trailing blanks from the browser to get to the internal modules. The nesting structure. Subjects may need more
input buffer and updates the buffer result was very long search times. When we experience to develop familiarity with the
index?" and "Which variable contains removed the troublesome question and browser. These results need to be replicated
the symbol table?" were asked for each analyzed the results based on nine ques- with other programs and tasks. However,
program. tions, we got a statistically significant the positive outcome was encouraging, and
The four orders of presentation required difference for the main effect of display the subjects' comments were helpful for

by the experimental design were strategy at the .05 level. This difference refining our future research efforts.
indicates that performance is faster with

* browser mode/LisP iterpreter fol- the browser display mode.
lowed by listing mode/Pretty Printer, On the average, Browser users made 5.3 Maintenance

* browser mode/Pretty Printer fol- string searches, while listing users made applications
lowed by listing mode/Lisp inter- 32.8 string searches, again underlining the The strategies described here focus on
preter, efficacy of the representation window in browsing programs, but many more issues

* listing mode/Lisp interpreter fol- locating desired information. must be considered when integrating a true
lowed by browser mode/Pretty When asked, "Which editing mode do maintenance workstation into the manage-
Printer, and you feel best enabled you to find the ment and design practices of an organiza-

* listing mode/Pretty Printer followed answers to the questions you were given? " tion. Let us briefly look at one scenario.
by browser mode/Lisp interpreter, subjects favored the browser 13 to 3. When The maintenance programmer has two

asked, "Of the two editing modes used large-screen displays, each capable of
Subjects and procedure. The subjects were which do you prefer?" subjects favored the showing two 60-line by 80-column win-

16 graduate and senior students at the Uni- browser 15 to 1. Finally, when asked, dows (Figure 5). The first window contains
versity of Maryland who had written Pas- "Which editing mode do you feel is more a log of the 20 to 30 maintenance sugges-
cal programs longer than 500 lines. Each consistent with the way in which you view tions that have been made in the past two
was tested individually and was paid for the structure of a Pascal program?" all 16 weeks. By pointing at six to eight of the
participation in the experiment. Four sub- subjects chose the browser. suggestion titles, the MP produces the full
jects were randomly assigned to each ofthe
four presentation orders.

Table 1.
For each treatment, subjects received Mean time (and standard deviation) in minutes to answer comprehension questions using

training and a practice session (with the browser or listing display strategy with each of two Pascal programs.
another Pascal program) before they began
work on the comprehension question. DISPLAY STRATEGY
Answers for each question were typed on PROGRAM Browser Listing
line, and the computer kept accurate time
measures for each question. When the Lisp interpreter 12.47 (2.66) 13.27 (3.66)
experiment was over, subjects were given a Pretty printer 15.22 (3.80) 19.38 (5.14)
subjective evaluation questionnaire.

May 1986 13

text of each. After reading these, the MP The strategies can be adapted to smaller References
reorganizes the suggestions to display the displays on mainframe or personal com-
four or five that relate to the layout of puters.
information in a key application screen lay- The strategies offer several advantages. 1. C.E. Grantham and B. Shneiderman, "Pro-
out. The MP executes the relevant program Failure detection is improved by syn- grammer Behavior and Cognitive Activity:
on the second window to view the indicated chronized scrolling of input and output. An Observational Study," Proc. 23rdAnn.
screen and the input data or database con- Change design and isolation is easier with Tech. Symp., Washington, DC, Chapter
tents used. The third window automati- the general view provided by the hierarchi- ACM, June 1984.
cally displays the hierarchical browser for cal browser. With the detailed information 2. S.P. Reiss, "PECAN: Program Develop-

ment Systems That Support Multiplethe program code the design information, obtained through embedded selection, cor- Views," Proc. Seventh IntI'l Conf. Software
and a structure chart. The fourth window rections are made more accurately. Rou- Engineering, Mar. 1984, pp. 324-333.
automatically displays the log of previous tines are easier to comprehend when shown 3. D.H. Rombach, V.R. Basili, and S. Chang,
maifitenance changes to this piece of code in their entirety in fused windows. Methodology for Improving Life Cycle
and a data dictionary of the program vari- These strategies do not change the func- Support by Technique and Tools, Techni-
ables. After studying this code for a while, tionality of systems, but allow the pro- cal Reporty CofMputlandcollege 'Park, Feb.
theMP recognizes that one ofthe variables grammer to use them more efficiently. 1986.
in the code is incorrect and that the screen They can be applied to existing systems and 4. Standard Glossary ofSoftware Engineer-
iayout should be redesigned to improve bring improvements in the work environ- ing Terminology, IEEE Press, New York,
readability. The MP specifies the program ment. They match.the user's needs, provide Feb. 1983.
changes and reexecutes the program to contextual, general, and detailed informa- 5. B.W. Boehm, "Software and Its Impact:A
view the redesigned application screen. tion, integrate the tools, and free the user Quantitative Assessment," Datamation,
Satisfied that the changes are accurate, the from tedious manipulation and context 6. May 1973, pp. 48-59.

6.T Teitelbaum and T. Reps, "The CornellMP adds comments to the maintenance switching. 1 Synthesizer: A Syntax-Directed Program-
log, sends a report and acknowledgment to ming Environment," Comm. ACM, Vol.
the people who submitted the suggestions, 24, No. 9, Sept. 1981, pp. 563-573.
and finally sends the full setof information 7. A. Goldberg, SmallTalk-80: The Interac-
on to an inspector who reviews all main- tive Programming Environment, Addison-
tenance changes before they are applied to Acknowledgments 8. W. Teitelman, "A Tour Through Cedar,"
the production system. The MP returns to We thank Victor Basili, Dieter Rombach, Proc. Seventh Int'l Conf. Software Engi-
the log of suggestions to choose a new task. Marvin Zelkowitz, Judd Rogers, and Ruly Arifin neering, Mar. 1984, pp. 181-195.

for their helpful comments in preparing this arti- 9. N.M. Delisle, D.E. Menicosy, and M.D.
he display strategies we have pre- cle. We also thank Michael Dorsey for his Schwartz, "Viewing a Programming Envi-
sented should help programmers administration of the experiment. ronment as a Single Tool," Proc. ACMSig-sentedhouldhlp progammers We gratefully acknowledge the support for soft/Sigplan Software Engineering Symp.
to accomplish maintenance tasks this research from IBM Federal Systems Divi- Practical Software Development Environ-

on large-screen or multiscreen displays. sion, Bethesda, Maryland. ment, May 1984, pp. 49-56.
10. J.D. Bransford, Human Cognition, Wads-

worth, Belmont, Calif., 1979.
Display A Display B 11. A.L. Glass, K.J. Holyoak, and J.L. Santa,

Cognition, Addison-Wesley, Menlo Park,
Calif., 1979.

Hierarchical 12. B. Shneiderman, Software Psychology:
Application browser Human Factors in Computer and Informa-
program tion, Little, Brown, and Co., Boston, 1980.
execution Log of 13. D.L. Horton and C. Mills, "Human Learn-

Maintenance output previous ing and Memory," Ann. Rev. Psychology,
suggestions changes Vol. 35, 1984, pp. 361-394.

14. R. Lachman, G.L. Lachman, and C.E. But-
Source code terfield, Cognitive Psychology and Infor-

mation Processing: An Introduction,
Test Data Lawrence Erlbaum Associates, Hillsdale,

N.J., 1979.
15. T.R. Green, "Programming as a Cognitive

Activity," Human Interactions with Com-
Windows 1 2 3 4 puters, Academic Press, New York, 1980.

16. R.E. Kirk, Experimental Design: Proce-
Figure 5. Possible layout for a maintenance workstation using two large displays. Each duresfor the Behavioral Sciences, 2nd ed.,
display allows two sections 60 lines by 80 characters. Brooks/Cole, Belmont, Calif., 1982.

14 IEEE SOFTWARE

The authors' address is Dept. of Computer Science and Human-Computer Interaction Laboratory, Roland Simon is a faculty research assistant in
Center for Automation Research, University of Maryland, College Park, MD 20742. computer science at the University of Maryland.

His research interests include software engineer-
ing, distributed systems, algorithms, and
human-computer interaction.
Simon received a diploma in mathematics

from the Ecole Polytechnique Federale de
Lausanne (Swiss Federal Institute of Technology
of Lausanne), where he subsequently worked as
a research assistant in computer science.

Ben Shneiderman is an associate professor in the
Department of Computer Science and head of
the Human-Computer Interaction Laboratory,
both at the University of Maryland, College
Park. His technical interests include interactive
systems design, human factors research in pro-
gramming, database management, and com-
puters in education. Philip Shafer is an undergraduate research assis- Linda J. Weldon is on the research faculty of the
Shneiderman is the author of Software Psy- tant for the Human-Computer Interaction Center for Automation Research at the Univer-

chology (Little, Brown and Co., 1980), several Laboratory at the University of Maryland, sity of Maryland. Her research interests are in
other books, and over 100 technical research where he is pursuing a BS in computer science. engineering psychology and human factors.
papers. His next book, due out in June, is His research interests include programmer work- Weldon received a BA and anMA in psychol-
Designing the User Interface: Strategies for stations, programming language design and ogy from California State University, Chico, and
Effective Human-Computer Interaction, implementation, and operating systems. a PhD in experimental psychology from the Uni-
(Addison-Wesley). versity of Maryland.

ROCKY MOUNTAIN INSTITUTE
OF SOFTWARE ENGINEERINGPut our 20 years of experience placing technical professionals to

work for you. Client companies pay all fees, interview and relo- PO BOX 3521
cation costs. You get our expert advice and counsel FREE. Boulder
Nationwide opportunities in Communications. Defense. Intelli- ~'ii :i §:
gence. Computer Satellites, and Aerospace Systems. l Colorado

We are seeking individuals with experience and interest in one 80303
or more of the following areas:

* Software Cofiguration Mmgenent July 1986
* Data Base Design and Developmient C LR D
* Disbuted System Design and Development .. &
* VAX Software Development Under VMS
* IBM 4341 Software Development
* FORTRAN nd MACRO Progrmming ,.0 fT, . demonstrations
* Military Standard Systems Design and Development .E .D L G and
* Local Area Networks W an

* Color Graphics Display Software Design in-depth tutorials
* Rapid Prototyping
* Software Quality Assurance .sXg:UTWZ
* Artificial Intelligence

Test Pl mnng nd Testing gt. senior management-oriented
* Verification and Vadation .. summary
Salaries range irom SEEN- of solutions to
S30.000-$75,000 plus software problems
U.S. citizenship WALLAC
required. EBI SBI associates, inc.
desirable. Let us place
you in a better, more in-depth tutorials for
rewarding job ... now. Washington Science Center
Send your resume in 6101 Executive Boulevard, Box 6016 project managers
confidence to: Rockville, Maryland 20850-0616 ~O AM and software professionals
Dept. CA-IS.

Wallach ... Your Career Connection i5

