
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. SMC-12, NO. 2, MARCH/APRIL 1982

and analysis of performance models applicable to man-machine
systems evaluation," Bolt Beranek and Newman Inc., BBN Rep.
3446, Mar. 1977.
E. C. Poulton, Tracking Skill and Manual Control. New York:
Academic, 1974.
E. A. Riddle, "Comparative study of various text editors and
formatting systems," Air Force Data Services Center, The Penta-
gon, Rep. AD-A(29 050, Aug. 1976.

[34] T. B. Sheridan and W. R. Ferrel, Mani-machine Systenms: Infornma-
tion, Control, anid Decision Models of hluman Performance. Cam-
bridge, MA: MIT, 1974.

[351 D. (J. Hoecker and R. W. Pew, "User input to the design and
evaluation of computer-assisted service delivery," BBN, Tech. Rep.
4358, Mar. 1980.

[36] A. Cakir, D. J. Hart, and T. F. M. Stewart, "The VTD manual,"
Inca-Fiej Research Association, Tech. Rep. 1979.

Multiparty Grammars and Related Features
for Defining Interactive Systems

BEN SHNEIDERMAN

Abstract-Multiparty grammars are introduced which contain labeled
nonterminals to indicate the party that produces the terminal string. For
interactive person-computer systems, both the user commands and system
responses can be described by the linked BNF grammars. Multiparty
grammars may also be used to describe communication among several
people (by way of computers or in normal dialogue), network protocols
among several machines, or complex interactions involving several people
and machines. Visual features such as underlining, reversal, blinking, and
color, window declarations, and dynamic operations dependent on cursor

movement are also covered.

I. INTRODUCTION

JNTERACTIVE computer systems are increasingly popu-

lar, but the design tools available for specifying sys-
tems do not meet the complex needs of interaction. The
Backus-Naur form (BNF) [1] for specifying grammars,

and therefore the language generated, is geared towards
parsing statements in batch oriented programming lan-
guages such as Fortran. The metanotation used for Cobol
[19] or the syntax diagrams used for Pascal [11] are rea-

sonable alternatives to BNF, but they do not contain
facilities for interactive systems design.
Programming languages such as APL and Basic were

created with facilities which emphasized the writing of
interactive systems. Input control routines had simple but
rigid rules for valid input, and then a user's program had
to respond to the input. This approach is effective, but it is

difficult to standardize, document, modify, comprehend,
and debug the interactive dialogue. Checks for complete-
ness and consistency must be done by hand in an ad hoc
manner.

Manuscript received January 16, 1981X revised February II, 1981.
The author is with the Department of Computer Sciences. University of

Maryland, College Park, MD 20742.

Computer-assisted instruction systems such as Planit [6]
or Tutor [20] enable authors to prepare a frame with some

text followed by a question and then to list possible human
responses with accompanying messages to be displayed by
the computer. This approach simplified the course author's
task, helped in checking for completeness and consistency,
and facilitated debugging and modification. Unfortunately
the scope of application and the flexibility of computer-
assisted instruction systems is limited. Supplements to
common programming languages have also been offered as

tools for constructing interactive systems. These supple-
ments include Fortran subroutine packages, extensions to
standard languages, and Pascal data types [8].

Recognizing the inadequacy of the available tools, Parnas
suggested transition diagrams for defining interactive com-
puter systems [16]. Transition diagrams have labeled nodes
which indicate an initial state, possibly multiple terminal
states, and possibly multiple intermediate states. The di-
rected arcs are labeled with a possible input string followed
by the system response to that string. Feyock [7] described
transition diagrams in the context of computer-assisted
education and help systems, and Denert offers a variant of
these ideas [5]. Wasserman and Stinson, like Feyock, em-

phasized that the system response on the arc may involve
the invocation of another transition diagram [26]. This
subroutining idea is essential if transition diagrams are to
be modularly organized and comprehensible. Wasserman
and Stinson demonstrated a machine processable encoding
of the transition diagram and are more attentive to details
of interfacing with a procedural language to carry out
computations. Ihey givc a rcalistic esvalu-ato of the ad-

vantages and disadvantages of the transition diagram ap-

proach. Transition diagrams have also been suggested for

0018-9472/82/0200-0148$00.75 ©D1982 IEEE

[32]

[33]

148

SHNEIDERMAN: MULTIPARTY GRAMMARS AND RELATED FEATURES

describing interprocess communication activity between
computers in a network [2], [23], [24].

Variants of Petri nets [17] have been used to describe
process coordination, but they are similar to augmented
transition diagrams when used to describe interaction. The
use of BNF to describe human input in interactive dia-
logues has been suggested by Colmerauer [4] and by Hanau
and Lenorovitz [9], but both resort to other notational
mechanisms for describing the machine's response.
Moran offers an ambitious alternative [15] called the

command language grammar which provides four levels of
definitions for completely specifying syntax and semantics.
The ideas in Moran's work are important but the method
appears to be extremely complex. Reisner [18] extends the
classic BNF to create an action grammar for specifying the
operation of a color graphics system called Robart. She
uses a plus sign between terminals and nonterminals to
indicate the passage of time. Reisner's action grammar is
used to specify the complex actions of a user in pushing
buttons, making lightpen touches, and entering commands
or data from the keyboard, but does not include the
specification of the system response.
The idea of an action grammar suggested a natural

generalization to a two-party action grammar where the
action of both parties could be specified using familiar
BNF grammar tools. Generalizing further yields multiparty
action grammars which describe the actions of several
parties, people or machines, using the same notation. Such
multiparty action grammars would be useful in describing
simple interactive person-computer systems, more com-
plex teleconferencing, game playing, commodity exchange,
and other social interaction systems involving several peo-
ple and one machine, or network protocol interaction
among several machines (without human intervention).
These multiparty grammars might also be useful to

psycholinguists in modeling communication among two or
more humans. Research on natural language grammars
focuses on parsing a single sentence at a time and treats a
dialogue as a sequence of disconnected sentences. A more
inclusive model of human communication would treat a
dialogue as a connected sequence of sentences. Artificial
intelligence researchers have used this approach to con-
struct natural language question answering systems which
conduct clarification dialogue [3], [25]. Even early systems
such as Doctor [27] constructed a dialogue by taking
phrases from the human input and using them to generate
the output. For example, the human entering "YOU ARE
AFRAID OF ME" will cause the computer to respond DOES
IT PLEASE YOU TO BELIEVE THAT I AM AFRAID OF YOU.
Heidorn's transformational question answering system [10]
describes a decoding phase during which the human input
is parsed and an encoding phase during which the results
of the parse are used to generate the machine's response.
Mann et al. [13] shed further light on human dialogue with
their comprehension model.

This paper proposes extensions of BNF grammars to
describe the actions of several parties involved in a dia-
logue. After these basic ideas are presented, solutions to

specific problems of describing person-computer interac-
tions are offered.

II. MULTIPARTY GRAMMAR

Given the hard copy printout from a person-computer
interaction, we could produce a grammar which parsed the
entire printout, but such a parse should indicate which
party produced each line of output. This suggests that there
are really two independent grammars; one for parsing the
machine output and one for parsing the human entries. A
more precise description is that there are two grammars,
one for each party, but that there is some interplay be-
tween the two grammars. For example, the command:
DELETE GRADES

might produce the machine response:
FILE GRADES HAS BEEN DELETED

or the diagnostic message:
DELETE FAILS BECAUSE GRADES HAS PROTECTION KEYS.

The human commands may be described in the user man-
ual with a BNF grammar, but the machine responses are
often merely listed in the last pages of the reference man-
ual. The linkage between the human entries and the ma-
chine responses is defined by a lengthy and inaccessible
program.

In a multiparty grammar, a BNF grammar can be used
to describe the human entries, machine response (acknowl-
edgment or diagnostic), and some aspects of the interac-
tion. Usually, the human-related BNF grammar is used to
parse the input while the computer-related BNF grammar
is used to generate the output. In other circumstances the
human-related BNF grammar may be used to generate test
data.

Nonterminals of a multiparty grammar are labeled by
the party. Human nonterminals might be distinguished by
an "H" immediately after the left angle bracket, and com-
puter nonterminals might have a "c." For example,
KH: VALID-ACCT) is a nonterminal for a human entering a
valid account number and KC: ACCEPT-ACCT) is a non-
terminal for the computer's response when accepting an
account number. Nonterminals without an H or a c de-
scribe complex actions involving one or more parties which
are specified in other BNF productions. Productions with
H nonterminals on the left are used for recognition parsing
of input strings, and productions with c nonterminals on
the left are used for generating strings. In the simple
account acceptance example there might be a production
of the form:

KACCOUNT ACCEPTANCE):: -
KH: INVALID-ACCT) (C: ACCEPT-ACCT)I
(H: INVALID-ACCT) (C: DIAGNOSTIC-FOR-ACCT).

Since multiparty grammars deal with interactions, it will
be necessary for one party to respond directly to the
contents of the message sent by another party. When two
humans meet the dialogue might be

Party 1: GOOD MORNING MY NAME IS GEORGE
Party 2: HELLO GEORGE.

149

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. SMC-12, NO. 2, MARCH/APRIL 1982

Party 2 has taken the name GEORGE from Party l's state-

ment. To represent this idea in multiparty grammars, non-

terminals acquire the value of the most recent parse. Sur-
rounding a nonterminal with square brackets indicates that
the value of the nonterminal is to be used in the generation
of output. Thus the human dialogue would be represented
as

(DIALOG) :: = (1: GREET)(2: RESPOND)
(1: GREET) : = GOOD MORNING MY NAME IS (1: NAME)
(1: NAME) :: (1: IDENTIFIER)
(2: RESPOND):: HELLO [(1: NAME)]

where (1: IDENTIFIER) is any string of characters. The
square brackets indicate that whatever name was given by
Party I is used by Party 2. Subsequent parses involving
(1: NAME) would assign new values.
BNF grammars, production systems, and other metano-

tation schemes emphasize the parsing of correct syntactic
forms and have meager facilities for recognizing errors, but
a large part of interactive systems design is coping with
incorrect syntactic forms. A simple approach is to extend
the grammar to describe all possible inputs, so that the
grammar recognizes all strings. Familiar typographic errors

or common user mistakes might be described in the gram-
mar, and then specific diagnostics could be easily pro-
duced. Good systems designers recognize that illegal
entries deserve responses that are as well designed as

responses to legal entries. Unfortunately, writing BNF
productions for each possible set of input tokens leads to
complex grammars which obscure the normal process. It
would be convenient to have a nonterminal which matches
any string, if all other parses fail. In this notation KH: *)

will indicate such a nonterminal. For example, a highly
simplified command language might contain

(COMMANDS):: =

KH: OPEN)KC: OPEN-ACKNOWLEDGE)i
KH: CLOSE)<C: CLOSE-ACKNOWLEDGE)l
KH: *)KC: OPEN-CLOSE-DIAGNOSTIC)

KH: OPEN):: =OPENKH: FILENAME)I
OKH: FILENAME)

KC: OPEN-ACKNOWLEDGE) ::

[KH: FILENAME)] IS NOW OPEN

KH: CLOSE):: =CLOSE KH: FILENAME)|
CLKH: FILENAME)|
CKH: FILENAME)|
ENDKH: FILENAME)

KC: CLOSE-ACKNOWLEDGE):: =

[KH: FILENAME)] HAS BEEN CLOSED

KC: OPEN-CLOSE-DIAGNOSTIC) =

[KH: *)] CANNOI BE RECOGNiZED
AS AN OPEN OR CLOSE.

The KH: *) nonterminal must be used cautiously, and

every effort should be made to parse as much of the input

1. (LOGON) (START) KACCT)
2. KSTART):: - KH: INITIATE) KC: READY-ACCT)

KH: INVALID-INITIATE) (C: CRLF-REQUEST)
3. KH: INITIATE) :: = I)
4. KH: INVALID-INITIATE):: - KH *)
5. KC: READY-ACCT):: READY FOR ACCOUNT

NUMBER-)
6. KC: CRLF-REQUEST):: TO SIGNON TYPE AN "I AND

HIT ENTER

7. KACCT):: KH: VALID-ACCT) KC: ACCEPT-ACCT)
KH: *) KC: ACCT-REQUEST)

8. KH: VALID-ACCT) :: KH: NUM) KH: NUM)
KH: LETTER)O

9. KC: ACCEPT-ACCT):: - LAST SIGNON FOR

[KH: VALID ACCT)] WAS KLAST-SIGNON-INFO)
10. KC: ACCT-REQUEST) : = ACCOUNT NUMBERS ARE TWO

DIGITS FOLLOWED BY A LETTERC) KC: READY-ACCT)
where KH: *) is a pattern match nonterminal which is

attempted only after other parses have failed.

KH: NUM) :: = 0 1 2 131 4 151 6 7 181 9
KH: LETTER):: = A IB IC... Z

-)IS THE CARRIAGE RETURN AND LINE FEED CODE

Fig. 1. Example of log-on procedure using multiparty grammar.

as possible so as to provide the best possible diagnostic
message. Good diagnostics should avoid accusatory terms
such as ERROR, INVALID, or ILLEGAL but should be con-
structive and suggest what needs to be done to set things
right. The value of KH: *) is the last value assigned to it;
allowing echo printing of unparsable statements.
To recapitulate, three features have been introduced

which distinguish multiparty grammars from the tradi-
tional BNF:

1) labeling nonterminals with a party identifier;
2) assignment of values to nonterminals and the use of

square brackets to output the value;
3) a nonterminal which matches any string if no other

parse succeeds.

Fig. 1 contains an example log-on procedure described
with a multiparty grammar. Production I shows that a
log-on consists of a starting phase and an account number
phase. Production 2 shows a proper and an invalid human
initiation (described in productions 3 and 4) with ap-
propriate computer response (described in productions 5
and 6). Production 7 shows a proper and an invalid account
number entry (described in production 8) and the ap-
propriate computer responses (described in productions 9
and 10). In production 9 the computer repeats the user's
account number by displaying the value assigned to
(H: VALID-ACCT) in production 8 and shows information
about the last sign-on that is generated on other produc-
tions.

Multiparty grammars describe the syntax of interactions
and a small portion of what might be called the semantics.
Since programming operations or database functions may

150

SHNEIDERMAN: MULTIPARTY GRAMMARS AND RELATED FEATURES

be very complex, the complete description of an interactive
system would require use of some programming language
description. The approach taken in compiler generators
such as XPL (McKeeman et al. [14]) or YACC (Johnson
[12]) is suitable. Each production which is used for recogni-
tion of input might be followed by a series of programming
language statements which perform computations, compare
values, search databases, etc. Productions which generate
text do not need further elaboration.

Implementing the square bracket which allows for as-
signment of values to nonterminals presents some prob-
lems. A nonterminal appearing in several productions or in
a recursive production may receive multiple values during a
parse. Two approaches seem possible. A stack could be
implemented for each nonterminal and each value would
be placed on the top of the stack. Reference to the non-
terminal would include an optional number to indicate
which value was desired. For example, [KH: ENTRY)(- 1)]
would indicate the entry below the top of the stack. A
simpler implementation would require only a single value
for each nonterminal. The user would be required to write
code associated with each production which copied the
value into temporary storage areas for later use.
The KH: *) feature also presents implementation prob-

lems. Its use should be restricted to the parsing of input,
and it is applied only if all other parses fail. A delimiter
such as a ":" or " * /" or carriage return to the right of this
nonterminal is necessary to avoid a parse which takes all
the remaining text.
The advantage of using an automatic compiler generator

system is that some aspects of completeness and ambiguity
can be checked. Nonterminals which are undefined or
unreferenced can be detected by the automatic system and
unique parse trees can be guaranteed. These features are a
tremendous aid to the design of large interactive systems
where the volume of detail may be enormous.

Having a machine-readable specification which is used
to produce the final system may lead to fewer implementa-
tion problems and delays. Variants in user command for-
mats can be quickly and easily implemented, thereby
facilitating pilot testing and rapid improvement [22]. The
machine specification may also aid in the automatic con-
struction of user aids such as HELP facilities, UNDO com-
mands, and status requests.

Multiparty grammars have the advantage of familiarity:
the similarity to BNF makes this notation natural to a
large community of researchers and system developers.
Productions can be made readable to humans while pre-
serving the precision necessary for machine processing. The
presence of numerous nonterminals which have meaningful
names aids human comprehension. Level structuring and
modular organization of productions permit meaningful
sections of the grammar to be grouped and facilitate com-
prehension. Labeling of nonterminals with the name of the
party is a further aid.
A potential advantage of multiparty grammars is that

standards for interaction can be established by specifying

the grammatical forms which are permissible. Grammars,
when prepared in a regular way, can be used as the basis
for complexity metrics for the induced language. For exam-
ple, in a system for novices, the designer may be forced to
restrict commands so that no more than three productions
are necessary or that no more than two operands are
permitted. Comparative metrics would be useful in assess-
ing the relative merits of two proposed command lan-
guages. Simplicity might be measured by merely counting
the number of productions necessary to describe the lan-
guage.
The basic multiparty grammar concept describes syn-

tactic features of an interactive dialogue, but extensions
could be made to include more semantic features. A guard
expression containing Boolean qualifiers might be used to
indicate when a particular production is invoked. Integer
counters might be initialized, incremented, and tested to
control the number of times a particular production was
applied. This technique would be used to limit the number
of sign-on attempts that were permitted or the number of
responses a user could give in a computer-assisted instruc-
tion application.

III. DEFINING VISUAL FEATURES

The multiparty grammar described thus far is limited to
hardcopy line-by-line types of interaction. To accommod-
ate soft copy displays, graphics, lightpen input, touch-
screens, sonic pens, special programmed function keys,
joysticks, knobs, buttons, etc., we must include additional
tools. These tools are not extensions of the multiparty
grammar metanotations, but employ the grammar descrip-
tion approach to specify features common to interactive
systems.

It seems straightforward to include some features of
line-oriented cathode ray tube or plasma displays which
merely change the visual presentation of characters, such as
underlining, reversal, blinking, fonts, typesize, intensity, or
color. By including a special marker, these visual features
can be specified. This approach is similar to commands
included in text editors or document processors. For exam-
ple, to underline a portion of output the following produc-
tion could be used:

KC: RESPONSE):: (C: FIRSTPART)KC: UNDERLINE)
KC: IMPORTANTPART)>C: OFFUNDERLINE).

The Kc: UNDERLINE) nonterminal indicates that the next
set of characters should be underlined until a
KC: OFFUNDERLINE) is encountered. This approach can be
applied to at least the following features:

1) underline UNDERLINE, OFFUNDERLINE
underlines text

2) reversal REVERSE, OFF REVERSE
switches from
white on black to
black on white

1 5

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. SMC-12, NO. 2, MARCH/APkIL 1982

3) blinking BLINKING((RATE))
rate is specfied in blinks per second

OFFBLINKING, equal
to BLINKING(O)

4) font FONT((typefont name)),
5) typesize TYPESIZE(Ksize)),
6) intensity INTENSITY(<level)),
7) colors COLOR(Kcolor choice)).

It is possible to switch to underlining, a different typefont,
and a higher intensity by making three successive specifica-
tions. The permissible features depend on the capabilities
of the hardware and software systems. These static feature
nonterminals may be invoked by any party in the interac-
tion. For humans at a keyboard, there may be a special
character to specify underlining, a toggle switch to indicate
reversal or a knob for intensity; for the computer, signals
may be sent to the terminal to invoke these static features
or the nonterminal may expand to a null character. In any
case, instructions must be written by the system developer
to execute the visual feature change.

IV. WINDOW DECLARATIONS FOR SCREENS

Designers have found it convenient to design interactive
systems so that the screen is divided into several work
areas called windows. Typically, status information indi-
cating the time of day, system availability, program name,
or frame number appears on the top. The center portion of
the screen may have one or two work windows with a
bottom window listing available commands or options. The
number, shape, and size of windows should be alterable by
human commands or computer program instructions.

If we restrict ourselves to character-oriented screens with
a fixed number of horizontal and vertical positions, then
windows can be specified by grid points. The upper left
position is position (1, 1), and the lower right position is
(R, C) where R is the number of rows and C is the number
of columns. For example, a screen might be separated into
three windows: a top window showing status information,
a middle window providing a user workspace, and a bot-
tom window listing the available commands. Users should
be able to describe such a screen layout by indicating the
rectangular shaped windows as a two-dimensional array of
characters and the name of the starting symbol which
defines the contents of the window. The declaration might
be part of a screen definition module which is part of the
interactive system development package:
DECLARE SCREEN CONTAINING

(WINDOW STATUS (1:4, 1:72) WITH STATUS-INFO,
WINDOW WORKSPACE (5:34, 1:72) WITH WORK-INFO,
WINDOW AVAILABLE (35:40, 1:72) WITH AVAIL-INFO).

The row declarations in this simple case do not overlap and
do cover the full 40 row and 72 column screen. Extensions
to this simple layout might include the following.

1) Coverage of Less than the Full Screen-The undefined
areas are left blank.

2) Coverage of More than Full Screen-The defined
areas that are off screen are maintained but not shown.
This allows using sliding window techniques in which only
a small portion of a large data area is visible at one time.

3) Overlapped Windows-The window declaration order
indicates which windows are on top of previously defined
windows.

4) Nested Window Declarations-A window may contain
several windows. For example, the workspace window may
be broken down into several windows for errors or future
status information specific to a particular application. The
declaration might be as follows:

DECLARE SCREEN CONTAINING
(WINDOW STATUS (1:4, 1:72) WITH STATUS-INFO,
WINDOW WORKSPACE (5:34, 1:72) CONTAINING,
(WINDOW TEXTSPACE (5:27, 1:72) WITH WORDPROCESS,
WINDOW ABBREVIATIONLIST (28:29, 1:72) WITH ABBREVS,
WINDOW ERRORS (30:34, 1:72) WITH DIAGNOSTICS),

WINDOW AVAILABLE (35:40, 1:72) WITH AVAIL-INFO).

5) Multiple Screen Layouts-Several screens may be
defined for applications such as utility plant monitoring or
air traffic control, but the information on each screen is
independent. In other applications such as teleconferenc-
ing, cooperative program debugging, game playing, psycho-
logical experimentation, commodity exchange or stock
market systems, and newspaper editing, parts of a screen
display may be shared by several screens. This can be
arranged by referencing the same starting symbol. For
example, in a commodity exchange system, each viewer
may have a common window with the current trades, a
common window with the latest price for each commodity,
a personal window showing current holdings, and a per-
sonal window for a work area to make computations in
planning future purchases and sales.

V. DYNAMIC OPERATIONS ON SCREENS

One of the exciting advantages of visual display screens
is that the information on the screen can be dynamically
modified. In text editing it becomes possible to make
insertions and have the text move on the screen to accom-
modate the additional words. In data entry, prompting
patterns such as "READY FOR DATE: MM. DD. YYYY" can
guide the user and then be overwritten as data is entered:
READY FOR DATE: 03.24.1973." In command languages,

the user may move a cursor back a few lines to repair an
incorrect command without having to retype the entire
command. In commercial practice, familiar forms may be
shown on a screen and the user simply moves a cursor to
the proper position to make an entry or replace a previous
entry.
The key to dynamic operations is the capacity to move a

cursor to specify the placement of the new entries. Cursor
movement can be specified in several ways:

1) by a cursor placement device such as a lightpen,
sonicpen, touchscreen or rotating click wheels;

2) by a cursor movement device such as four keys with

152

SHNEIDERMAN: MULTIPARTY GRAMMARS AND RELATED FEATURES

directional arrows (t-,1< -), a mouse, joystick, or
rotating track ball;

3) by specifying the absolute physical address within the
screen, for example, row 12, column 49;

4) by specifying the relative screen address within the
window, for example row 3, column 19 within the
WORKSPACE window;

5) by giving a command to move the cursor horizontally
or vertically, for example, up 1, or LEFT 3.

Methods I and 2 are generally easiest for humans, but the
output of these special purpose devices must be converted
into the absolute screen address for machine processing.
Method 3 ignores the user's perception of windows. Meth-
ods 4 and 5 can both be implemented, or to keep matters
simple, one can be implemented in terms of the other. A
cursor, currently at row 3, column 1, could be moved to
row 1, column 6, of the window with the starting symbol
WORKINFO by the command

a) WORKINFO CURSOR TO (1,6)
or by the command

b) WORKINFO CURSOR UP 2 LEFT 5
or by hitting the following keys:

c) T I
or by using a special purpose device such as the lightpen.

In all these forms the cursor address must be trans-
formed to indicate the absolute physical screen address of
line 5 column 1. This transformation must be done by the
interactive control program handling the productions that
describe the movement operations. Those operations could
be written for each of the above three examples:

a) (H: CURSOR MOVE):: =

(H: STARTING SYMBOL NAME)
CURSOR TO ((H: INTEGER), (H: INTEGER))

b) (H: CURSOR MOVE):: =
(H: STARTING SYMBOL NAME)
CURSOR KH: VERTICAL) (H: HORIZONTAL)

(H: VERTICAL) : : -

UP (H: INTEGER) DOWN (H: INTEGER)
(H: HORIZONTAL) : _-

LEFT (H: INTEGER) RIGHT (H: INTEGER)

C) (H: CURSOR MOVE) :: =
(H: SINGLE MOVE)
(H: SINGLE MOVE) (H: CURSOR MOVE)

(H: SINGLE MOVE) : - T { |
.

Once the cursor is in place, then the normal rules of
interactive systems apply until a new cursor movement
instruction is given. Old text is replaced by the new text or
eliminated by blanks.
The productions indicating human initiated cursor

movement are only one part of the specification of the
interaction. The cursor may be moved by the interactive
program specification, for example in an interactive
customer order entry application, the system may auto-
matically move the cursor from one part of the form to
another as data items are entered.

Another problem that must be dealt with is illegal cursor
movements. The user may inadvertently try to move the
cursor outside its window. An error message could be
shown, the cursor could be stopped at the border of the
window, the cursor could "wrap around," emerging at the
opposite side of the window, or the cursor could revert to
the upper left-hand corner of the window. Application
specific conditions on cursor movement might be included;
for example, in text editing an attempt to move beyond the
right side of the window might move the cursor to the
beginning of the next line of text.

VI. SUMMARY

The major contribution of this paper is to introduce the
notion of multiparty grammars for describing the actions
of several participants in a dialogue. Multiparty grammars
have labeled nonterminals to indicate the source of the
string. Nonterminals acquire values which can be refer-
enced by any party. Since error handling is such a critical
component of interactive systems design, a nonterminal
which matches an unparsable string is introduced.

Secondary notions which permit a more complete de-
scription of an interactive terminal session are also intro-
duced. Common visual features such as underlining, re-
versal, or color were accommodated with a set of BNF
productions. Window definitions for screen-oriented sys-
tems were made in a simple declaration statement. Cursor
movements which are necessary to describe dynamic screen
features were handled with another set of BNF produc-
tions.
The use of multiparty grammars and these secondary

features for describing interaction is especially appealing if
a compiler-compiler is available to provide partial verifica-
tion of consistency and completeness, and to facilitate the
writing of procedural language statements to perform re-
quired operations. Multiparty grammars may also facilitate
standardization, preparation of comparative metrics of
simplicity, documentation, generation of help facilities and
verification of correctness. The reader should be cautioned
that this is a proposal which must be implemented, refined
through experience, and tested in a controlled environment
to determine its effectiveness.

Extending these ideas to include special hardware or full
graphics is a natural next step. Grammars to describe
pictures have been investigated, and these should be studied
to expand the generality of this approach. Additional
grammar features to describe specific application environ-
ments such as line-oriented text editing may substantially
reduce the implementor's task by simplifying or eliminat-
ing the need to write procedural language statements to
handle each production. A text editor generating system
seems feasible.

ACKNOWLEDGMENT

The author wishes to thank M. Brodie, J. Gannon,
R. Hamlet, G. Nagy, J. Sowa, and G. Thomas for sugges-

1 53

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. SMC-12, NO. 2, MARCH/APRIL 1982

tions and encouragement after reading versions of this
paper. The referees provided additional references and the
idea of adding a colon to the multiparty grammar notation.

REFERENCES

[1] J. Backus, "The syntax and semantics of the proposed international
algebraic language of the Zurich ACM-GAMM Conference," in
Infornmtion Processing. Paris, France: UNESCO, 1960, pp. 125-132.

[2] (G. V. Bochmann, "Finite state description of communication pro-
tocols," Comput. Networks, vol. 2, pp. 361-372, Oct. 1978.

[3] E. F. Codd, "HOW ABOUT RECENTLY? (English dialog with
relational databases using RENDEZVOUS Version 1)," in Data-
bases: Improving Usabilitv and Responsiveness, B. Shneiderman, Ed.
New York: Academic, 1978, pp. 3-28.

[4] A. Colmerauer, "Metamorphosis grammars," in Natural Language
Communication with Conmputers, L. Bolc, Ed. Berlin, Germany:
Springer-Verlag, 1978, pp. 133-189.

[5] E. Denert, "Specifications and design of database systems with
state diagrams," in Proc. Int. Computing Symp. 1977. Amsterdam,
The Netherlands: North-Holland, 1977, pp. 417-424.

[6] S. L. Feingold, "PLANIT-A flexible language designed for com-
puter-human interaction," in Proc. Fall Joint Computer Conf. 1967.
Montvale, NJ: AFIPS Press, 1967, pp. 545-552.

[7] S. Feyock, "Transition diagram-based CAI/HELP systems," Int. J.
Man-Machine Studies, vol. 9, pp. 399-413, 1977.

[8] D. Gries and J. M. Lafuente, "Language facilities for programming
user-computer dialogues," IBM J. Res. Devel., vol. 22, pp. 145-158,
Mar. 1978.

[9] P. Hanau and D. R. Lenorovitz, "Prototyping and simulation tools
for user/computer dialogue design," in Proc. A CM SIGGRA PH '80
Contf., July 1980, pp. 271-278.

[10] Ci. E. Heidorn, "Automatic programming through natural language
dialogue: A survey," IBM J. Res. Devel., vol. 20, pp. 302-313, July
1976.

[11] K. Jensen and N. Wirth, PASCA L User Manual and Report, 2nd ed.
New York: Springer-Verlag, 1975.

[12] S. C. Johnson, "YACC-Yet another compiler-compiler," Bell Lab.
Tech. Rep., Murray Hill, NJ, 1977.

[13] W. C. Mann, J. A. Moore, and J. A. Levin, "A comprehension
model for human dialogue," in Proc. 5th Int. Joint Conf. Artificial
Intelligence, 1977.

[14] W. McKeeman, J. J. Horning, and D. Wortman, XPL: A Compiler
Generator. Englewood Cliffs, NJ: Prentice-Hall, 1970.

[15] T. P. Moran, "Introduction to the command language grammar: A
representation for the user interface of interactive computer sys-
tems," XEROX PARC Rep. SSL-78-3, Palo Alto, CA, Oct. 1978.

[16] D. L. Parnas, "On the use of transition diagrams in the design of a
user interface for an interactive computer system," in Proc. 24th
Nat. ACM Conf. New York: ACM, 1969, pp. 379-385.

[17] J. L. Peterson, "Petri nets," ACM Computing Surveys, vol. 9, pp.
223-252, Sept. 1977.

[18] P. Reisner, "Using a formal grammar in human factors design of an
interactive graphics system," IBM Res. Rep. RJ2505, San Jose, CA,
Apr. 11, 1979.

[19] J. Sammet, "A Definition of the COBOL 61 Procedure Division
Using ALGOL 60 Metalinguistics," Proc. 16th Nat. Conf. ACM,
New York, 1961.

[20] B. A. Sherwood, The TUTOR Language. Urbana, IL, Computer-
Based Education Lab. Univ. of Illinois, June 1974.

[21] B. Shneiderman, Software Psychology: Human Factors in Computer
and Information Systems. Cambridge, MA: Winthrop, 1980.

[22] _ , "Human factors issues in designing interactive systems,"
IEEE Comput., vol. C- 12, pp. 9-19, Dec. 1979.

[23] C. A. Sunshine, "Survey of protocol definition and verification
techniques," Comput. Networks, vol. 2, pp. 346-350, Oct. 1978.

[24] "Formal techniques for protocol specification and verifica-
tion," IEEE Comput., vol. C-12, pp. 20-27, Sept. 1979.

[25] D. Waltz, "An English language question answering system for a
large relational database," Commun. ACM, vol. 21, pp. 526-539,
July 1978.

[26] A. I. Wasserman and S. K. Stinson, "A specification method for
interactive information systems," in Proc. Conference Specifications
of Reliable Software, IEEE Cat. 79 CH 1401 -9C.

[27] J. Weizenbaum, "ELIZA-A computer program for the study of
natural language communication between man and machine," Com-
mun. ACM, vol. 9, pp. 36-45, Jan. 1966.

154

