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This paper presents a cognitive framework for describing behaviors involved 
in program composition, comprehension, debugging, modification, and the 
acquisition of new programming concepts, skills, and knowledge. An in- 
formation processing model is presented which includes a long-term store 
of semantic and syntactic knowledge, and a working memory in which problem 
solutions are constructed. New experimental evidence is presented to support 
the model of syntactic/semantic interaction. 
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1. I N T R O D U C T I O N  

Recent  research in p r o g r a m m i n g  and p r o g r a m m i n g  languages has begun 
to focus more  heavi ly on h u m a n  factors  and  to separate  human-cen te red  
issues f r o m  the  machine-centered  issues. This na tura l  division enables us to 
s tudy p r o g r a m m e r  behavior  wi thout  concern  for  implementa t ion  issues such 
as pars ing  ease, execution speed, s torage economy,  avai lable  charac ter  
sets, etc. 
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Stimulated by Weinberg's text ~29) and the improvements promoted by 
structured programming advocates, researchers have begun to deal with the 
cognitive processes of programmers. This research has taken the form of 
controlled experiments, protocol analyses, and case studies on individuals 
or groups. (9,16,19,21,2~-~5,27,~s,3~ The tasks studied have included program 
composition, comprehension, debugging, modification, and the learning of 
new programming skills. A wide range of subjects, from nonprogrammers 
to professional programmers, have been tested, mostly on short- or medium- 
length programs, but occasionally on longer, more complex programs. 

Other material on programmer behavior is contained in the publications 
of the ACM Special Interest on Computer Personnel Research. Interesting 
personal reflections have appeared in books by Joel Aron (1~ and Frederick 
Brooks, Jr. (4) 

A final area of importance is programming education. Research on this 
topic is covered by the ACM Special Interest Group on Computer Science 
Education, which publishes the proceedings of an annual conference. 
Educational psychologists have recently begun to probe the acquisition of 
programming skills, (~2,1~ providing a new and valuable viewpoint. 

Unfortunately this work is fragmented; nowhere is there a unified 
approach or theory to account for the results that are beginning to appear. 
Each paper focuses on a particular problem, issue, task, or aspect of the 
programming process without producing a broader model that explains the 
wide range of programmer behavior. A unified cognitive model of the 
programmer would guide us in future experiments and suggest new pro- 
gramming techniques while accounting for observed behavior. Such a 
model becomes necessary as we move into an era of more widespread 
computer literacy, in which an increasingly diverse population interacts 
with computers. The intuitions and experience of expert programmers and 
programming language designers are no longer appropriate for developing 
facilities to be used by novices with varied backgrounds. 

In Section 2 we present our model of programmer behavior. In 
Section 3 the experiments that led to this model are presented and future 
experiments are proposed. Section 4 is a summary with conclusions. 

2. A C O G N I T I V E  V I E W  O F  P R O G R A M M E R  B E H A V I O R  

Any model of programmer behavior must be able to account for five 
basic programming tasks: 

�9 composition: writing a program, 

�9 comprehension: understanding a given problem, 

�9 debugging: finding errors in a given program, 



Syntactic/Semantic Interactions in Programmer Behavior 221 

�9 modification: altering a given program to fit a new task, 

�9 learning: acquiring new programming skills and knowledge. 

In addition, a cognitive model must be able to describe these tasks in terms of 

| the cognitive structures that programmers possess or come to possess 
in their memory, and 

�9 the cognitive processes involved in using this knowledge or in adding 
to it. 

Recent developments in the information processing approach (1~ to the 
psychology of learning, memory, and problem solving have suggested a 
framework for discussing the components of memory involved in pro- 
gramming tasks (see Fig. 1). Information from the outside world, to which 
the programmer pays attention, such as descriptions of the to-be-programmed 
problem, enters the cognitive system into short-term memory, a memory 
store with a relatively limited capacity (Miller (15) suggests about seven chunks) 
and which performs little analysis on the input information. The pro- 
grammer's permanent knowledge is stored in long-term memory, with 
unlimited capacity for organized information. The component labeled 
working memory by Feigenbaum m) represents a store that is more permanent 
than short-term but less permanent than long-term memory, and in which 
information from short-term and long-term memory may be integrated and 
built into new structures. During problem solving (e.g., generation of a 
program) new information from short-term memory and existing relevant 
concepts from long-term memory are integrated in working memory, and 
the result is used to generate a solution or, in the case of learning, is stored 

Input from 
perception 

Short-term ~I Working 
| memory memory 

Long-term memory 
(Semantic and 

Syntactic Knowledge) 

Fig. 1. Components of memory in problem solving. 
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in long-term memory for future use. Two questions are posed by this mode 
What kind of knowledge (or cognitive structures) is available to the pro- 
grammer in long-term memory? What kind of processes (or cognitive 
processes) does the programmer use in building a problem solution in 
working memory ? 

2.1. Multi leveled Cognitive Structures 

The experienced programmer develops a complex multileveled body of 
knowledge--stored in long-term memory--about programming concepts and 
techniques. Part of that knowledge, called semantic knowledge, consists of 
general programming concepts that are independent of specific programming 
languages. Semantic knowledge may range from low-level notions of what 
an assignment statement does, what a subscripted array is, or what data 
typas are; to intermediate notions such as interchanging the contents of two 
registers, summing up the contents of an array, or developing a strategy 
for finding the larger of two values; to higher level strategies such as binary 
searching, recursion by stack manipulation, or sorting and merging methods. 
A still higher level of semantic knowledge is required to solve problems in 
application areas such as statistical analysis of numerical data, stylistic 
analysis of textual data, or transaction handling for an airline reservation 
system. Semantic knowledge is abstracted through programming experience 
and instruction, but it is stored as general, meaningful sets of information 
that are more or less independent of the syntactic knowledge of particular 
programming languages or facilities such as operating systems languages, 
utilities, and subroutine packages. 

Syntactic knowledge is a second kind of information stored in long-term 
memory; it is more precise, detailed, and arbitrary (hence more easily 
forgotten) than semantic knowledge, which is generalizable over many 
different syntactic representations. Syntactic knowledge involves details 
concerning the format of iteration, conditional or assignment statements 
valid character sets; or the names of library functions. It is apparently easier 
for humans to learn a new syntactic representation for an existing semantic 
construct than to acquire a completely new semantic structure. This is 
reflected in the observation that it is generally difficult to learn the first 
programming language, such as FORTRAN, PL/1, BASIC, and PASCAL, 
but relatively easy to learn a second one of these languages. Learning a first 
language requires development of both semantic concepts and specific 
syntactic knowledge, while learning a second language involves learning 
only a new syntax, assuming the same semantic structures are retained. 
Learning a second language with radically different semantics (i.e., underlying 
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Fig. 2. Long-term memory. 

basic concepts) such as LISP or MICRO-LANNER may be as hard or 
harder than learning a first language. 

The distinction between semantic and syntactic knowledge in the 
programmers' long-term memories is summarized in Fig. 2. The semantic 
knowledge is acquired largely through intellectually demanding, meaningful 
learning, including problem solving and expository instruction, which 
encourages the learner to "anchor" or "assimilate" new concepts within 
existing semantic knowledge or "ideational structure. ''(21 Syntactic knowledge 
is stored by rote, and is not well integrated within existing systems of semantic 
knowledge. The acquisition of new syntactic information may interfere with 
previously learned syntactic knowledge, since it may involve adding rather 
than integrating new information. This kind of confusion is familiar to 
programmers who develop skills in several languages and find that they 
interchange syntactic constructs among them. For example, PASCAL 
students with previous training in FORTRAN find assignment statements 
simple, but often err while coding by omitting the colon in the assignment 
operator and the semicolon to separate statements. 

Our discussion of the two kinds of knowledge structures involved in 
computer programming parallels similar distinctions in mathematics learning. 
The gestalt psychologists distinguished between "structural understanding" 
and "rote memory, ''m21 between "meaningful apprehension of relations" 
and "senseless drill and arbitrary associations, ''(11) between knowledge 
which fostered "productive reasoning" and "reproductive reasoning. ''c13,321 
The flavor of the distinction is indicated by an example cited by Wert- 
heimer, m2) suggesting two kinds of knowledge about how to find the area 
of a parallelogram: knowledge of the memorized formula, A = h • b; and 
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structural understanding of the fact that a parallelogram may be converted 
into a rectangle by cutting off a triangle from one end and placing it on the 
other. Similarly, Brownell (5) distinguished between "rote" knowledge of 
arithmetic acquired through memorizing arithmetic facts (e.g., 2 + 2 = 4) 
and "meaningful" knowledge such as relating these facts to number theory 
by working with physical bundles of sticks. More recently, Polya (18) has 
distinguished between "know how" and "know what," Greeno (1~ has made 
a distinction between "algorithmic" and "propositional" knowledge used 
in problem solving, and Ausubel (2) distinguished between "rote" and 
"meaningful" learning outcomes. Although these distinctions are vague, 
they reflect a basic distinction, similar to our concept of syntactic and 
semantic knowledge, that is relevant for computer programming. In his 
parody of the "new math," Tom Lehrer made a distinction between "getting 
the right answer" and "understanding what you are doing" (with new math 
emphasizing the latter). In both mathematics and computer science, however, 
it seems clear that a compromise is needed between syntactic knowledge and 
knowledge that provides direction for creating strategies of solution, i.e., 
semantic knowledge. 

2.2. Multi-Leveled, Funneled Cognitive Processes 

To complete the model we must examine the processes involved in 
problem-solving tasks, such as program composition. The mathematician 
George Polya (18) suggested that problem solving involves four stages: 

1. Understanding the problem, in which the solver defines what is given 
(initial state) and what is the goal (goal state). 

2. Devising a plan, in which a general strategy of solution is discovered. 

3. Carrying out the plan, in which the plan is translated into a specific 
course of action. 

4. Checking the result, in which the solution is tested to make sure it 
works. 

2.2. I. Program Composition 

When a problem is presented to a programmer, we assume it enters the 
cognitive system and arrives in "working memory" by way of short-term 
memory, and that in working memory the problem is analyzed and repre- 
sented in terms of the "given state" and "goal state. ''(3~) Similarly, general 
information from the programmer's long-term memory (both syntactic and 
semantic) is called and transferred to working memory for further analysis. 
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These two steps--transferring, to working memory, a description of the 
problem from short-term memory, and general knowledge from long-term 
memory--constitute the first step in program composition. 

The second step, devising a general plan for writing the program, 
follows a pattern described by Wirth (a4~ as stepwise refinement. At first the 
problem solution is conceived of in general programming strategies and 
application-related domains such as graph theory, business transaction 
processing, orbital mechanics, chess playing, etc. We refer to the pro- 
grammer's general plan as "internal semantics," and suggest that this 
internal representation progresses from a very general, to a more specific 
plan, to a specific generation of code focusing on minute details. This 
"funneling" view of problem solving from the general to the specific was 
first popularized by the gestalt psychologist Carl Duncker, {7) based on 
asking subjects to solve a complex problem "aloud." General approaches 
occurred first, followed by "functional solutions" (i.e., more specific plans), 
followed by specific solutions. 

A top-down implementation of the internal semantics for a problem 
would demand that the highest (most general) levels be set first, followed 
by more detailed analysis. This process, suggested by Polya and Wickelgren 
as "working backwards" or "reformulating the goal" (from the general goal 
to the specifics) is one technique used by humans in problem solving. A 
bottom-up implementation would permit low-level code to be generated first, 
in an attempt to build up to the goal. This process, referred to as "working 
forward" or "reformulating the givens," where the "givens" include the 
permissible statements of the language, is another problem-solving technique. 
Apparently, some types of problems are better solved by one or the other, 
or both of these techniques. 

Structured programming, and particularly the idea of modulariza- 
tion, is another technique that aids in the development of the internal 
semantics. (~,17,a6) Polya and Wickelgren refer to this technique as making 
"subgoals." 

Each of these techniques leads to a funneling of the internal semantics 
from a very general to a specific plan. Then code may be written, and the 
program run, as a test. These steps are summarized in Fig. 3. Shneiderman (2~) 
describes design processes and implementation approaches for programs and 
data. 

This model of program composition suggests that once the internal 
semantics have been worked out in the mind of the programmer, the construc- 
tion of a program is a relatively straightforward task. The program may be 
composed easily in any programming language with which the programmer 
is familiar, and which permits similar semantic constructs. An experienced 
programmer fluent in multiple languages will find it of approximately equal 
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Fig. 3. Program composition process. 

ease to implement a table look-up algorithm in PASCAL, FORTRAN, 
PL/1, or COBOL. 

2.2.2. Program Comprehension 

The program comprehension task is a critical one because it is a subtask 
of debugging, modification, and learning. The programmer is given a 
program and is asked to study it. We conjecture that the programmer, with 
the aid of his or her syntactic knowledge of the language, constructs a 
multileveled internal semantic structure to represent the program. At the 
highest level the programmer should develop an understanding of what the  
program does: for example, this program sorts an input tape containing 
fixed-length records, prints a word frequency dictionary, or parses an 
arithmetic expression. This high-level comprehension may be accomplished 
even if low-level details are not fully understood. At lower semantic levels 
the programmer may recognize familiar sequences of statements or algo- 
rithms. Similarly, the programmer may comprehend low-level details without 
recognizing the overall pattern of operation. The central contention is that 
programmers develop an internal semantic structure to represent the syntax 
of the program, but that they do not memorize or comprehend the program 
in a line-by-line form based on the syntax. 

The encoding process by which programmers convert the program to 
internal semantics is analogous to the "chunking" process first described 
by George Miller in his classic paper, "The Magical Number Seven Plus 
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or Minus Two. ''(15~ Instead of absorbing the program on a character-by- 
character basis, programmers recognize the function of groups of statements, 
and then piece together these chunks to form ever larger chunks until the entire 
program is comprehended. This chunking or encoding process is most effective 
in a structured programming environment, where the absence of arbitrary 
GOTOs  means that the function of a set of  statements can be determined 
from local information only. Forward or backward jumps would inhibit 
chunking, since it would be difficult to form separate chunks without 
changing attention to various parts of  the program. 

Once the internal semantic structure of  a program is developed by a 
programmer,  this knowledge is resistant to forgetting and accessible to a 
variety of  transformations. Programmers could convert the program to 
another programming language or develop new data representations or 
explain it to others with relative ease. Figure 4 represents the comprehension 
process. 

2.2.3. Debugging and Modification 

Debugging is a more complex task, since it is an attempt to locate an 
error in the composition task. We exclude syntactic bugs which are recogniz- 
able by a compiler, since these bugs are the result of a trivial error in the 

--• short term 
memory 

Interial Semantics High 

Low 

High 

Low [] Knowledge 

Fig. 4. Program comprehension process: the formation of internal 
semantics for a given program. 
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preparation of a program or of erroneous syntactic knowledge that can be 
resolved by reference to programming manuals. We are left with two further 
types of bugs: those that result from an incorrect trasnformation from the 
internal semantics to the program statements, and those that result from an 
incorrect transformation from the problem solution to the internal semantics. 

Errors that result from erroneous conversion from the internal semantic 
to the program statements are detectable from debugging output which 
differs from the expected output. These errors can be caused by improper 
understanding of the function of certain syntactic constructs in the pro- 
gramming language, or simply by mistakes in the coding of a program. 
In any case sufficient debugging output will help to locate these errors and 
resolve them. 

Errors that result from erroneous conversion from the problem solution 
to the internal semantics may require a complete reevaluation of the pro- 
gramming strategy. Examples include failure to deal with out-of-range data 
values, inability to deal with special cases such as the average of a single 
value, failure to clear critical locations before use, and attempts to merge 
unsorted lists. 

In the modification task the first step is the development of internal 
semantics representing the current program. The statement of the modification 
must be reflected in an alteration to the internal semantics, followed by an 
alteration of the programming statements. The modification task requires 
skills gained in composition, comprehension, and debugging. 

2.2.4. Learning 

Finally, we examine the learning task, the acquisition of new pro- 
gramming knowledge. We start with the training of nonprogrammers in their 
much debated "first course in computing" (SIGCSE Proceedings). The 
classic approach focused on teaching the syntactic details of a language, 
and used language reference manuals as a text. Much attention was paid 
to exhaustive discussions of the details of each syntactic structure, with 
minimal time spent on motivational material or problem solving. Tests 
focused on statement validity and the determination of what output was 
produced by a tricky program fragment which exploited obscure features. 

By contrast, the problem-solving approach suggested that high-level, 
language-independent problem solving was the course goal and that coding 
was a trivial detail not worth the expense of valuable thinking time. Tests 
in these courses required students to cleverly decompose problems and 
produce insightful solutions to highly abstract and unrealistic problems. 

Of course, both of these descriptions are caricatures of reality, but they 
point out the differences in approaches. The classic approach concentrated 
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on the development of syntactic knowledge and produced "coders" while 
the problem-solving approach concentrated on the development of semantic 
knowledge and produced high-level problem solvers who were unsuited to a 
production environment. Neither of these approaches is incorrect, they merely 
have different goals. A reasonable middle ground, the development of 
syntactic and semantic knowledge in parallel, is pursued by most educators.(26~ 

Education for advanced programmers also has the syntactic/semantic 
dichotomy. Courses in the design of algorithms focus on semantic knowledge 
and attempt to isolate syntactic details in separate discussions or omit them 
completely. Courses on second or third programming languages can con- 
centrate on the syntactic equivalents of already understood semantics. This 
makes it unwieldy to teach nonprogrammers and programmers a new language 
in the same course. 

Learning a language that has radically different semantic structures 
may be difficult for an experienced programmer, since previous semantic 
knowledge can interfere with the acquisition of a new language. Learning 
a new language that has similar semantic structures, such as FORTRAN 
and BASIC, is relatively easy, since most of the semantic knowledge can be 
applied directly, although confusion of syntax may interfere. 

In summary, we conjecture that the semantic knowledge and syntactic 
knowledge form two separate classeS, but that there is a close relationship 
between them. The multilevel structure of semantic knowledge, acquired 
largely through meaningful learning, is replicated in the multilevel approach 
to the development of internal semantics for a particular problem. The 
syntactic knowledge, acquired largely by rote learning, is compartmentalized 
by language. The semantic knowledge is essential for problem analysis, 
while syntactic knowledge is useful during the coding or implementation 
phase. 

Machine-related details such as range of integer values and execution 
speed of certain instructions, and compiler-specific information such as 
experience with diagnostic messages are more closely tied to the language- 
specific syntactic information. This information is highly detailed, learned 
by repeated experience, and easily forgotten. 

3. N E W  E X P E R I H E N T A L  E V I D E N C E  

The model was developed after examining the evidence acquired from 
a series of experiments briefly described in this section. Our Original motiva- 
tion in pursuing controlled psychological experiments in programming was 
to assess programming language features, develop standards for stylistic 
considerations (such as meaningful variable names and commenting), and 
to validate the design techniques that have been so vigorously debated 

8z8/813-4 
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(top-down design, modularity, and flowcharting) (see Ref. 21 for a discussion 
with references, also Ref. 9, 16, 22, 30, and 31). 

As a result of our experiments and other research we have formulated 
the model presented in the preceding section, and now have a hypothesis 
on which to organize future experiments. We hope that future work will not 
only refine our notion of programmer behavior, but also lead to improved 
languages, proper stylistic standards, practical design methodologies, new 
debugging techniques, programmer aptitude tests, programmer ability 
measures, metrics for problem and program complexity, and improved 
teaching techniques. 

3.1. Ar i thmet ic  vs. Logical IF 

Our first two experiments (see Shneiderman ~23~ for a detailed statistical 
report), carried out by Mao-Hsian Ho, were simple and had modest goals. 
In one we sought to compare the comprehensibility of arithmetic and logical 
IF statements in short FORTRAN programs. Our subjects were 24 first-term 
programming students who had been taught both forms, and 24 advanced 
programmers who were expected to be familiar with both forms. The novices 
did better with the logical IF statements, as measured by multiple choice 
and fill-in-the-blank-type questions, but the advanced programmers did 
equally well with both forms. We felt that the novices were struggling with 
the greater syntactic complexity of the arithmetic IF, but that the advanced 
subjects could easily convert the syntax of the arithmetic IF into the internal 
semantic form. The advanced students apparently thought about the program 
on a more general level than did the novices. This was confirmed by discus- 
sions with the subjects, and agrees with reports from other sources. The 
syntactic form of the logical IF seems to be close to the internal semantic 
form that most programmers perceive. Recent texts support this contention, 
and sometimes blatant attacks have been made on the use of the arithmetic 
IF. (37) Still, older programmers who were first taught the arithmetic IF stick 
to it, finding that they can easily switch from their internal semantic form 
to the syntactic representation with an arithmetic IF. An experiment with 
longer, more complex programs would be useful in determining whether 
the easy conversion breaks down in more difficult situations. 

3.2. Memorizat ion 

Our second experiment (23) carried out by Mao-Hsian Ho, was a memo- 
rization task. Two short programs, about 20 FORTRAN statements, were 
keypunched, and the first program was listed on a printer. The second 
program was shuffled and listed. Seventy-nine subjects, ranging from 
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nonprogrammers to experienced professionals, were asked to memorize the 
two listings, one at a time, and to write back what they could remember. 
The nonprogrammers did approximately equally poorly on both listings, 
while the professionals performed poorly on the shuffled program but 
excelled in recalling the proper executable program. Programmers with 
greater experience tended to perform better on the proper executable 
program. Our interpretation was that the advanced programmers attempted 
to convert specific code into a more general internal semantic representation 
during program comprehension, while novices focused more on specific 
code. Advanced subjects constructed a multileveled internal semantic 
structure to represent the proper executable program, but could not perform 
this process on the shuffled program; and novices lacked the semantic 
knowledge to perform this process. This was confirmed by reports from the 
advanced subjects, who indicated that they could describe the function of 
the entire program, and that they remembered by realizing that a segment 
of the program tested a value and then incremented a pair of locations to 
accumulate sums and counts. Further support for our internal sementics 
model was gained by studying the written forms. Advanced subjects would 
recreate semantically equivalent programs that had syntactic variations such 
as interchanged order of statements, consistent replacement of format 
numbers, consistent replacement of statement labels, and consistent replace- 
ment of variable names. Recall errors of advanced programmers tended to 
retain the meaning of the program but not the syntax, a finding consistent 
with human memory for English prose, c3,2~ It was these facts that first led us 
to propose that subjects were not really memorizing the program, but were 
constructing internal semantics to represent the program's function. When 
asked to recall the program, they applied their knowledge of F O RTRA N  
syntax and converted their internal semantics back into a F O RTRA N  
program. 

3.3. Comment ing  and Hnemonic  Variable Names 

Two other experiments, carried out by Ken Yasukawa and Don McKay, 
sought to measure the effect of commenting and mnemonic variable names 
on program comprehension in short, 20-50 statement F O RTRA N  programs. 
The subjects were first- and second-year computer science students. The 
programs using comments (28 subjects received the noncommented version, 
31 the commented) and the programs using meaningful variable names 
(29 subjects received the mnemonic form, 26 the nonmnemonic) were 
statistically significantly easier to comprehend as measured by multiple 
choice questions. This experiment confirms common practice, but gives no 
insight into which kind of comments or mnemonic names are helpful and 
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which are not. Further experiments to develop proper standards would be 
useful. 

Our interpretation in terms of the model are that the mnemonic names 
simplified the conversion from the program syntax to the internal semantic 
structure of the program. Nonmeaningful variable names place an extra 
burden on the programmer to encode the meaning of the variable, and add 
complexity to the conversion process. The internal semantics relate to the 
meaning and use of  a variable, not to the particular variable name, but a 
meaningful variable name that conveys the variable's function simplifies the 
programmer 's  task. The comments serve a somewhat different function. 
Again, the comments are not stored in the internal semantic structure, but 
they facilitate the conversion by describing the function of a statement or 
group of statements. This notion conforms to programming practice, which 
urges functional descriptive comments, not low-level comments that reiterate 
the  operation of a particular statement. For example, a bad comment for 
the statement I ~ I + 1 would be " A D D  ONE TO THE VARIABLE I ."  
Useful comments are those that facilitate the construction of the internal 
semantics by describing the meaning of a group of operations such as 
"SEARCH FOR T H E  LARGEST VALUE I N  T H E  TABLE."  Better still 
would be application domain comments such as " B I N A R Y  SEARCH FOR 
STUDENT WITH H I G H E S T  G R A D E . "  

In a debugging task which followed the commenting experiment, 12 out 
of  28 (42 ~ )  subjects located a bug in a commented program, while only 
10 out of  30 (33 ~ )  subjects (one subject dropped out) located the same bug 
in an uncommented version. 

Although this result was not statistically significant, it favored the 
commented form. Comments should facilitate the construction of an internal 
semantic structure to describe what the program is supposed to do. The 
expected internal semantic structure can then be compared to the actual 
program. 

3.4. Modularity 

The next area of study for our experiments was modular program 
design, investigated by Robert  Kinicki and Mary Ramsey. The subjects 
were assembly language students in two groups: those learning the Texas 
Instrument 980A machine, and those learning the COMPASS assembly 
language for the Control Data 6600 computer. The 30 TI980A students 
were divided into three groups of 10 subjects who received the same program 
written in different forms: 

1. Modular - -each  module has an explicit function (10-line main 
program and three subroutines: 13, 13, and 22 lines). 
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2. Nonmodular--unseparated sequential code (54 lines). 

3. Random modular- -a  program broken into subroutines without clear 
function (8-1ine main program, four subroutines: 10, 17, 8, and 
19 lines). 

All subjects took a comprehension test, which produced the following 
average scores (100 was a perfect score): modular, 89.5; nonmodular, 77.3; 
random modular, 67.9. An analysis of variance indicated group differences 
significant at the .08 level. This expected result confirmed the popular 
statements about the utility of modular programming, but underlined the 
importance of the proper selection of modules. 

Poor decomposition can make a program more difficult to comprehend. 
A closer, informal examination of the data showed that some of the best 
students in the class were assigned to the random modular group, and they 
were capable of achieving high scoress in spite of the difficulty of the progrm. 
Excellent programmers can perform surprisingly well even in adverse 
conditions. 

The results with the COMPASS students on the modularity experiment 
were less clear-cut. The three test forms of the COMPASS program were 
distributed to the 39 students in three groups of 13 each. The averages on the 
comprehension test were: modular, 47.8; nonmodular, 60.8; random 
modular, 57.8. The generally poorer scores and lack of significant differences 
among the groups were attributed to the differences in teaching techniques 
and the added complexity of subroutines in COMPASS. Apparently the 
instructor in this course had not emphasized subroutines, and had not 
required subroutines in homework problems. As a result, subjects suffered 
from the added complexity of subroutine invocation and argument 
passing. 

This experiment reinforces our belief that modular program construction 
can be more difficult if programmers have not had adequate training, but 
that modularity is helpful to experienced programmers for program com- 
prehension. Programmers who have not developed the syntactic and semantic 
knowledge to support modular programming have an extremely difficult time 
in developing the proper internal semantic structure for program comprehen- 
sion. Experienced programmers who understand modular programming can 
make good use of this technique in developing the internal semantic structure 
necessary for program comprehension. Modular program design facilitates 
the chunking process, allowing the programmer to concentrate on a small 
portion of the program and to encode that portion into higher level concepts, 
The random modular program is just a sequence of statements that perform 
no obvious coherent function and cannot be encoded into a higher level 
chunk. 
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3.5. Flowcharting 

A more recent series of  experiments carried out by Peter Heller and 
Don McKay (~4) were designed to test the utility of  detailed flowcharts in 
program composition, comprehension, debugging, and modification. 
Although flowcharts have long been a staple of  programming practice and 
education, there are now an increasing number of  critics. One of the strongest 
attacks was by Brooks, (~) who wrote that, "The  flow chart is a most thor- 
oughly oversold piece of documentation.., the detailed blow-by-blow flow 
chart.., is an obsolete nuisance." Our experiments were conducted both with 
Indiana University students--whose training did not emphasize the use of  
f lowcharts--and with Purdue students--whose training did emphasize the 
use of  flowcharts. For comprehension and debugging tasks there was no 
overall difference in performance between students given microflowcharts, 
macroflowcharts, and no flowcharts. However, a closer analysis revealed 
an interaction in which Indiana students performed worse with flowcharts 
as compared with no flowcharts, but the Purdue student performance was 
better with flowcharts as compared with no aids. In a modification task 
using a longer program a similar pattern was found for the second of two 
problems. 

These results indicate that flowcharts may be an aid in some situations 
and a hindrance in others. Apparently, a flowchart may serve either as an 
aid in the translation process from syntax to semantics (as the Purdue 
students hinted) or merely as an alternative syntactic representation of the 
program and as such may actually interfere with the creation of the internal 
semantic structure (as the Indiana students hinted). The resolution of the 
"flowchart question" seems to depend not on flowcharts per se, but on the 
larger question of what types of supplementary representation help pro- 
grammers build the internal semantics. 

3.6. Commenting 

An often expressed belief is that the more comments a program has the 
better it is. In a recent experiment (~5) we tested this idea within the framework 
of our cognitive model, which suggests that high-level commen s help develo 
the hierarchical internal semantic structure while low-level comments might 
interfere with comprehension since they are merely alternate syntactic 
representations of  the function of a single statement. A 26-line F O R T R A N  
program was prepared in two versions: one with only a five-line, high-level 
comment block at the beginning, and the other with numerous interspersed 
low-level comments describing the function of the following one or two lines. 
Two groups of 30 students each were given the listing and asked to make 
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three independent modifications to the program. Following this segment of 
the experiment, all subjects were asked to study the program for 5 rain more 
and were given 10 min to write back as many of the program statements 
(not comments) as they could remember. Finally, the students were asked to 
make subjective judgments as to the difficulty of the task. The final grades 
of each of the subjects, who were just completing their first course in pro- 
gramming, were also available. 

The modifications were graded by an experienced graduate teaching 
assistant, and the memorization scores were based on the number of lines 
that were attempted and number of lines that were precisely correct. The 
results showed statistically significant differences between the two groups. 
Both the modification and the memorization scores were better for the 
high-level comment group. Performance on the modifications was strongly 
correlated with course performance, indicating that the modification task 
required programming skills developed in the course. 

The three modification tasks were designed to be increasingly difficult. 
~here was no statistically significant difference in group performance for the 
first modification, which was the easiest. ~Ihe two more difficult modifications 
showed clear differences, suggesting that, as task complexity increases, 
commenting techniques play a more important role. 

2he results of the memorization experiment reinforce our belief that 
ability to memorize and recall a program is a strong correlate of program 
comprehension--this experiment utilized a modification task as a measure 
of  program comprehension. Furthermore, we feel that memorization and 
comprehension are accomplished by a hierarchical chunking process that 
organizes several statements into a functional unit. These units can then be 
organized into still higher level units which convey the overall operation of 
the program. Within this framework the high-level comments facilitate this 
organizing process, while the low-level comments inhibit it by distracting 
the reader and simply offering a repetition of the statements whose function 
is clear to a knowledgeable programmer. 

4. F U T U R E  R E S E A R C H  

We have attempted to present a cognitive model of programmer behavior 
that was developed in response to controlled psychological experiments. 
This cognitive model separates the syntactic knowledge from semantic 
knowledge, and emphasizes the internal representation created by the 
programmer in the programming tasks of composition, comprehension, 
debugging, modification, and learning. 

Future experiments must focus on the verification of this model. In 
particular we are interested in trying to study the components of the internal 
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semantic model and the encoding process across a range of subject experience. 
It is important to find out what encodings are used by different programmers 
with different amounts of experience in different languages. Results of this 
kind of research would be significant for programming-language designers 
and for educators. 

One possible experiment is to ask subjects with varying experience to 
take a program and mark the segments of the program with a series of nested 
brackets on the lefthand side of the page. We expect that, as subject experience 
increases, an increased depth of nesting will occur, since more knowledgeable 
subjects have a greater capacity to organize the program into a hierarchical 
semantic structure. 

Another approach is to ask subjects to insert blank cards in a program 
to clarify the structure of a program. This kind of experiment may help 
give us some insight into what encodings the subjects perceive. A cross- 
sectional study of subjects with different levels of experience might reveal 
patterns of skill acquisition. 

A promising direction of research is the use of memorization and recall 
experiments. First, more work must be done to validate the hypothesis that 
recall is a measure of comprehension. Then memorization and recall can be 
used to study stylistic issues (such as commenting, mnemonic variable names, 
and indentation), language features (such as recursion/iteration, block 
structuring, data types, and control structures), and design techniques (such 
as modularity, top-down design, and bottom-up design). 

In the future we look to a clarification of the cognitive processes in 
problem solving and programming. Such an understanding would lead to 
improved programming languages whose syntactic structure more closely 
reflectes internal semantic structures, thereby easing the programming process. 
Machine efficiency issues must be temporarily ignored while programming 
is studied from a purely human viewpoint. Then we can discuss efficient im- 
plementations of what programmers consider convenient semantic structures. 

Simplifying the programming process and making it easier for a wider 
range of people to use computers are the ultimate aims of this research 
direction. Computer scientists should welcome the contributions of and 
cooperation with cognitive psychologists. Interaction between the two 
disciplines will benefit both. 
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