
International Journal of Computer and Information Sciences, Vol. 8, No. 3, 1979

Syntactic/Semantic Interactions
in Programmer Behavior:
A Model and Experimental Results
Ben Shneiderman 1 and Richard Mayer 2

Received January 1977," revised November 1978

This paper presents a cognitive framework for describing behaviors involved
in program composition, comprehension, debugging, modification, and the
acquisition of new programming concepts, skills, and knowledge. An in-
formation processing model is presented which includes a long-term store
of semantic and syntactic knowledge, and a working memory in which problem
solutions are constructed. New experimental evidence is presented to support
the model of syntactic/semantic interaction.

KEY WORDS: Programming; programming languages; cognitive models;
program composition; program comprehension; debugging; modification;
learning; education; information processing.

1. I N T R O D U C T I O N

Recent research in p r o g r a m m i n g and p r o g r a m m i n g languages has begun
to focus more heavi ly on h u m a n factors and to separate human-cen te red
issues f r o m the machine-centered issues. This na tura l division enables us to
s tudy p r o g r a m m e r behavior wi thout concern for implementa t ion issues such
as pars ing ease, execution speed, s torage economy, avai lable charac ter
sets, etc.

Department of Information Systems Management, University of Maryland, College
Park, Maryland.

2 Department of Psychology, University of California at Santa Barbara, Santa Barbara,
California.

219
0091-7036/79/0600-0219503.00[0 �9 1979 Plenum Publishing Corporation

220 Shneiderman and Mayer

Stimulated by Weinberg's text ~29) and the improvements promoted by
structured programming advocates, researchers have begun to deal with the
cognitive processes of programmers. This research has taken the form of
controlled experiments, protocol analyses, and case studies on individuals
or groups. (9,16,19,21,2~-~5,27,~s,3~ The tasks studied have included program
composition, comprehension, debugging, modification, and the learning of
new programming skills. A wide range of subjects, from nonprogrammers
to professional programmers, have been tested, mostly on short- or medium-
length programs, but occasionally on longer, more complex programs.

Other material on programmer behavior is contained in the publications
of the ACM Special Interest on Computer Personnel Research. Interesting
personal reflections have appeared in books by Joel Aron (1~ and Frederick
Brooks, Jr. (4)

A final area of importance is programming education. Research on this
topic is covered by the ACM Special Interest Group on Computer Science
Education, which publishes the proceedings of an annual conference.
Educational psychologists have recently begun to probe the acquisition of
programming skills, (~2,1~ providing a new and valuable viewpoint.

Unfortunately this work is fragmented; nowhere is there a unified
approach or theory to account for the results that are beginning to appear.
Each paper focuses on a particular problem, issue, task, or aspect of the
programming process without producing a broader model that explains the
wide range of programmer behavior. A unified cognitive model of the
programmer would guide us in future experiments and suggest new pro-
gramming techniques while accounting for observed behavior. Such a
model becomes necessary as we move into an era of more widespread
computer literacy, in which an increasingly diverse population interacts
with computers. The intuitions and experience of expert programmers and
programming language designers are no longer appropriate for developing
facilities to be used by novices with varied backgrounds.

In Section 2 we present our model of programmer behavior. In
Section 3 the experiments that led to this model are presented and future
experiments are proposed. Section 4 is a summary with conclusions.

2. A C O G N I T I V E V I E W O F P R O G R A M M E R B E H A V I O R

Any model of programmer behavior must be able to account for five
basic programming tasks:

�9 composition: writing a program,

�9 comprehension: understanding a given problem,

�9 debugging: finding errors in a given program,

Syntactic/Semantic Interactions in Programmer Behavior 221

�9 modification: altering a given program to fit a new task,

�9 learning: acquiring new programming skills and knowledge.

In addition, a cognitive model must be able to describe these tasks in terms of

| the cognitive structures that programmers possess or come to possess
in their memory, and

�9 the cognitive processes involved in using this knowledge or in adding
to it.

Recent developments in the information processing approach (1~ to the
psychology of learning, memory, and problem solving have suggested a
framework for discussing the components of memory involved in pro-
gramming tasks (see Fig. 1). Information from the outside world, to which
the programmer pays attention, such as descriptions of the to-be-programmed
problem, enters the cognitive system into short-term memory, a memory
store with a relatively limited capacity (Miller (15) suggests about seven chunks)
and which performs little analysis on the input information. The pro-
grammer's permanent knowledge is stored in long-term memory, with
unlimited capacity for organized information. The component labeled
working memory by Feigenbaum m) represents a store that is more permanent
than short-term but less permanent than long-term memory, and in which
information from short-term and long-term memory may be integrated and
built into new structures. During problem solving (e.g., generation of a
program) new information from short-term memory and existing relevant
concepts from long-term memory are integrated in working memory, and
the result is used to generate a solution or, in the case of learning, is stored

Input from
perception

Short-term ~I Working
| memory memory

Long-term memory
(Semantic and

Syntactic Knowledge)

Fig. 1. Components of memory in problem solving.

222 Shneiderman and Mayer

in long-term memory for future use. Two questions are posed by this mode
What kind of knowledge (or cognitive structures) is available to the pro-
grammer in long-term memory? What kind of processes (or cognitive
processes) does the programmer use in building a problem solution in
working memory ?

2.1. Multi leveled Cognitive Structures

The experienced programmer develops a complex multileveled body of
knowledge--stored in long-term memory--about programming concepts and
techniques. Part of that knowledge, called semantic knowledge, consists of
general programming concepts that are independent of specific programming
languages. Semantic knowledge may range from low-level notions of what
an assignment statement does, what a subscripted array is, or what data
typas are; to intermediate notions such as interchanging the contents of two
registers, summing up the contents of an array, or developing a strategy
for finding the larger of two values; to higher level strategies such as binary
searching, recursion by stack manipulation, or sorting and merging methods.
A still higher level of semantic knowledge is required to solve problems in
application areas such as statistical analysis of numerical data, stylistic
analysis of textual data, or transaction handling for an airline reservation
system. Semantic knowledge is abstracted through programming experience
and instruction, but it is stored as general, meaningful sets of information
that are more or less independent of the syntactic knowledge of particular
programming languages or facilities such as operating systems languages,
utilities, and subroutine packages.

Syntactic knowledge is a second kind of information stored in long-term
memory; it is more precise, detailed, and arbitrary (hence more easily
forgotten) than semantic knowledge, which is generalizable over many
different syntactic representations. Syntactic knowledge involves details
concerning the format of iteration, conditional or assignment statements
valid character sets; or the names of library functions. It is apparently easier
for humans to learn a new syntactic representation for an existing semantic
construct than to acquire a completely new semantic structure. This is
reflected in the observation that it is generally difficult to learn the first
programming language, such as FORTRAN, PL/1, BASIC, and PASCAL,
but relatively easy to learn a second one of these languages. Learning a first
language requires development of both semantic concepts and specific
syntactic knowledge, while learning a second language involves learning
only a new syntax, assuming the same semantic structures are retained.
Learning a second language with radically different semantics (i.e., underlying

Syntactic/Semantic Interactions in Programmer Behavior 223

High Level
Concepts

Low Level
Details

Semantic
Knowledge

Syntactic
Knowledge

Fig. 2. Long-term memory.

basic concepts) such as LISP or MICRO-LANNER may be as hard or
harder than learning a first language.

The distinction between semantic and syntactic knowledge in the
programmers' long-term memories is summarized in Fig. 2. The semantic
knowledge is acquired largely through intellectually demanding, meaningful
learning, including problem solving and expository instruction, which
encourages the learner to "anchor" or "assimilate" new concepts within
existing semantic knowledge or "ideational structure. ''(21 Syntactic knowledge
is stored by rote, and is not well integrated within existing systems of semantic
knowledge. The acquisition of new syntactic information may interfere with
previously learned syntactic knowledge, since it may involve adding rather
than integrating new information. This kind of confusion is familiar to
programmers who develop skills in several languages and find that they
interchange syntactic constructs among them. For example, PASCAL
students with previous training in FORTRAN find assignment statements
simple, but often err while coding by omitting the colon in the assignment
operator and the semicolon to separate statements.

Our discussion of the two kinds of knowledge structures involved in
computer programming parallels similar distinctions in mathematics learning.
The gestalt psychologists distinguished between "structural understanding"
and "rote memory, ''m21 between "meaningful apprehension of relations"
and "senseless drill and arbitrary associations, ''(11) between knowledge
which fostered "productive reasoning" and "reproductive reasoning. ''c13,321
The flavor of the distinction is indicated by an example cited by Wert-
heimer, m2) suggesting two kinds of knowledge about how to find the area
of a parallelogram: knowledge of the memorized formula, A = h • b; and

224 Shneiderman and Mayer

structural understanding of the fact that a parallelogram may be converted
into a rectangle by cutting off a triangle from one end and placing it on the
other. Similarly, Brownell (5) distinguished between "rote" knowledge of
arithmetic acquired through memorizing arithmetic facts (e.g., 2 + 2 = 4)
and "meaningful" knowledge such as relating these facts to number theory
by working with physical bundles of sticks. More recently, Polya (18) has
distinguished between "know how" and "know what," Greeno (1~ has made
a distinction between "algorithmic" and "propositional" knowledge used
in problem solving, and Ausubel (2) distinguished between "rote" and
"meaningful" learning outcomes. Although these distinctions are vague,
they reflect a basic distinction, similar to our concept of syntactic and
semantic knowledge, that is relevant for computer programming. In his
parody of the "new math," Tom Lehrer made a distinction between "getting
the right answer" and "understanding what you are doing" (with new math
emphasizing the latter). In both mathematics and computer science, however,
it seems clear that a compromise is needed between syntactic knowledge and
knowledge that provides direction for creating strategies of solution, i.e.,
semantic knowledge.

2.2. Multi-Leveled, Funneled Cognitive Processes

To complete the model we must examine the processes involved in
problem-solving tasks, such as program composition. The mathematician
George Polya (18) suggested that problem solving involves four stages:

1. Understanding the problem, in which the solver defines what is given
(initial state) and what is the goal (goal state).

2. Devising a plan, in which a general strategy of solution is discovered.

3. Carrying out the plan, in which the plan is translated into a specific
course of action.

4. Checking the result, in which the solution is tested to make sure it
works.

2.2. I. Program Composition

When a problem is presented to a programmer, we assume it enters the
cognitive system and arrives in "working memory" by way of short-term
memory, and that in working memory the problem is analyzed and repre-
sented in terms of the "given state" and "goal state. ''(3~) Similarly, general
information from the programmer's long-term memory (both syntactic and
semantic) is called and transferred to working memory for further analysis.

Syntactic]Semantic Interactions in Programmer Behavior 225

These two steps--transferring, to working memory, a description of the
problem from short-term memory, and general knowledge from long-term
memory--constitute the first step in program composition.

The second step, devising a general plan for writing the program,
follows a pattern described by Wirth (a4~ as stepwise refinement. At first the
problem solution is conceived of in general programming strategies and
application-related domains such as graph theory, business transaction
processing, orbital mechanics, chess playing, etc. We refer to the pro-
grammer's general plan as "internal semantics," and suggest that this
internal representation progresses from a very general, to a more specific
plan, to a specific generation of code focusing on minute details. This
"funneling" view of problem solving from the general to the specific was
first popularized by the gestalt psychologist Carl Duncker, {7) based on
asking subjects to solve a complex problem "aloud." General approaches
occurred first, followed by "functional solutions" (i.e., more specific plans),
followed by specific solutions.

A top-down implementation of the internal semantics for a problem
would demand that the highest (most general) levels be set first, followed
by more detailed analysis. This process, suggested by Polya and Wickelgren
as "working backwards" or "reformulating the goal" (from the general goal
to the specifics) is one technique used by humans in problem solving. A
bottom-up implementation would permit low-level code to be generated first,
in an attempt to build up to the goal. This process, referred to as "working
forward" or "reformulating the givens," where the "givens" include the
permissible statements of the language, is another problem-solving technique.
Apparently, some types of problems are better solved by one or the other,
or both of these techniques.

Structured programming, and particularly the idea of modulariza-
tion, is another technique that aids in the development of the internal
semantics. (~,17,a6) Polya and Wickelgren refer to this technique as making
"subgoals."

Each of these techniques leads to a funneling of the internal semantics
from a very general to a specific plan. Then code may be written, and the
program run, as a test. These steps are summarized in Fig. 3. Shneiderman (2~)
describes design processes and implementation approaches for programs and
data.

This model of program composition suggests that once the internal
semantics have been worked out in the mind of the programmer, the construc-
tion of a program is a relatively straightforward task. The program may be
composed easily in any programming language with which the programmer
is familiar, and which permits similar semantic constructs. An experienced
programmer fluent in multiple languages will find it of approximately equal

226 Shneiderman and Mayer

Problem

Statement

short term

memory

Internal Semantics
-~iT~

LOW

Lo~ []
Knowl edge

Program

Fig. 3. Program composition process.

ease to implement a table look-up algorithm in PASCAL, FORTRAN,
PL/1, or COBOL.

2.2.2. Program Comprehension

The program comprehension task is a critical one because it is a subtask
of debugging, modification, and learning. The programmer is given a
program and is asked to study it. We conjecture that the programmer, with
the aid of his or her syntactic knowledge of the language, constructs a
multileveled internal semantic structure to represent the program. At the
highest level the programmer should develop an understanding of what the
program does: for example, this program sorts an input tape containing
fixed-length records, prints a word frequency dictionary, or parses an
arithmetic expression. This high-level comprehension may be accomplished
even if low-level details are not fully understood. At lower semantic levels
the programmer may recognize familiar sequences of statements or algo-
rithms. Similarly, the programmer may comprehend low-level details without
recognizing the overall pattern of operation. The central contention is that
programmers develop an internal semantic structure to represent the syntax
of the program, but that they do not memorize or comprehend the program
in a line-by-line form based on the syntax.

The encoding process by which programmers convert the program to
internal semantics is analogous to the "chunking" process first described
by George Miller in his classic paper, "The Magical Number Seven Plus

Syntactic/Semantic Interactions in Programmer Behavior 227

or Minus Two. ''(15~ Instead of absorbing the program on a character-by-
character basis, programmers recognize the function of groups of statements,
and then piece together these chunks to form ever larger chunks until the entire
program is comprehended. This chunking or encoding process is most effective
in a structured programming environment, where the absence of arbitrary
GOTOs means that the function of a set of statements can be determined
from local information only. Forward or backward jumps would inhibit
chunking, since it would be difficult to form separate chunks without
changing attention to various parts of the program.

Once the internal semantic structure of a program is developed by a
programmer, this knowledge is resistant to forgetting and accessible to a
variety of transformations. Programmers could convert the program to
another programming language or develop new data representations or
explain it to others with relative ease. Figure 4 represents the comprehension
process.

2.2.3. Debugging and Modification

Debugging is a more complex task, since it is an attempt to locate an
error in the composition task. We exclude syntactic bugs which are recogniz-
able by a compiler, since these bugs are the result of a trivial error in the

--• short term
memory

Interial Semantics High

Low

High

Low [] Knowledge

Fig. 4. Program comprehension process: the formation of internal
semantics for a given program.

228 Shneiderman and Mayer

preparation of a program or of erroneous syntactic knowledge that can be
resolved by reference to programming manuals. We are left with two further
types of bugs: those that result from an incorrect trasnformation from the
internal semantics to the program statements, and those that result from an
incorrect transformation from the problem solution to the internal semantics.

Errors that result from erroneous conversion from the internal semantic
to the program statements are detectable from debugging output which
differs from the expected output. These errors can be caused by improper
understanding of the function of certain syntactic constructs in the pro-
gramming language, or simply by mistakes in the coding of a program.
In any case sufficient debugging output will help to locate these errors and
resolve them.

Errors that result from erroneous conversion from the problem solution
to the internal semantics may require a complete reevaluation of the pro-
gramming strategy. Examples include failure to deal with out-of-range data
values, inability to deal with special cases such as the average of a single
value, failure to clear critical locations before use, and attempts to merge
unsorted lists.

In the modification task the first step is the development of internal
semantics representing the current program. The statement of the modification
must be reflected in an alteration to the internal semantics, followed by an
alteration of the programming statements. The modification task requires
skills gained in composition, comprehension, and debugging.

2.2.4. Learning

Finally, we examine the learning task, the acquisition of new pro-
gramming knowledge. We start with the training of nonprogrammers in their
much debated "first course in computing" (SIGCSE Proceedings). The
classic approach focused on teaching the syntactic details of a language,
and used language reference manuals as a text. Much attention was paid
to exhaustive discussions of the details of each syntactic structure, with
minimal time spent on motivational material or problem solving. Tests
focused on statement validity and the determination of what output was
produced by a tricky program fragment which exploited obscure features.

By contrast, the problem-solving approach suggested that high-level,
language-independent problem solving was the course goal and that coding
was a trivial detail not worth the expense of valuable thinking time. Tests
in these courses required students to cleverly decompose problems and
produce insightful solutions to highly abstract and unrealistic problems.

Of course, both of these descriptions are caricatures of reality, but they
point out the differences in approaches. The classic approach concentrated

Syntactic/Semantic Interactions in Programmer Behavior 229

on the development of syntactic knowledge and produced "coders" while
the problem-solving approach concentrated on the development of semantic
knowledge and produced high-level problem solvers who were unsuited to a
production environment. Neither of these approaches is incorrect, they merely
have different goals. A reasonable middle ground, the development of
syntactic and semantic knowledge in parallel, is pursued by most educators.(26~

Education for advanced programmers also has the syntactic/semantic
dichotomy. Courses in the design of algorithms focus on semantic knowledge
and attempt to isolate syntactic details in separate discussions or omit them
completely. Courses on second or third programming languages can con-
centrate on the syntactic equivalents of already understood semantics. This
makes it unwieldy to teach nonprogrammers and programmers a new language
in the same course.

Learning a language that has radically different semantic structures
may be difficult for an experienced programmer, since previous semantic
knowledge can interfere with the acquisition of a new language. Learning
a new language that has similar semantic structures, such as FORTRAN
and BASIC, is relatively easy, since most of the semantic knowledge can be
applied directly, although confusion of syntax may interfere.

In summary, we conjecture that the semantic knowledge and syntactic
knowledge form two separate classeS, but that there is a close relationship
between them. The multilevel structure of semantic knowledge, acquired
largely through meaningful learning, is replicated in the multilevel approach
to the development of internal semantics for a particular problem. The
syntactic knowledge, acquired largely by rote learning, is compartmentalized
by language. The semantic knowledge is essential for problem analysis,
while syntactic knowledge is useful during the coding or implementation
phase.

Machine-related details such as range of integer values and execution
speed of certain instructions, and compiler-specific information such as
experience with diagnostic messages are more closely tied to the language-
specific syntactic information. This information is highly detailed, learned
by repeated experience, and easily forgotten.

3. N E W E X P E R I H E N T A L E V I D E N C E

The model was developed after examining the evidence acquired from
a series of experiments briefly described in this section. Our Original motiva-
tion in pursuing controlled psychological experiments in programming was
to assess programming language features, develop standards for stylistic
considerations (such as meaningful variable names and commenting), and
to validate the design techniques that have been so vigorously debated

8z8/813-4

230 Shneiderman and Mayer

(top-down design, modularity, and flowcharting) (see Ref. 21 for a discussion
with references, also Ref. 9, 16, 22, 30, and 31).

As a result of our experiments and other research we have formulated
the model presented in the preceding section, and now have a hypothesis
on which to organize future experiments. We hope that future work will not
only refine our notion of programmer behavior, but also lead to improved
languages, proper stylistic standards, practical design methodologies, new
debugging techniques, programmer aptitude tests, programmer ability
measures, metrics for problem and program complexity, and improved
teaching techniques.

3.1. Ar i thmet ic vs. Logical IF

Our first two experiments (see Shneiderman ~23~ for a detailed statistical
report), carried out by Mao-Hsian Ho, were simple and had modest goals.
In one we sought to compare the comprehensibility of arithmetic and logical
IF statements in short FORTRAN programs. Our subjects were 24 first-term
programming students who had been taught both forms, and 24 advanced
programmers who were expected to be familiar with both forms. The novices
did better with the logical IF statements, as measured by multiple choice
and fill-in-the-blank-type questions, but the advanced programmers did
equally well with both forms. We felt that the novices were struggling with
the greater syntactic complexity of the arithmetic IF, but that the advanced
subjects could easily convert the syntax of the arithmetic IF into the internal
semantic form. The advanced students apparently thought about the program
on a more general level than did the novices. This was confirmed by discus-
sions with the subjects, and agrees with reports from other sources. The
syntactic form of the logical IF seems to be close to the internal semantic
form that most programmers perceive. Recent texts support this contention,
and sometimes blatant attacks have been made on the use of the arithmetic
IF. (37) Still, older programmers who were first taught the arithmetic IF stick
to it, finding that they can easily switch from their internal semantic form
to the syntactic representation with an arithmetic IF. An experiment with
longer, more complex programs would be useful in determining whether
the easy conversion breaks down in more difficult situations.

3.2. Memorizat ion

Our second experiment (23) carried out by Mao-Hsian Ho, was a memo-
rization task. Two short programs, about 20 FORTRAN statements, were
keypunched, and the first program was listed on a printer. The second
program was shuffled and listed. Seventy-nine subjects, ranging from

Syntactic]Semantic Interactions in Programmer Behavior 231

nonprogrammers to experienced professionals, were asked to memorize the
two listings, one at a time, and to write back what they could remember.
The nonprogrammers did approximately equally poorly on both listings,
while the professionals performed poorly on the shuffled program but
excelled in recalling the proper executable program. Programmers with
greater experience tended to perform better on the proper executable
program. Our interpretation was that the advanced programmers attempted
to convert specific code into a more general internal semantic representation
during program comprehension, while novices focused more on specific
code. Advanced subjects constructed a multileveled internal semantic
structure to represent the proper executable program, but could not perform
this process on the shuffled program; and novices lacked the semantic
knowledge to perform this process. This was confirmed by reports from the
advanced subjects, who indicated that they could describe the function of
the entire program, and that they remembered by realizing that a segment
of the program tested a value and then incremented a pair of locations to
accumulate sums and counts. Further support for our internal sementics
model was gained by studying the written forms. Advanced subjects would
recreate semantically equivalent programs that had syntactic variations such
as interchanged order of statements, consistent replacement of format
numbers, consistent replacement of statement labels, and consistent replace-
ment of variable names. Recall errors of advanced programmers tended to
retain the meaning of the program but not the syntax, a finding consistent
with human memory for English prose, c3,2~ It was these facts that first led us
to propose that subjects were not really memorizing the program, but were
constructing internal semantics to represent the program's function. When
asked to recall the program, they applied their knowledge of F O RTRA N
syntax and converted their internal semantics back into a F O RTRA N
program.

3.3. Comment ing and Hnemonic Variable Names

Two other experiments, carried out by Ken Yasukawa and Don McKay,
sought to measure the effect of commenting and mnemonic variable names
on program comprehension in short, 20-50 statement F O RTRA N programs.
The subjects were first- and second-year computer science students. The
programs using comments (28 subjects received the noncommented version,
31 the commented) and the programs using meaningful variable names
(29 subjects received the mnemonic form, 26 the nonmnemonic) were
statistically significantly easier to comprehend as measured by multiple
choice questions. This experiment confirms common practice, but gives no
insight into which kind of comments or mnemonic names are helpful and

232 Shneiderman and Mayer

which are not. Further experiments to develop proper standards would be
useful.

Our interpretation in terms of the model are that the mnemonic names
simplified the conversion from the program syntax to the internal semantic
structure of the program. Nonmeaningful variable names place an extra
burden on the programmer to encode the meaning of the variable, and add
complexity to the conversion process. The internal semantics relate to the
meaning and use of a variable, not to the particular variable name, but a
meaningful variable name that conveys the variable's function simplifies the
programmer 's task. The comments serve a somewhat different function.
Again, the comments are not stored in the internal semantic structure, but
they facilitate the conversion by describing the function of a statement or
group of statements. This notion conforms to programming practice, which
urges functional descriptive comments, not low-level comments that reiterate
the operation of a particular statement. For example, a bad comment for
the statement I ~ I + 1 would be " A D D ONE TO THE VARIABLE I ."
Useful comments are those that facilitate the construction of the internal
semantics by describing the meaning of a group of operations such as
"SEARCH FOR T H E LARGEST VALUE I N T H E TABLE." Better still
would be application domain comments such as " B I N A R Y SEARCH FOR
STUDENT WITH H I G H E S T G R A D E . "

In a debugging task which followed the commenting experiment, 12 out
of 28 (42 ~) subjects located a bug in a commented program, while only
10 out of 30 (33 ~) subjects (one subject dropped out) located the same bug
in an uncommented version.

Although this result was not statistically significant, it favored the
commented form. Comments should facilitate the construction of an internal
semantic structure to describe what the program is supposed to do. The
expected internal semantic structure can then be compared to the actual
program.

3.4. Modularity

The next area of study for our experiments was modular program
design, investigated by Robert Kinicki and Mary Ramsey. The subjects
were assembly language students in two groups: those learning the Texas
Instrument 980A machine, and those learning the COMPASS assembly
language for the Control Data 6600 computer. The 30 TI980A students
were divided into three groups of 10 subjects who received the same program
written in different forms:

1. Modular - -each module has an explicit function (10-line main
program and three subroutines: 13, 13, and 22 lines).

Syntactic/Semantic Interactions in Programmer Behavior 233

2. Nonmodular--unseparated sequential code (54 lines).

3. Random modular- -a program broken into subroutines without clear
function (8-1ine main program, four subroutines: 10, 17, 8, and
19 lines).

All subjects took a comprehension test, which produced the following
average scores (100 was a perfect score): modular, 89.5; nonmodular, 77.3;
random modular, 67.9. An analysis of variance indicated group differences
significant at the .08 level. This expected result confirmed the popular
statements about the utility of modular programming, but underlined the
importance of the proper selection of modules.

Poor decomposition can make a program more difficult to comprehend.
A closer, informal examination of the data showed that some of the best
students in the class were assigned to the random modular group, and they
were capable of achieving high scoress in spite of the difficulty of the progrm.
Excellent programmers can perform surprisingly well even in adverse
conditions.

The results with the COMPASS students on the modularity experiment
were less clear-cut. The three test forms of the COMPASS program were
distributed to the 39 students in three groups of 13 each. The averages on the
comprehension test were: modular, 47.8; nonmodular, 60.8; random
modular, 57.8. The generally poorer scores and lack of significant differences
among the groups were attributed to the differences in teaching techniques
and the added complexity of subroutines in COMPASS. Apparently the
instructor in this course had not emphasized subroutines, and had not
required subroutines in homework problems. As a result, subjects suffered
from the added complexity of subroutine invocation and argument
passing.

This experiment reinforces our belief that modular program construction
can be more difficult if programmers have not had adequate training, but
that modularity is helpful to experienced programmers for program com-
prehension. Programmers who have not developed the syntactic and semantic
knowledge to support modular programming have an extremely difficult time
in developing the proper internal semantic structure for program comprehen-
sion. Experienced programmers who understand modular programming can
make good use of this technique in developing the internal semantic structure
necessary for program comprehension. Modular program design facilitates
the chunking process, allowing the programmer to concentrate on a small
portion of the program and to encode that portion into higher level concepts,
The random modular program is just a sequence of statements that perform
no obvious coherent function and cannot be encoded into a higher level
chunk.

234 Shneiderman and Mayer

3.5. Flowcharting

A more recent series of experiments carried out by Peter Heller and
Don McKay (~4) were designed to test the utility of detailed flowcharts in
program composition, comprehension, debugging, and modification.
Although flowcharts have long been a staple of programming practice and
education, there are now an increasing number of critics. One of the strongest
attacks was by Brooks, (~) who wrote that, "The flow chart is a most thor-
oughly oversold piece of documentation.., the detailed blow-by-blow flow
chart.., is an obsolete nuisance." Our experiments were conducted both with
Indiana University students--whose training did not emphasize the use of
f lowcharts--and with Purdue students--whose training did emphasize the
use of flowcharts. For comprehension and debugging tasks there was no
overall difference in performance between students given microflowcharts,
macroflowcharts, and no flowcharts. However, a closer analysis revealed
an interaction in which Indiana students performed worse with flowcharts
as compared with no flowcharts, but the Purdue student performance was
better with flowcharts as compared with no aids. In a modification task
using a longer program a similar pattern was found for the second of two
problems.

These results indicate that flowcharts may be an aid in some situations
and a hindrance in others. Apparently, a flowchart may serve either as an
aid in the translation process from syntax to semantics (as the Purdue
students hinted) or merely as an alternative syntactic representation of the
program and as such may actually interfere with the creation of the internal
semantic structure (as the Indiana students hinted). The resolution of the
"flowchart question" seems to depend not on flowcharts per se, but on the
larger question of what types of supplementary representation help pro-
grammers build the internal semantics.

3.6. Commenting

An often expressed belief is that the more comments a program has the
better it is. In a recent experiment (~5) we tested this idea within the framework
of our cognitive model, which suggests that high-level commen s help develo
the hierarchical internal semantic structure while low-level comments might
interfere with comprehension since they are merely alternate syntactic
representations of the function of a single statement. A 26-line F O R T R A N
program was prepared in two versions: one with only a five-line, high-level
comment block at the beginning, and the other with numerous interspersed
low-level comments describing the function of the following one or two lines.
Two groups of 30 students each were given the listing and asked to make

Syntactic/Semantic Interactions in Programmer Behavior 235

three independent modifications to the program. Following this segment of
the experiment, all subjects were asked to study the program for 5 rain more
and were given 10 min to write back as many of the program statements
(not comments) as they could remember. Finally, the students were asked to
make subjective judgments as to the difficulty of the task. The final grades
of each of the subjects, who were just completing their first course in pro-
gramming, were also available.

The modifications were graded by an experienced graduate teaching
assistant, and the memorization scores were based on the number of lines
that were attempted and number of lines that were precisely correct. The
results showed statistically significant differences between the two groups.
Both the modification and the memorization scores were better for the
high-level comment group. Performance on the modifications was strongly
correlated with course performance, indicating that the modification task
required programming skills developed in the course.

The three modification tasks were designed to be increasingly difficult.
~here was no statistically significant difference in group performance for the
first modification, which was the easiest. ~Ihe two more difficult modifications
showed clear differences, suggesting that, as task complexity increases,
commenting techniques play a more important role.

2he results of the memorization experiment reinforce our belief that
ability to memorize and recall a program is a strong correlate of program
comprehension--this experiment utilized a modification task as a measure
of program comprehension. Furthermore, we feel that memorization and
comprehension are accomplished by a hierarchical chunking process that
organizes several statements into a functional unit. These units can then be
organized into still higher level units which convey the overall operation of
the program. Within this framework the high-level comments facilitate this
organizing process, while the low-level comments inhibit it by distracting
the reader and simply offering a repetition of the statements whose function
is clear to a knowledgeable programmer.

4. F U T U R E R E S E A R C H

We have attempted to present a cognitive model of programmer behavior
that was developed in response to controlled psychological experiments.
This cognitive model separates the syntactic knowledge from semantic
knowledge, and emphasizes the internal representation created by the
programmer in the programming tasks of composition, comprehension,
debugging, modification, and learning.

Future experiments must focus on the verification of this model. In
particular we are interested in trying to study the components of the internal

236 Shneiderman and Mayer

semantic model and the encoding process across a range of subject experience.
It is important to find out what encodings are used by different programmers
with different amounts of experience in different languages. Results of this
kind of research would be significant for programming-language designers
and for educators.

One possible experiment is to ask subjects with varying experience to
take a program and mark the segments of the program with a series of nested
brackets on the lefthand side of the page. We expect that, as subject experience
increases, an increased depth of nesting will occur, since more knowledgeable
subjects have a greater capacity to organize the program into a hierarchical
semantic structure.

Another approach is to ask subjects to insert blank cards in a program
to clarify the structure of a program. This kind of experiment may help
give us some insight into what encodings the subjects perceive. A cross-
sectional study of subjects with different levels of experience might reveal
patterns of skill acquisition.

A promising direction of research is the use of memorization and recall
experiments. First, more work must be done to validate the hypothesis that
recall is a measure of comprehension. Then memorization and recall can be
used to study stylistic issues (such as commenting, mnemonic variable names,
and indentation), language features (such as recursion/iteration, block
structuring, data types, and control structures), and design techniques (such
as modularity, top-down design, and bottom-up design).

In the future we look to a clarification of the cognitive processes in
problem solving and programming. Such an understanding would lead to
improved programming languages whose syntactic structure more closely
reflectes internal semantic structures, thereby easing the programming process.
Machine efficiency issues must be temporarily ignored while programming
is studied from a purely human viewpoint. Then we can discuss efficient im-
plementations of what programmers consider convenient semantic structures.

Simplifying the programming process and making it easier for a wider
range of people to use computers are the ultimate aims of this research
direction. Computer scientists should welcome the contributions of and
cooperation with cognitive psychologists. Interaction between the two
disciplines will benefit both.

REFERENCES

1. J. D. Aron, The Program Development Process: Part 1, The Individual Programmer
(Addison-Wesley, Reading, Massachusetts, 1974).

2. D. P. Ausubel, Educational Psychology: A Cognitive Approach (Holt, Rinehart and
Winston, New York, 1968).

Syntactic/Semantic Interactions in Programmer Behavior 237

3. J. Bransford and J. Franks, "Abstraction of linguistic ideas," Cognit. Psychol. 2:331-
350 (1971).

4. Frederick Brooks, Jr., The Mythical Man,Month: Essays' on Software Engineering
(Addison-Wesley, Reading, Massachusetts, 1975).

5. W. A. Brownell, "Psychological Considerations in the Learning and Teaching of
Arithmetic," in The Teaching of Arithmetic: Tenth Yearbook of the National Council
of Teachers of Mathematics, Bureau of Publications, Teachers College, Columbia
University, New York (1935), pp. 1-35.

6. O.-J. Dahl, E. W. Dijkstra, and C. A. R. Hoare, Structured Programming (Academic
Press, London-New York, 1973).

7. K. Duncker, "On problem solving," Psychol. Monogr. 88:270 (1945).
8. E. A. Feigenbaum, "Information Processing and Memory," in Models of Memory,

D. A. Norman, Ed. (Academic Press, New York, 1970), pp. 451-469.
9. J. D. Gannon and J. J. Horning, "The Impact of Language Design on the Production

of Reliable Software," IEEE Trans. on Software Engineering, 1 (1975).
10. J. G. Greeno, "The Structure of Memory and the Process of Problem Solving," in

Contemporary Issues in Cognitive Psychology, R. Solso, (Winston, Washington,
1973).

11. G. Katona, Organizing and Memorizing (Columbia University Press, New York,
1940).

12. C. Kreitzberg and L. Swanson, "A Cognitive Model for Structuring an Introductory
Programming Curriculum," AFIPS Proceedings' of the National Computer Conference
(AFIPS Press, Montvale, New Jersey, 1974).

13. N. R. F. Maier, "Reasoning in humans, I, On direction," J. Comp. Psychol. 12:115-
143 (1930).

14. R. E. Mayer, "Different problem-solving competencies established in learning com-
puter programming with and without a meaningful model," J. Educ. Psychol. 68:143
150 (1976).

15. G. A. Miller, "The magical number seven, plus or minus two: Some limits on our
capacity for processing information," Psyehol. Rev. 63;81-97 (1956).

16. L. Miller, "Programming by Non-Programmers," IBM Research Report RC4280
(1973).

17. D. L. Parnas, "On the criteria to be used in decomposing systems into modules,"
Commun. ACM 15:1053-1058 (December 1972).

18. G. Polya, How to Solve It (Doubleday, New York, 1957).
19. P. Reisner, R. F. Boyce, and D. D. Chamberlin, "Human Factors Evaluation of Two

Data Base Query Languages: SQUARE and SEQUEL," Proceedings of the National
Computer Conference (AFIPS Press, Montvale, New Jersey, 1975).

20. J. Sachs, "Recognition memory for syntactic and semantic aspects of connected
discourse," Percept. Psychophys. 2:437~t42 (1967).

21. B. Shneiderman, "Experimental Testing in Programming Languages, Stylistic Con-
siderations and Design Techniques," Proceedings of the National Computer Conference
(AFIPS Press, Montvale, New Jersey, 1975).

22. B. Shneiderman, "A review of design techniques for programs and data," Software--
Pract. Exper. 6:555-567 (1976).

23. B. Shneiderman, "Exploratory experiments in programmer behavior," Int. J. Comput.
h ~ Sci. 5(2):123-143 (June 1976).

24. B. Shneiderman, R. Mayer, D. McKay, and P. Heller, "Experimental investigations
of the utility of detailed flowcharts in programming," Commun. ACM 20:373-381
(t977).

238 Shneiderman and Mayer

25. B. Shneiderman, "Measuring computer program quality and comprehension," Int.
J. Man-Mach. Stud. 9:465-478 (1977).

26. B. Shneiderman, "Teaching programming: A spiral approach to syntax and semantics,"
Comput. Edue. 1:193-197 (1977).

27. M. Sime, T. Green, and D. Guest, "Psychological evaluation of two conditional
constructions used in computer languages," Int. J. Man-Maeh. Stud. 5:105-113 (1973).

28. J. C. Thomas and J. D. Gould, "A Psychological Study of Query by Example,"
Proceedings of the 1975 National Computer Conference (AFIPS Press, Montvale,
New Jersey, 1975).

29. G. M. Weinberg, The Psychology of Computer Programming (Van Nostrand-Reinhold,
New York, 1971).

30. L. Weissman, "Psychological Complexity of Computer Programs: An Initial Ex-
periment," Technical Report CSRG-26, Computer Systems Research Group, Univers-
ity of Toronto, Toronto, Canada (1973).

31. L. Weissman, "Psychological complexity of computer programs: An experimental
methodology, SIGPLAN Not. 9:25-36 (June 1974).

32. M. Wertheimer, Produetive Thinking (Harper & Row, New York, 1959).
33. W. Wickelgren, How to Solve Problems (W. H. Freeman, San Francisco, 1974).
34. Niklaus Wirth, "Program development by stepwise refinement," Commun. ACM

14:4 (April 1971).
35. E. A. Youngs, "Human errors in programming," Int. J. Man-Mach. Stud. 6:361-376

(1974).
36. H. Mills, "Top Down Programming in Large Systems," in R. Rustin (Ed.), Debugging

Techniques in Large Systems (Prentice-Hall, Englewood Cliffs, N. J., 1971).
37. D. McCracken, A Simplified Guide to FORTRAN IV Pragramming, (John Wiley and

Sons, New York, 1974).

