
Automatic database system conversion: schema revision, data 
translation, and source-to-source program transformation 

by BEN SHNEIDERMAN 

University of Maryland-
College Park, MD 

and 

GLENN THOMAS 

Kent State University 
Kent, OH 

ABSTRACT 

Changing data requirements present database administrators with a difficult prob
lem: the revision of the schema, the translation of the stored database, and the 
conversion of the numerous application programs. This paper describes an auto
matic database system conversion facility which provides one approach for coping 
with this problem. The Pure Definition Language and the Pure Manipulation 
Language have been designed to facilitate the conversions specified in the Pure 
Transformation Language. Two conversions and their effect on retrievals are 
demonstrated. 

579 

r 





Automatic Database System Conversion 581 

INTRODUCTION 

Contemporary database management systems isolate the 
users from changing physical implementation strategies, but 
offer little assistance when logical structures must be modi
fied. Several research projects have been directed at automat
ing part or all of the database system conversion process. A 
complete strategy for coping with requirement changes would 
have to aid in the revision of the schema, translation of the 
stored database, and conversion of the application programs. 

Data translation research at the University of Michigan has 
begun to include work on database conversion (Navathe and 
Fry, 1976,19 Swarthwout, Deppe and Fry, 197728), by classi
fying possible schema transformations for a network struc
tured database and by specifying architectures for a conver
sion system. 

The IBM Research group at San Jose, which developed the 
EXPRESS system (Shu et al., 197723) for data translation, 
recognized that this powerful system was a natural basis for 
developing program conversion aids. Housel's paper (1977)16 

showed how CONVERT operations could be used as a query 
language as well as for describing schema transformations. He 
demonstrated a set of rules which enabled schema trans
formations described in CONVERT to be applied to CON
VERT queries. 

At the University of Florida, CONVERT transformations 
were applied to relational schemas and SEQUEL queries (Su 
and Liu, 1977,26 Su and Reynolds, 1977,27 and Su, 197624). 
Dale and Dale (1976, 19771314) at the University of Texas 
studied program preserving transformations for the tree struc
tured data model. Gerritsen and Morgan (1976)15 dealt with 
a class of network schema transformations by dynamically 
translating prpgram statements to match the revised schema. 
Navathe (1980)18 examined transformations on schema dia
grams which were related to the entity-relationship model and 
Sakai (1980)20 suggested some transformations during logical 
design in the relational model. Shneiderman (1978)22 pro
vided a framework for research in network schema transfor
mations and Taylor et al. (1979)29 identified problem areas 
and offered several directions for research. Jacobs (1980)17 

described automatic conversion in the context of his database 
logic which provides a formal mathematical foundation for 
database systems. 

AUTOMATIC CONVERSION IN THE PURE 
DATABASE SYSTEM 

The Pure Database System was designed to facilitate schema 
changes which call for database translation and application 
program conversion. For example, changing a two-level 
schema structure, such as division records owning employee 

records, to a three-level structure, where division records own 
department records which in turn own employee records, gen
erally requires special purpose translation programs to re
structure the database and hand-written revisions to modify 
application programs. Using Pure Transformation Language 
(PTL) operators, database administrators can specify trans
formations which automatically generate a new schema, 
stored database, and application programs. The execution of 
the target application programs operating on the target data
base should produce output identical to that produced by 
the source application programs operating on the source 
database. 

Our Pure Definition Language (PDL) and Pure Manipula
tion Language (PML) blended elegant high-level relational 
ideas with lower-level network concepts to produce a data 
model conducive to automatic transformation. Our goals were 
to ensure input/output equivalence where possible, minimize 
host language interactions, provide integrity assurance for the 
transformations, offer useful and effective definition and 
manipulation languages, and construct a convenient set of 
transformations. Although more efficient transformations are 
feasible, we felt that generality, modularity, simplicity, prova
bility, and integrity assurance were more important criteria. 
The effectiveness of the PDL and PML and the utility of the 
PTL must be verified through field testing or controlled ex
periments with manual alternatives. 

Refinements, extensions, and alternatives are easy to gen
erate, but we felt the need to limit our focus and demonstrate 
a complete workable system. The PDL and the PML have 
been implemented using the XPL compiler-compiler to gener
ate UNIVAC DMS-1100 code which is then executed through 
normal procedures. The PTL processor is more complex since 
it requires the preparation of a new schema, the generation of 
programs to restructure the database, and the revision of pos
sibly hundreds of application programs embedded in host lan
guage code. Furthermore, before a transformation is carried 
out, the stored database must be examined to ensure that 
integrity constraints are satisfied and the application pro
grams must be parsed to verify that the transformation is 
possible. 

Although great care and effort was devoted to constructing 
a set of transformations at an appropriate level, we recognize 
alternative approaches. Higher level transformations (Su and 
Lam, 197925) would capture more "semantic" constructs, but 
a greater number of transformations might be needed to ac
commodate database administrator (DBA) needs. Lower 
level transformations might be easier to implement and prove 
correct, but would be complicated to use. Feedback from 
users and experience seems essential to help choose the most 
convenient approach. 



582 National Computer Conference, 1982 

PURE DEFINITIONS AND MANIPULATIONS 

Like the CODASYL DBTG approach, the Pure schema has 
a collection of record types and set types. There is a singular 
record type, SYSTEM, which is the starting point for all 
searches. Each record type may be the owner and member of 
several set types but the schema graph must be acyclic. Within 
a set instance the record instances are in ascending order by 
the set keys. The simple schema shown in Figure la might be 
defined by the following Pure Definition statements: 

SCHEMA NAME IS students. 
RECORD SECTION. 

RECORD NAME IS stu. 
FIELDS ARE. 

sno PIC 9(6). 
sname PIC X(25). 

END RECORD. 

RECORD NAME IS crs. 
FIELDS ARE. 

cno PIC 9(4). 
title PIC X(60). 
grade PIC X(3). 

END RECORD. 

END RECORD SECTION. 

SET SECTION. 
SET NAME IS sys-stu. 
OWNER ISE SYSTEM. 
MEMBER IS stu. 
SET KEY IS (sno). 
END SET. 

SET NAME IS stu-crs. 
OWNER IS stu. 
MEMBER IS crs. 
SET KEY IS (cno). 
END SET. 

END SET SECTION. 
END SCHEMA. 

In this schema student records (stu) are in ascending order by 
student number (sno) and contain the student name (sname). 
Each student record owns a set of course records (crs) which 
are kept in ascending order by course number (cno) and con
tain a course title and grade. 

The current design for the Pure Manipulation Language 
assumes embedding in a host language such as COBOL. The 
FIND statement specifies a search through the database and 
the creation of a train (an ordered collection of record identifi
ers, each of which uniquely specifies a database record) satis
fying an access path expression. For example, to find the 
course records in which a student named 'JOE' received a 
grade of 'A' we might write: 

FIND (crs: SYSTEM, sys-stu, stu(sname = 'JOE'), stu-crs, 
crs (grade = 'A')). 

The target record type, crs, must be somewhere along the 
path expression which follows the colon. The path expression 
starts at the SYSTEM record and foliows sets and records 
through the database. Records may have boolean expressions 
to qualify field names within a record and the path expression 
may traverse sets in forward and reverse order. 

The GET statement retrieves a single record of a train 
specified by its numeric position in the train, and places the 
record in a buffer area associated with the record type. By 
embedding the GET statement in a loop all the records in a 
train can be retrieved. The STORE statement inserts a record 
in the database and ensures that the record will properly 
participate in all sets in which it is an owner or member. The 
DELETE statement can be used to delete a single record or 
a train of records from the database. Deletion can only be 
made if the database structure is preserved and if all records 
would be reachable after the deletion. Three forms of the 
MODIFY statement have been included: replacement of non-
key field values in a record, alternation of key fields which 
effect set order only, and alteration of key fields which effect 
set membership. Improperly or incompletely specified mod
ifications are not carried out. 

In summary, the Pure System blends the appeal of schema 
traversal using path expressions with the high level relational 
operations on collections of records. The network concepts of 
set ordering and explicit linkage have been combined with the 
relational notions of keys and tuple uniqueness. 

PURE TRANSFORMATIONS 

The 18 Pure transformations presented in Table I permit con
version of a two-level schema to a three-level schema, factor
ing of common fields from member to owner records, distribu
tion of fields from owner to member records, manipulation of 
set key fields, introduction (and elimination) of sets, records 
and fields, and name changes. We first offer a general three 
dimensional categorization for transformations before infor
mally presenting the Pure Transformation Language. 

The schema of Figure la allows queries of the form: "What 
grade did student X receive in course Y?" A possible trans
formation would be to remove the field grade from the record 
type crs. This transformation is not information preserving 
because the new (target) schema does not contain all the 
information derivable from the old (source) schema. More 
generally a transformation is information preserving if all the 
information derivable from the source schema is derivable 
from the target schema. 

The second categorization dimension of data dependence 
may be illustrated by a user requirements change. Assume, 
DEPT records may own EMPLOYEE records which contain 
a field MGR identifying the employee's manager. A corpo
rate policy change may require that all employees within a 
department be managed by the same individual. In this case, 
it is reasonable to move the MGR field to the DEPT record 
type. The FACTOR and ERASE transformation copies a 
field value from the members of a set to their common owner. 
Before the transformation may be allowed, each occurrence 
of the set type linking DEPT and EMPLOYEE occurrences 
must be examined to determine whether or not the source 



Automatic Database System Conversion 583 

STU 

^S 

CNO 

SYS-STU 
<SNO> 

" 

SNO 

' 

TITLE 

NAME 

STU-CRS 
<CNO> 

GRADE 

Add Field 
SNO PIC 9(6) 

To Record CRS. 
Add Field 

NAME PIC X(20) 
To Record CRS. 

Distribute and Erase Fields NAME 
To Members of Set STU-CRS. 

Separate From Between 
Record SYSTEM and Set STU-CRS 
Set SYS-STU 
And Record STU 
With Source SNO of CRS = SNO of STU. 

SYSTEM 

(a) 

3S 

CNO 

r 

STU " 

SNO 

TITLE 

" 

GRADE 

SYS-STU 
<SNO> 

NAME 

STU-CRS 
<CNC> 

NULL 

SNO 

NUL 

NAME 

CRS 

J 

SYS-STU 
<SNO, C N O 

CNO TITLE GRADE SNO NAME 

(b) (c) 

Permute Key of Set SYS-STU 
From (SNO, CNO) to (CNO, SNO). 

Introduce Between Record SYSTEM and Set SYS-STU 
Record 

Record NAME is TEMP-REC. 
Fields are. 

CNO PIC X(4). 
TITLE PIC X(30). 

End Record. 
And Set 

Set NAME is TEMP-SET. 
Owner Record is SYSTEM. 
Member Record is TEMP-REC. 
Set Key is (CNO). 
End Set. 

With Source CNO of TEMP-REC = CNO of CRS. 
Factor and Erase Fields TITLE 

From Members of Set SYS-STU. 

SYSTEM 

Remove Fields CNO, TITLE From Record CRS. 
Change NAME of Record 

From CRS to STU. 
Change NAME of Set 

From SYS-STU to CRS-STU 
Change Name of Record 

From TEMP-REC to CRS. 
Change NAME of Set 

From TEMP-SET to SYS-CRS. 

SYSTEM 

SYS-CRS 
<CNO> 

=iS 

CNO 

TEMP-REC • 

CNO 

TITLE 

< 

TEMP-SET 
<CNO> 

TITLE 

SYS-STU 
<SNO> 

1 

GRADE SNO NAME 

CRS-STU 
<SNO> 

GRADE SNO NAME 

(e) 

(d) 

Figure 1—Inversion of the student and course relationship 



584 National Computer Conference, 1982 

TABLE I—Categorization of pure transformations 

Program 
independent 

Program 
dependent 

Information 

Data independent 

Change name 
Add field 
Permute 
Distribute Fields 
Distribute and 

erase fields 
Introduce set record 
Introduce between 

Append 

preserving 

Data dependent 

Distribute set key 
Distribute and erase 

set key fields 
Introduce where 

Not information 

Data independent 

Remove fields 
Separate set 
Separate set record 
Separate from 

between 

preserving 

Data dependent 

Detach 
Factor fields 
Factor and 

erase fields 

stored database satisfies this corporate policy. Should any 
occurrence of the set type linking DEPT and EMPLOYEE 
have two or more member record occurrences with different 
values for the field MGR, then the transformation fails. 
Transformations are data dependent if the source stored data
base must be examined to determine whether or not current 
data values satisfy changing user requirements. Otherwise, a 
transformation is data independent. 

The final categorization dimension is program indepen
dence. Should the field sname be removed from the Figure la 
record type stu, any source program referencing this field will 
have to be examined to determine whether it can be modified 
to run under the target schema or dropped from the set of 
programs accessing the stored database. While the conversion 
system can isolate such program dependencies, the database 
administrator is responsible for deciding on the correct action 
to be taken. Logical schema change. A transformation is pro
gram dependent if the source programs must be examined to 
determine whether or not they can be modified to run under 
the target database system. Otherwise a transformation is 
program independent. 

CHANGE NAME, ADD HELD, and REMOVE 
FIELDS allow the database administrator to change the name 
of any source set, record or field, add a new field to an existing 
record type, or remove a field from the definition of a record 
type. Of these, only REMOVE FIELDS requires program 
examination. The sequence: 

ADD FIELD f TO RECORD r. 
REMOVE FIELDS f FROM RECORD r. 

yields a target database system that is identical to the source 
database system. Hence, REMOVE FIELDS is the inverse of 
ADD FIELD. However, the reverse is not true because RE
MOVE FIELDS destroys data values in the source database. 

The transformations APPEND, PERMUTE and DE
TACH allow the database administrator to redefine the key of 
an existing set and logically reorder member record occur
rences. APPEND adds a field as the least significant com
ponent of a set key. While information preserving and data 
independent, APPEND requires DBA interaction to modify 

storage paths involving the member record type. DETACH 
removes the least singificant set key field for some set. Each 
occurrence of the affected set must be examined to determine 
whether or not the resulting set key will uniquely identify the 
members. If it will not, DBA interaction is required to obtain 
the necessary uniqueness. APPEND and DETACH are in
verses for each other when allowed. As illustrated by Figures 
lc and Id, PERMUTE redefines the left-to-right order of 
concatenation of set key fields. In addition to being informa
tion preserving, data independent, and program independent, 
PERMUTE is the only Pure transformation that is its own 
inverse. 

The six DISTRIBUTE and FACTOR transformations al
low for the copying of field values from owner to member 
records (DISTRIBUTE) or vice versa (FACTOR). For FAC
TOR, this requires examining the source stored database to 
determine whether or not all members of each set occurrence 
share a common value for the field(s) being copied. When 
ERASE is specified, the field is set to the 'null' value after it 
has been copied. FACTOR and DISTRIBUTE are mutual 
inverses. 

INTRODUCE SET RECORD adds a record type and a set 
type owning this record type to the schema. This transforma
tion has no effect of the stored database or the set of programs 
as no instances of the new record type exist. SEPARATE SET 
RECORD is the inverse for INTRODUCE SET RECORD. 
When specified, all occurrences of the named record and set 
types are removed from the source database system. Because 
data values are lost, this is not an information preserving 
transformation. Thus, it has no inverse. 

INTRODUCE WHERE allows the definition of a new set 
type between two existing record types. The WHERE clause 
specifies a selection criterion to associate every member 
record occurrence with exactly one owner record occurrence. 
These are then made members of a set occurrence of the new 
set type whose owner is selected by the WHERE clause cri
terion. SEPARATE SET is the inverse of INTRODUCE 
WHERE. Because this eliminates a path from the schema and 
destroys the information contained in this set type, this is not 
an information preserving transformation. 

The final pair INTRODUCE BETWEEN and SEPARATE 



Automatic Database System Conversion 585 

FROM BETWEEN allow for transformations of the form 
illustrated by the schemata of Figures lc and Id where a new 
record and set type are introduced between an existing record 
and set type. A succession of INTRODUCE BETWEEN's 
may be employed to create a hierarchy within the schema 
while SEPARATE FROM BETWEEN may be employed to 
remove this hierarchy. 

PURE TRANSFORMATION EXAMPLE 

Figures 1 and 2 provide two examples of potential applications 
of an automatic database conversion system. The starting 
database in Figures la and 2a shows a collection of student 
records organized in ascending order by student number 
(sno). Each student record owns a collection of course records 
(crs) which are organized in ascending order by course num
ber (cno). Figures lb through le show successive transforma
tion steps to convert the source schema into a target schema 
where courses own students. This conversion was called in
version by Navathe and Fry (1976).19 

The example query shown earlier, Find the course records 
in which a student named 'Joe' received a grade of 'A', applies 
to the schema in Figure la: 

FIND (crs: SYSTEM, sys-stu, stu(sname = 'JOE'), stu-crs, 
crs(grade = 'A')). 

No program transformation is required for the schema in 
Figure lb. The DISTRIBUTE AND ERASE in Figure lc 
requires the introduction of a boolean path expression in
volving the EXISTS predicate: 

FIND (crs: SYSTEM, sys-stu, 
stu(EXISTS (stu-crs, crs(sname = 'JOE'))), 
stu-crs, crs(grade = 'A')). 

The SEPARATE FROM BETWEEN transformation in 
Figure lc allows a more compact path expression: 

FIND (crs: SYSTEM, sys-stu, crs (sname = 'JOE'and grade 
=* 'A')). 

The INTRODUCE BETWEEN transformation in Figure 
Id forces a longer path expression: 

FIND (crs: SYSTEM, temp-set, temp-rec, sys-stu, 
crs(sname = 'JOE' AND grade = 'A')). 

Finally, the name changes in Figure le induce a simple trans
formation to the desired target query for the new schema: 

FIND (crs: SYSTEM, sys-crs, crs, crs-stu, 
stu(grade = 'A' AND sname = 'JOE')). 

Figures 2b through 2d show successive transformation steps 
to create a many to many relationship between student and 
course instances. Here again the paths expressions in FIND 
statements can be rewritten in an orderly way so that the same 
retrievals can be performed on the target database. Of course, 

transformations to STORE, DELETE, and MODIFY state
ments can present somewhat greater difficulty, but we feel 
that where a transformation is possible, our design supports it. 

Figures 1 and 2 show the effects of the transformation on a 
schema diagram, but the system is designed to take the actual 
code for the source schema and generate a target schema, to 
take the stored database and translate it to match the target 
schema, and to take the numerous application programs and 
convert them to run on the target schema. Of course, if infor
mation is deleted during a transformation, some of the appli
cation programs may not operate in the same way as they did 
before. The database administrator must decide if the results 
of such a conversion are acceptable. Whether the eighteen 
transformations we offer are convenient and provide enough 
power to be useful in commercial applications remains an 
open question. 

CURRENT RESEARCH DIRECTIONS 

Our fundamental goal has always been to create a research 
system which demonstrates the feasibility of automatic data
base system conversion. We do not seek Pure Database Sys
tem users, but rather hope that this work will inspire other 
designers to provide automatic database conversion facilities 
in their system architecture. 

We are currently trying to apply the ideas in the Pure Data
base System to conversion in other data models and to conver
sion across data models. Shneiderman and Thomas (1982)12 

describe 15 transformations for the relational model of data 
and suggest an architecture for an automatic conversion sys
tem. Schema to sub-schema mappings can be defined with 
transformation operations (Thomas and Shneiderman, 
1980).4 We are also pursuing a formalization of these concepts 
so as to verify the correctness of a transformation, assess the 
range of our set of transformations, and uncover additional 
useful transformations. 

This work is relevant to standardization efforts currently in 
progress because we beleive that the ease of conversion 
should be a consideration for all database definition and ma
nipulation languages. Secondly, a standards planning effort 
would be useful to coordinate and unify the diverse proposals 
for transformation facilities. 

ACKNOWLEDGMENTS 

Carl Fosler and Robyn Birckhead carried out the implemen
tation of the PDL and PML. Nancy Sevitsky prepared a user's 
manual, Wayne Fuller assisted with the documentation, and 
Bonnie Zager provided administrative support. The Com
puter Science Center, of the University of Maryland provided 
some of the computer resources for this project. National 
Science Foundation grant MCS-77-22509 provided partial 
support. We appreciate the comments of our colleagues Mi
chael L. Brodie, Barry Jacobs, Edgar H. Sibley and the mem
bers of the Database Program Conversion Task Group of the 
CODASYL Systems Committee, especially Stanley Su and 
Jim Fry. 



586 National Computer Conference, 1982 

SYSTEM 

( 
V J 

SYS-STU 
<SNO> 

STU-CRS 
<CNO> 

CNO TITLE GRADE 

(a) 

Add Field 
SNO PIC 9(6). 
To Record CRS. 

Distribute Fields SNO 
To Members of Set STU-CRS. 

Introduce Set 
Set NAME is CRS-GRADE. 
Owner Record is SYSTEM. 
Member Record is CRS. 
Set Key is (CNO, SNO). 
End Set. 
Storage Path is SYSTEM, CRS-GRADE, 

CRS (CNO = CNO-IDand SNO = SNO-ID). 

CRS-GRADE 
<CNO, SNO> 

CNO TITLE GRADE SNO 

I'M 

Introduce Between Record SYSTEM and Set 
CRS-GRADE Record 

Record NAME is TEMP-REC. 
Fields Are. 

CNO PIC X(4). 
TITLE PIC X(30). 

End Record. 
And Set 

Set NAME is SYS-CRS. 
Owner Record is SYSTEM. 
Member Record is TEMP-REC. 
Set Key is (CNO). 
End Set. 

With Source CNO of TEMP-REC = CNO of CRS. 

Factor and Erase Fields TITLE 
From Members of Set CRS-GRADE. 

Remove Fields TITLE From Record CRS. 
Change NAME of Record 

From CRS to GRADE. 
Change NAME of Record 

From TEMP-REC to CRS. 
Change NAME of Set 

From STU-CRS to STU-GRADE. 

STU 

SNO NAME CNO TITLE SNO NAME CNO TITLE 

CNO TITLE GRADE SNO CNO GRADE SNO 

(c) (d) 

Figure 2—Transformation from a one-to-many to a many-to-many relationship 



Automatic Database System Conversion 587 

PURE SYSTEM REPORTS 

1. Shneiderman, B., and G. Thomas. Automatic Database System Conversion 
I: Data Definition and Manipulation Facilities. Computer Science Technical 
Report Series TR-82, University of Maryland, College Park, Md., 20742 
(1979), 39 pages. (Submitted for publication.) 

2. Thomas, G., and B. Shneiderman. Automatic Database System Conversion 
II: A Transformation Language. Computer Science Technical Report Series 
TR-281, University of Maryland, College Park, Md. 20742 (1979), 46 
pages. (Submitted for publication.) 

3. Shneiderman, B., and G. Thomas. "Path Expressions for Complex Queries 
and Automatic Database Program Conversion." Proceedings of the 6th Very 
Large Data Bases Conference. Montreal (1980), pp. 33-44. 

4. Thomas, G., and B. Shneiderman. "Automatic Database System Con
version: A Transformation Language Approach to Sub-Schema Imple
mentation." Proceedings of the IEEE CO MPS AC '80 Conference, Chicago, 
(1980). 

5. Shneiderman, B., and G. Thomas, Pure Database System Report: A Trans
formation Language Approach to Automatic Schema, Stored Data and Pro
gram Conversion. Computer Science Technical Report Series TR-880, Uni
versity of Maryland, College Park, Md. 20742 (1980), 91 pages. (Submitted 
for publication.) 

The Pure Language components defined by this reports are separately de
scribed in: 
6. Shneiderman, B., and G. Thomas. Pure Definition Language Manual. Uni

versity of Maryland, College Park, Md. 20742 (1980), 10 pages. 
7. Shneiderman, B., and G. Thomas. Pure Manipulation Language Manual. 

University of Maryland, College Park, Md. 20742 (1980), 30 pages. 
8. Shneiderman, B., and G. Thomas. Pure Transformation Language Manual, 

University of Maryland, College Park, Md. 20742 (1980) 50 pages. 

Other Pure System reports are: 
9. Fosler, C. Pure System XPL—DMSI1100 Implementation Documentation. 

Computer Science Technical Report Series TR-872, University of Mary
land, College Park, Md. 20742 (1980), 38 pages. 

10. Fosler, C. Pure PDL and PML Runstream and Examples. University of 
Maryland, College Park, Md. 20742 (1980), 32 pages. 

11. Sevitsky, N. Pure User's Manual. University of Maryland, College Park, 
Md. 20742 <1980\ 52 pa»es. 

12. Shneiderman, B., and G. Thomas. "An Architecture for Automatic Re
lational Database System Conversion." ACM Transactions on Database 
Systems (June 1982.) 

REFERENCES 

14. Dale, A., and N. Dale. "Schema and Occurrence Structure Trans
formations in Hierarchical Systems." Proc. ACM SIGMOD conference 
(1978). 

15. Gerritsen, R. and H. L. Morgan. "Dynamic Restructuring of Databases 
with Generation Data Structures." 4̂CM National Conference 1976, pp. 
281-286. 

16. Housel, B. "A Unified Approach to Program and Data Conversion." Proc. 
3rd Very Large Data Bases Conference, Tokyo (1977). 

17. Jacobs, B. "Applications of Database Logic to Automatic Program Con
version." Submitted for publication. 

18. Navathe, S. B. "Schema Analysis for Database Restructuring." 4̂CM 
Transactions on Database Systems, 5 (1980), pp. 157-184. 

19. Navathe, S. B., and J. P. Fry. "Restructuring for Large Databases: Three 
Levels of Abstraction. ACM Transactions on Database Systems 1 (1976), 
pp. 138-156. 

20. Sakai, H. "Entity-Relationship Approach to the Conceptual Schema De
sign." Proceedings of the ACM SIGMOD Conference, 1980, pp. 1-8. 

21. Shu, N., B. Housel, R. W. Taylor, S. Ghosh, and V. Lum "EXPRESS: A 
Data Extraction, Processing, and Restructuring System." ACM Trans
actions on Database Systems 2, (1977) pp. 134-174. 

22. Shneiderman, B. "A Framework for Automatic Conversion of Network 
Database Programs Under Schema Transformations." Third Jerusalem 
Conference on Information Technology (J. Moneta, ed.) Amsterdam: 
North-Holland, 1978. 

23. Shu, N. C , B. C. Housel, and V. Y. Lum. "CONVERT: A High Level 
Translation Definition Language for Data Conversion." Communications 
of the ACM, 18 (1975), pp. 557-567. 

24. Su, S. Y. W. "Application Program Conversion Due to Database 
Changes." Proc. 2nd International Conference Very Large Data Bases, 
Brussels, Belgium (September 1976). Amsterdam: North-Holland, 1976, 
pp. 143-158. 

25. Su, S. Y. W., and H. Lam. "Transformation of Data Traversals and Oper
ation in Application Programs to Account for Semantic Changes in Data
bases." Department of Computer and Information Sciences, University of 
Florida, Gainesville, Florida, 1979. 

26. Su, S. Y. W., and B. J. Liu. "A Methodology of Application Program 
Analysis and Conversion Based on Database Semantics." Proceedings of 
the ACM SIGMOD Conference, 1977, pp. 75-87. 

27. Su., S.Y. W., and M. J. Reynolds, "Conversion of High-Level Sublanguage 
Queries to Account for Database Changes." AFIPS, Proceedings of the 
National Computer Conference (Vol. 47), 1978, pp. 857-875. 

28. Swarthwout, D. E., M. E. Deppe, and J. P. Fry. "Operational Software for 
Restructuring Network Databases." AFIPS, Proceedings of the National 
Computer Conference (Vol. 46), 1977, pp. 499-508. 

29. Taylor, R. W., J. P. Fry, B. Shneiderman, D. C. P., Smith, and S. Y. W. 
Su, "Database Program Conversion: A Framework for Research." Pro
ceedings of the 5th Very Large Database Conference. Available from ACM, 
New York, 1979. 13. Dale, A. and N. Dale. "Main Schema—External Schema Interaction in 

Hierarchically Organized Data Bases." Proc. ACM SIGMOD Conference, 
1977 pp. 102-110. 






