
Batched Searching of Sequential and Tree
Structured Files

BEN SHNEIDERMAN AND VICTOR GOODMAN

Indiana University

The technique of batching searches has been ignored in the context of disk based online data
retrieval systems. This paper suggests that batching be reconsidered for such systems since
the potential reduct.ion in processor demand may actually reduce response time. An analysis
with sample numerical results and algorithms is presented.

Key Words and Phrases: batched searching, information retrieval, database systems, data
structures, sequential files, tree structures, B-trees, indexes, file management
CR Categories: 3.70, 3.74

1. INTRODUCTION

The technique of performing search and update requests on a file of records pre-
dates the existence of computers. Librarians and commercial tabulating equipment
record keepers recognized the obvious advantages of accumulating a number of
requests before performing a single pass through the data records during which all
requests were satisfied. It was natural for programmers of business data processing
applications to adopt this strategy for the periodic updating of a key sorted “old
master tape file” from a key sorted “transaction tape file” to produce a “new master
tape file.” The impossibility of performing insertions and the difficulty of perform-
ing in-place updates in sequential tape files only reinforced the utility of the batch
processing concept.

With the proliferation of disk based online systems and the demand for real-time
response for individual retrievals, the use of batch processing has decreased. A few
texts provide a general discussion of batching [l, 21, and Knuth’s encyclopedic
review of search techniques [3] gives a cursory treatment. A few other sources rec-
ognize the importance of batching [4-61, but there is no precise analysis of the bcne-
fits of batching. Early research assumed processing was always performed in batches
while later research ignored this method altogether.

We present arguments for the reconsideration of batching, even in online real-
time retrieval systems, and support these arguments with algorithms and mathe-
matical analysis which demonstrate the practicality of batched retrievals in certain
circumstances.

Copyright @ 1976, Association for Computing Machinery, Inc. General permission to repub-
lish, but not for profit, all or part of this material is granted provided that ACM’s copyright
notice is given and that reference is made to the publication, to its date of issue, and to the
fact that reprinting privileges were granted by permission of the Association for Computing
Machinery.
Authors’ addresses: B. Shneiderman, Department of Information Systems Management,
University of Maryland, College Park, MD 20742; V. Goodman, Department of Mathema-
tics, Indiana University, Bloomington, IN 47401.

ACM Transactions on Database Systems, Vol. 1, No. 3, September 1976, Pages 268-275.

Batched Searching of Sequential and Tree Structured Files 269

Developers of online retrieval systems argued that short response time was the
primary goal and that each query should be dealt with as quickly as possible, even
at the expense of additional memory requirements and inefficient retrieval tech-
niques. This strategy eventually becomes counterproductive since the inefficiency
of individual retrievals places a higher demand on the processor (or processors) and
thereby potentially increases the response time for all queries. By using a somewhat
more elapsed-time consuming but more machine efficient algorithm,, i.e. batching
queries, it may be possible to reduce the average response time for the entire batch
of queries. As a crude example, imagine that the time to respond to a single query
for a serial processing algorithm is 1 sec. Should ten queries arrive at a processor
within the first second, the last of the responses will be removed from the queue
and completed after 10 set for an average retrieval time of approximately 5.5 sec.
If the processor waits, say 1 see, ten queries have been made before beginning the
retrievals, and if the batch retrieval time is only 3 set, then al1 the responses will be
completed no later than 4 set after the queries were entered, thus producing an
improved average response time and reducing the demand on the processor.

The validity of this hypothetical situation must be ascertained, but it seems
reasonable that if processor costs per query can be reduced system performance
will be improved. The strength of our argument is increased by the appearance of
very large online mass storage systems (10s-1012 bytes) which have relatively long
access times of up to 15 sec. If the number of accesses can be reduced, then there
is a possibility of a substantial reduction in response time and an improvement in
system performance.

While the hardware configuration strongly influences system characteristics, the
data structures also play a central role. Of course, batching is most advantageous
in sequential files, which are not the usual fundamental structure for online systems.
However, sequential searches are often performed during searches of more complex
structures, such as index blocks or hash table collision chains. Batching can also be
used advantageously in searching tree structured files and multilevel indexes [7, 81.
In these cases, the upper levels need be traversed only once for the batch of queries,
thereby reducing the average search cost for the batch.

For the remainder of this paper we will assume that files consist of records which
are organized on the basis of a key unique to each record. We assume that there
exists a linear lexical ordering of the keys. Queries, which are collected into a batch
of size k, are made by simply specifying a key value. Key values may appear more
than once in a batch. For simplicity of analysis we will assume that the key values
in the batch are sorted and that the cost of sorting is negligible. This assumption is
based on the fact that k is small (say 10 to 100) and that sorting of lc queries can
be accomplished in the high speed storage with no disk accesses. The search cost
metric is the number of accesses required, not the number of comparisons.

Section 2 contains the analysis for sequential searches, and Section 3 the analysis
for multiway trees. Section 4 contains a summary and suggestions for further work.

2. SEQUENTIAL SEARCHES

In the following analysis we assume that retrieval requests are made randomly for
records in a sorted sequential file of N records, so that each record is equally likely

ACM Transactions on Database Systems, Vol. 1, No. 3, September 1976.

270 l 6. Shneiderman and V. Goodman

to be requested. Then if a sequential search is performed, the search length or
“cost” is a random numerical quantity. We will use the following fundamental
formula for the mean or expected value of a bounded random integral quantity X.

mean = E(X) = c zProb(X = z}. (1)
--m<x<m

A partial summation argument shows that also

E(X) = c Prob(X >_ z).
z E range of x

(2)

For example, if X denotes the random length of a simple sequential search, then

Prob[X 2 j) = (N - j + 1)/N

and hence

One additional formula for E(X) involves condit.ional means. If there are two
random quantities, X, Y (not necessarily independent!), then the occurrence of
the event Y = c determines new probabilities for X since knowledge of Y may
furnish additional information. Using the new probabilities in (1) we obtain the
conditional mean of X given that Y = c; this quantity will be denoted by E(X (Y =
c). The following formula holds:

E(X) = -mz<m E(X 1 Y = c)Prob(Y = c). (3)

Our objective is to compute the expected cost savings in batching k requests as
opposed to performing k sequential searches. Instead of computing each expected
cost separately, we consider the difference between the number of accesses required
for k batched random requests and k sequential searches. The expected value of
this random quantity will be denoted by S(k, N), the average savings from batching
k requests against a sequential file of iV records. Clearly,

S(0, N) = 0, X(1, N) = 0, S(k, 1) = k - 1.

Suppose k requests are distributed randomly among N + 1 keys. We introduce the
random quantity Y = # requests for key 1. Then an elementary combinatorial
argument gives

Prob(Y = j) = ($)(Nk-‘/(N + l)k).

Also, since Y = j is the condition that k - j requests are distributed among the
keys 2, . . . , N + 1, we have E(savings 1 Y = j) = Ic - 1 + X(k - j, N). Hence,
from (3) we obtain the recursive formula

S(k, N + 1) = 2 (k - 1 + S(k - j, N))(f)(N%V + OkI,

which reduces to

S(k, N + 1) = U/W + Uk) gl S(r, NW(:) + k - 1.

ACM Transactions on Database Systems, Vol. 1, No. 3, September 1976.

(4)

Batched Searching of Sequential and Tree Structured Files l 271

One may verify directly (see Appendix) that the solution of (4) is

S(b N) = w + l)(@ - 1) + r$l ww. (5)

An accurate closed form estimate is obtained by estimating the last expression in (5).
Since

l/(k + 1) = 1’2 cl 2 < (l/N) 5 (r/N)” < I’2 dX + l/N = l/(k + 1) + l/N,
r=l

we have

0 < S(k, iv) - [(gc - l)(N + 1) + N/(k + l)] < 1.

A lower estimate of the average relative savings of batching k requests over k
sequential searches is then

(($k - l)(N + 1) + N/G + l)>/(MN + 1))

= 1 - 2/G + 1) - 2/(k(k + 1)W + 1)).

Interpretation of these results leads to some interesting points. Clearly when k
is large this analysis yields approximately the same results as the cruder technique,
which assumes that a batched search requires the entire sequential file be scanned.
For small batch size this analysis reveals that the entire file need not be scanned
to satisfy the batch of queries. For a batch size of two, approximately the first
two-thirds of the file needs to be traversed; for a batch size of three, approximately
the first three-fourths of the file needs to be traversed.

For an unsorted sequential file the average batched search length is the same as
for a sorted sequential file if we assume that all keys in the batch of queries occur
in the file. Should there be any unsuccessful queries, then the entire file must be
scanned and the analysis is trivial. In the case of unequal request probabilities or
of probabilistic sequential search the analysis would have to be repeated beginning
from (3).

Table I shows the number of physical accesses saved and the percentage savings
of batching as opposed to multiple sequential searches.

Table I. Average Number of Accesses Saved by Batching Requests
in a Sequential File and the Percentage Saving

Batch
size

2
5

10
20
50

100

Number of records in sequential file

100 1000 10000

33.3 33.0 333.3 33.3 3333.3 33.3
168.1 66.6 1668.2 66.6 16668.2 66.6
413.1 81.8 4094.9 81.8 40913.1 81.8
913.8 90.5 9056.6 90.5 90485.2 90.5

2426.0 96.1 24043.6 96.1 240220.1 96.1
4950.0 98.0 49658.9 98.0 490148.0 98.0

ACM Transactions on Database Systems, Vol. I, No. 3, September 1976.

272 l B. Shneiderman and V. Goodman

3. BATCHING IN I’-ARY SEARCH TREES

We assume that retrieval requests are made randomly from a tree with 1 levels
where each node contains j- 1 keys and j pointers. We also assume that the search
cost within a node is zero. The expected cost savings from batching k requests
against a j-ary tree with I levels is denoted by Si(k, 2). Since j will be fixed in the
following discussion, we omit the subscript.

We consider the expected cost saving due to those batch requests which appear
in the subtree determined by the first node on level 1 (see Figure l), where the tree
has Z+l levels. Given that there are n requests in this subtree, the expected savings
is X(n, I). The number of keys in a j-ary tree with 1 levels is given by x:1\
(j - l)? = j” - 1. Therefore,

Prob(a request falls within first subtree) = (j” - l)/(j”+’ - 1) = PL ,

and so

Prob(exactly n requests fall within first subtree) = (kn)Pln(l - PJk-“.

Then from (3), the expected cost savings due to the batched requests in the first
subtree is given by

Due to the symmetry of the tree, each subtree at level 1 has the same expected
savings and thus we obtain the recursive equation

Sj(k, I + 1) = k - 1 + j $I i$(n, z)(:MI”(l - Pl)?

Clearly Xj(l, 1) = 0 and Sj(lc, 1) = Ic - 1.
The algorithms for searching j-ary trees are more challenging. An elegant algo-

rithm for batched searching of binary trees draws on the partitioning scheme used
in quicksorting [9]. The root of the tree is used to partition the unsorted array of
key requests so that the left-hand portion of the array contains values less than the
root and the right-hand portion values greater than the root. Then by recurring
down the left side of the tree with the left-hand portion of the array and down the
right side of the tree with the right-hand portion of the array, the search can be
carried out completely. As key requests are located in the tree, appropriate infor-
mation can be returned. This algorithm can be generalized for j-ary trees.

level

level

Fig. 1

ACM Transactions on Database Systems, Vol. 1, No. 3, September 1976.

Batched Searching of Sequential and Tree Structured Files l 273

Table II. Average Number of Accesses Saved by Batching Requests Against a
Binary Tree and the Percentage Savings

I

Batch
Number of levels in binary tree

size
2

I
5 10

-

2 1.2 36.6 1.8 21.2 2.0 11.0
3 2.6 51.9 4.0 32.1 4.6 17.1
5 5.6 6’7.2 9.4 45.1 11.2 24.8

10 13.7 82.2 25.3 60.9 31.8 35.3
20 30.3 91.0 61.6 74.0 82.2 45.6
50 80.3 96.4 180.2 86.6 265.0 58.8

-

20

2.0 5.3
4.6 8.2

11.3 11.9
32.4 17.0
84.5 22.2

276.9 29.1

Table III. Average Number of Accesses Saved by Batching Requests Against
an 11-ary Tree and the Percentage Savings

Batch size

2
3
5

10
20
50

Number of levels in 11-ary tree

2 3 4 5

1.1 28.1 1.1 18.9 1.1 14.1 1.1 11.2
2.2 38.7 2.3 26.2 2.3 19.6 2.3 15.6
4.7 49.1 4.9 33.7 4.9 25.2 4.9 20.1

11.8 61.4 12.5 43.1 12.6 32.4 12.6 25.8
28.3 73.7 30.1 53.0 31.2 40.0 31.3 31.9
84.0 87.6 95.2 65.6 97.6 50.0 97.9 40.0

Table IV. Average Number of Accesses Saved by Batching Requests
Against a lOl-ary Tree and the Percentage Savings,

Assuming Root Node Is Kept in Storage
I
I Number of levels in lOl-ary tree

Batch size
2 3

10 .4 2.1 .4 1.4
50 10.2 10.3 10.5 7.0

100 35.7 18.0 36.8 12.3
150 70.6 23.6 72.8 16.2

Tables II and III show the numbers of accesses saved and the percentage savings
for batched searches as opposed to multiple serial searches, for binary and 11-ary
trees, respectively.

In any realistic implementation of a tree structured file, the root node would
usually be kept in the high speed storage at all times, thereby reducing the advan-
tage of batched searching. This implementation assumption would eliminate the
k-l term in (6) and reduce the values in Tables II and III. Table IV shows the
number of accesses saved and the percentage savings for a lOl-ary tree, assuming
that the root node is always in the high speed storage.

As the number of levels 1 in the tree increases, the number of accesses increases,

ACM Trsnsactions on Database Systems, Vol. 1. No. 3, September 1976.

274 l B. Shneiderman and V. Goodmon

since the initial shared paths are longer, but the percentage saved decreases. As
the degree of the tree j increases, the benefit of batched searching decreases since
there is a smaller probability that two queries will follow the same path in the tree.
As the batch size k increases the advantage of batched searching increases.

If the probabilities of request for the nodes are not equal, then more searches
will be concentrated in one portion of the tree and batched searching will be more
appealing. The equal probability of request assumption is the least favorable en-
vironment for batched searching.

4. SUMMARY

Batching of search or update requests can produce substantial savings over mul-
tiple serial searches when the number of accesses is the criterion for performance.
Sequential files and tree structured files provide the most obvious cases for analysis,
but other data structures should be studied as well. Although insertions can clearly
be batched for sequential files, tree structured files present a greater challenge when
insertion is considered. This is particularly true in the case of B-trees where the
node splitting strategy complicates the problem.

This paper focuses on complete trees where each node requires a disk access. We
also assume that each key is equally likely to be requested. Additional analyses are
required for arbitrary j-ary trees, for the case of nonequal request probabilities and
for other storage strategies.

It would be useful to analyze batched searching for structures which are main-
tained entirely in the high speed storage. In this case the cost should be estimated
by the number of comparisons required. Batching requests against a binary searched
array of keys would be especially important since this strategy is so frequently
used.

The batching of requests can be generalized to other searchable structures such
.as digital trees, digital tries, hash tables, etc. Another application is in the batching
of substring match requests against a search string. This idea has been applied by
Aho and Corasick [lo] to scan journal article titles for occurrence of any one of a
number of keywords.

APPENDIX

A verification that the solution of (4) is

S(k, N) = (N + l)(gc - 1) t g (n/Av

The formula clearly holds when N = 1 or k = 1. The substitution of this expression
into t.he right-hand side of (4) gives

(W + 1)/W + l>? 2 (:)[W’ - N’l + (W + U/W + OkI 2 (:I &+ k - 1.

From the identity (1 + a)” = X:=0 (:)a’, we obtain

& (:)rd = a $(l + a)” = ak(1 + a)?

ACM Transactions on Database Systems, Vol. 1, No. 3, September 1976.

Batched Searching of Sequential and Tree Structured Files 275

The expression in (4) may then be written as

(l/(N + l)“-‘>[$kN(l+ NY - (1 + N)L + 11+ (l/W + 1)‘“) 5 2 m + k - 1
n=l r=l

= +kN - (N + 1) + (l/(N + l)“-‘) + ll(N + 1)” $ [(l + n)” - 11 + k - 1

= $k(N + 2) - N - 2 + l/(N + l)k-’ + (l/O’ + Uk) go (1 + 4”

- l/(N + 1)” - N/(N + l)k

= W + 2)Gk - 1) + U/W + l)? go (1 + 4”.
Thus the formula is valid.

ACKNOWLEDGMENTS

We wish to thank Dan Friedman and Andrew Lenard for their valuable discussions
and suggestions. Ken Shafer implemented several batching algorithms connected
with this work. The insightful comments of the referees substantially improved
the quality of this paper.

REFERENCES

1. MEADOW, C.T. The Analysis of Information Systems. Melville Pub. Co., Los Angeles, 2nd
ed., 1973, pp. 300-303.

2. SALTON, G. Automatic Information Organization and Retrieval. McGraw-Hill, New York,
1968, pp. 243ff.

3. KNUTH, D.E. The Art of Computer Programming, Vol. 3: Sorting and Searching. Addison-
Wesley, Reading, Mass., 1973.

4. STOCKER, P.M., AND DEARNLEY, P.A. A self-organising data base management system. In
Data Base Management, J.W. Klimbie and K.L. Koffeman, Eds., North-Holland Pub. Co.,
Amsterdam, 1974, pp..337-348.

5. NIJSSEN, G.M. Efficient batch updating of a random file. Proc. 1971 ACM-SIGFIDET
Workshop-Data Description, Access and Control, pp. 173-186.

6. HWANG, K., AND YAO, S.B. Parallel processing of multiway search trees. Proc. 1975 Conf.
on Computer Graphics, Pattern Recognition and Data Structures, IEEE Computer Sot.,
May 14, 1975, pp. 170-176.

7. SHNEIDERMAN, B. A model for optimizing indexed file structures. Znternat. J. of Computer
and Information Sciences S, 1 (1974), 93-103.

8. BAYER, R., AND MCCREIGHT, E. Organization and maintenance of large ordered indexes.
Acta Znjormatica 1 (1972), 173-189.

9. FRIEDMAN, D.P., AND WISE, D.S. An environment for multiple-valued recursive proce-
dures. Tech. Report 40, Comput. Sci. Dep., Indiana U., Bloomington, Ind., Oct. 1975.

10. AHO, A.V., AND CORASICK, M.K. Efficient string matching: An aid to bibliographic search.
Comm. ACM 18, 6 (June 1975), 333-340.

Received January 1976; revised April 1976

ACM Transactions on Database Systems, Vol. 1, NO. 3, September 1976.

