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Abstract—Though biomedical research often draws on knowledge from a wide variety of fields, few visualization methods for

biomedical data incorporate meaningful cross-database exploration. A new approach is offered for visualizing and exploring a query-

based subset of multiple heterogeneous biomedical databases. Databases are modeled as an entity-relation graph containing nodes

(database records) and links (relationships between records). Users specify a keyword search string to retrieve an initial set of nodes,

and then explore intra- and interdatabase links. Results are visualized with user-defined semantic substrates to take advantage of the

rich set of attributes usually present in biomedical data. Comments from domain experts indicate that this visualization method is

potentially advantageous for biomedical knowledge exploration.

Index Terms—Data exploration and discovery, bioinformatics, information visualization.
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1 INTRODUCTION

THE amount of publicly available biomedical data has
ballooned in the past several years with ever-improving

technology and computational methods. In addition to
increased digitization of biomedical publications, improved
text mining and natural language processing techniques
allow for the extraction of thousands of unique relation-
ships from biomedical text collections. This vast quantity of
biomedical data presents a unique domain-specific chal-
lenge for interface designers: what are appropriate design
choices that will help knowledge discovery and exploration
within the biomedical domain?

To ground our discussion, we focus on one of the most
important and largest collections of biomedical data freely
available on the Internet, that of the National Center for
Biotechnology Information (NCBI). The NCBI maintains
over 30 public databases containing biomedical information
of various types, such as published medical documents
(PubMed), gene listings (Entrez Gene), protein listings
(Entrez Protein), and DNA sequence information (Entrez
Sequence). It also stores and manages pairwise associations
between records in the databases according to the various
types of content. For example, a particular document d

listed in PubMed might be associated with all genes G from
Entrez Gene that are mentioned in d. d may also have

associations with other PubMed documents that cite d as a
reference, as well as associations to the PubMed documents
that d itself cites. Furthermore, each gene g 2 G could have
associations with the proteins for which g codes, or the
DNA sequences in which g’s code appears. Usually, the
various types of records in these databases also have many
attributes associated with them. For example, PubMed
documents might be annotated with the date of publication,
authors, and general topics, while gene records could be
annotated with the relevant species, location on chromo-
some, or function. This rich space of record attributes is key
in aiding understanding of the data.

Given the huge amount of data at NCBI, and the large
number of databases, myriad variations of these associa-
tions are possible. To organize these data in a way useful for
knowledge exploration, note that NCBI’s multiple data-
bases can be abstracted as a massive entity-relation graph. In
this graph, nodes correspond to individual knowledge
points or database records, such as documents, genes,
proteins, and other object types. Associations between
database objects can then be modeled as directed or
undirected links in the graph, connecting related nodes.
The entity-graph model has already been applied to various
document collections, including some in the biomedical
domain, and much research has dealt with providing a
broad overview of research publications and trends by
visualizing the graph, typically using a force-directed node
layout scheme [19], or other schemes such as circular [13],
matrix-based [7], hierarchical [17], [37], [39], or layered [12],
[35], [46] node layouts. These types of top-down visualiza-
tions simplify the identification of concepts like research
fronts [3], [15].

However, our motivation lies not in discovering overall
trends, but rather in accomplishing the everyday technical
tasks of knowledge exploration and discovery undertaken
by biomedical scientists and researchers. Scientists research-
ing a particular gene, protein, or topic want to find specific
and relevant information that will aid in their research. As a
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result, when using NCBI’s databases, they begin with a
specific query or set of queries, and explore outward from
the initial query result. They might also cross-reference
records from multiple databases. Our visualization tools are
designed to aid this query-specific exploration.

Even though the NCBI databases form an implicit entity-
relation graph, the NCBI’s current web interfaces offer no
option to explore multiple areas of the graph simulta-
neously. Researchers explore the NCBI databases by
retrieving a single page of information at a time, essentially
limiting them to viewing a single node at a time. They must
continuously click forward and backward to retrieve
additional information from other NCBI databases. How-
ever, based on our interactions with biomedical domain
experts and the kinds of exploratory tasks they undertake,
we believe that explicitly viewing and exploring multiple
nodes in parallel will lead to improved performance in
exploration and discovery tasks. We provide a data
collector for the NCBI databases that enables this explora-
tion by initially retrieving a query-based subset of nodes
from one or multiple NCBI databases. Users then specify a
query tree that defines a data retrieval path between
databases. For example, users interested in the role of
genetics in alcoholism could use the data collector to
perform a document keyword search for “alcoholism”
within medical literature and disease databases, and
retrieve links from the resulting heterogeneous set of nodes
to gene records in another database.

To make use of the typically rich attribute space of
biomedical data, we display graph nodes and links using a
visualization technique known as user-defined semantic
substrates [2], [42], as implemented in the Network
Visualization by Semantic Substrates (NVSS) tool. Fig. 1a
shows one such visualization of a query about “cervical
cancer” across three NCBI databases. Unlike force-directed
layouts, semantic substrates rely mainly on node attributes
for meaningful and regular node placement into user-
defined regions. These regions allow users to attach specific
semantics to node positions on-screen, and enable a simple
filtering paradigm based on node position. In contrast to
other methods, semantic substrates offer expert users fine-
grained control over the placement of nodes and their
spatial meaning. Furthermore, different node layouts can be
effected by simply designing additional substrates, allow-
ing various views of the same data, and possibly leading to
different insights about the data. Semantic substrates are
thus especially suited to the display of biomedical data, and
represent a drastic improvement over force-directed layouts
used in similar situations, such as that in Fig. 1b, as well as
other node layout strategies. We used the NVSS tool to
visualize the results of several queries in NCBI’s biomedical
databases. On reviewing our work, domain experts in-
dicated that it shows a strong potential toward biomedical
visualization applications.

The paper proceeds as follows: Section 2 contains a
survey of related work in network visualization and its
applications within the biomedical domain. Next, Section 3
describes the data collection process, including our data
model and data collector design. In Section 4, the concept of
semantic substrates is further elaborated upon, and the
controls and methodology of designing and visualizing
semantic substrates are introduced. Section 5 provides

several visualizations of sample queries that demonstrate
the power and breadth of semantic substrates in cross-
database exploration, while Section 6 contains an evaluation
of our visualization methods by domain experts. Finally,
Section 7 outlines further avenues of improvement and
concluding remarks.

2 RELATED WORK

Network visualization has a long and distinguished
research history. In this section, we provide a brief survey
of work in network visualization, and some of its many
applications within the biomedical domain. For broader
overviews, refer to di Battista et al. [16], Herman et al. [26],
and Suderman and Hallett [45].

2.1 Network Visualization Methods

The vast majority of network visualizations make use of
force-directed layouts [19]. The basic idea behind the force-
directed layout is to model links as mechanical springs or
attractive forces between nodes, and nodes as exhibiting
repulsive forces. It thus tends to draw connected nodes
together while separating unlinked nodes. This layout is
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Fig. 1. For large cross-database exploration, (a) semantic substrates
provide a more useful node layout when compared to a (b) force-
directed layout. In a semantic substrate, nodes are placed into separate
substrate regions based on attribute values (here, source database) and
are further organized within each region using additional attributes. Link
filters allow fine-grained exploration. (a) Semantic substrates. (b) Force-
directed.



favored because it tends to reduce the number of link
overlaps, and reveals clusters that are not necessarily
known by users. Popular alternatives to the force-directed
layout include circular and radial [13], hierarchical [17],
[37], [39], layered [12], [35], [46], and matrix-based [7]
layouts. Circular layouts generally place nodes around
central pivot nodes, which allow for a simple one-dimen-
sional ordering of nodes around the circle. Hierarchical
layouts group nodes into clusters, usually based on link
strength. Layered layouts, often used with temporal
placement strategies and citation networks, create levels
of nodes with each level’s nodes sharing a common
attribute, and create an arrangement of nodes within each
level to satisfy various graph drawing aesthetics [46], such
as minimizing link crossings. Matrix-based layouts offer a
visual representation of an adjacency matrix, which avoids
the node and link occlusion problems of node-link methods.

However, the main drawback of these methods when
compared against semantic substrates is that they take a
very limited or nonexistent consideration of node attributes,
which are generally prominent in biomedical data sets, and
therefore do not impart any meaning to nodes’ spatial
positions. In particular, the force-directed, hierarchical, and
matrix-based layouts are overly dependent on link attri-
butes to determine node positioning. Circular and layered
visualizations have been used in limited ways to augment
nodes’ spatial positions with some meaning, such as
ordering or grouping nodes in terms of time, and so share
some similarity with semantic substrates. However, they
lack placement methods in terms of multiple node
attributes. In other words, they are limited to one-dimen-
sional node ordering. On the other hand, semantic sub-
strates can impart meaningful significance to nodes’ spatial
positions across multiple dimensions.

Another drawback of these visualization methods is that
as the number of nodes and links grows, the resulting
layouts grow cluttered and difficult to understand. To
illustrate, Fig. 1b shows a force-directed layout of concepts
related to breast carcinoma. Even though the concepts and
relationships depicted in the figure vary widely, the large
number of links between nodes causes them to be tightly
grouped and unreadable. It is difficult if not impossible to
identify and explore interesting relationships or patterns in
the data. In contrast, semantic substrates provide fixed node
positions based on node attributes, which makes interesting
nodes easy to identify by their attribute values. Also,
powerful and interactive methods of node and link filtering
provide a simple means of making sense of larger data sets.

Of course, it maybe meaningful to incorporate some of
these visualizations into semantic substrates to allow more
compelling exploration of particular biomedical data sets. See
Section 7 for a discussion of some of these potential additions.

2.2 Biomedical Visualizations

Because many biomedical concepts and relationships can be
abstracted as networks (e.g., molecular interactions, meta-
bolic pathways, regulatory networks, and disease correla-
tions), many visualization systems have been developed
that cater to exploration of specific knowledge domains or
biological networks. These visualizations abstract some
knowledge domain as a network representation, and then

use a corresponding network visualization method to
display the data. Generally, the layout method is chosen
based on the general network topology of the underlying
knowledge domain.

Many systems have been developed for visualizing
molecular interactions and pathways within and across
data sets, including Cytoscape [40], Pathway Studio [38],
Osprey [13], WebInterViewer [24], ProViz [33], VisANT
[30], PathBank [28], BiologicalNetworks [4], and most
recently, ProteoLens [31]. Most of these systems’ visualiza-
tions are based on specialized forms of the force-directed
node-link layout [6], [34], though most offer alternative
network views such as circular, radial, hierarchical, or
layered layouts. Because they are designed for exploration,
many of these systems offer querying capabilities based on
statistical attributes of the network, or local topology, to
draw attention to interesting parts of the network. Some
(e.g., Osprey [13], and VisANT [30]) also allow for selective
expansion of network nodes, rather than displaying the
entire network, and many are extensible via user plug-ins.

There are also several visualization tools developed to
aid analysis of interspecies relationships, based on genomic
or phylogenetic data. Fung et al. [20] evaluates the effects of
using two visualizations, based on matrices and bipartite
graphs, on DNA microarray data analysis. Shaw [41]
presents another analysis-based visualization technique
where the similarity of gene order across species is
displayed as a node-link diagram using a force-directed
layout. Also, a number of systems visualize phylogenetic
networks, which represent species as nodes and ancestral
relationships as edges. Huson [32] presents one popular
method for layout of phylogenetic networks called Split-
sTree, and Gambette and Huson [21] describe a number of
algorithms for drawing split networks.

To visually explore relationships and connections be-
tween diseases and their associated genes, Goh et al. [23]
generated two complementary network projections that
they term as the human disease network (HDN) and the
disease gene network (DGN). In the HDN, nodes are
disorders and they are connected if they share a disease-
causing gene, while in the DGN nodes are genes and they
are linked if they are associated with the same disease. They
use a force-directed layout to generate these two projec-
tions, and use color and size coding to impart information
about the diseases and genes in question. They analyze the
graph noting interesting statistical and topological proper-
ties such as apparent clusters of diseases or genes. Based on
this work, Muhammed et al. [36] create and analyze a
drug—target network, which visualizes associations be-
tween drugs and the proteins that they target or affect.

A number of tools were developed specifically for
visualizing large biological networks. Pajek [5] is a popular
software package for visualizing biomedical data sets such
as DNA interactions and genealogies, as well as a variety of
other large networks including citation networks. Adai et al.
[1] present a large graph layout algorithm that computes a
Minimum Spanning Tree (MST) of the network, and then
uses the MST for node layout based on an iterative force-
directed algorithm. Using this algorithm, they created and
explored a large protein homology network. Also, the
knowledge visualization tool VxInsight [11] displays large
networks of information such as documents or genomic
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data as a 3D mountainous landscape, where peaks
correspond to important data points. Boyack et al. [10]
used VxInsight to study how genes, protein, and papers
related to melanoma are interconnected via co-occurrence
patterns of Medical Subject Heading (MeSH) terms. They
generated a manually annotated Paper-Gene-Protein map
(papers from MEDLINE, genes from the Entrez Gene
database, and proteins from UniProt) using a force-directed
layout algorithm to see prominent co-occurrence relation-
ships. Their visualization was used to find “bursty” genes
related to melanoma research, indicating possible correla-
tions. Pathway Studio [38], Osprey [13], ProViz [33], and
VisANT [30] also specialize in large networks. Additional
commonly used tools for biomedical network visualization
include the Prefuse toolkit [25] and GraphViz [22].

Several visual tools have been created for exploring
databases of biomedical literature and the mined semantic
relationships found within. Arrowsmith [44] is a textual
web-based tool that supports the discovery of relationships
between two sets of literature in MEDLINE, a database of
life science and biomedical information. Arrowsmith lets
users look for items or concepts that maybe common
between two distinct sets of articles, but the presentation of
query results is limited to its text interface. In a similar vein,
the iHOP system [29] attempts to mine gene and protein co-
occurrences through manual user specification of sentences
of interest from PubMed abstracts. Aggregated results are
displayed as an entity-relation graph of genes, but again
with no regard to each gene’s attribute values. In other
words, node layout is purely link-based and ignores the
intrinsic qualities of each gene, which if used would
provide additional exploratory value. CiteSpace [14] is a
system for detecting and visualizing trends and changes in
scientific disciplines and their corresponding literature over
time, based on clusters of important keywords. To explore
the literature, two complementary visualizations are pre-
sented that are based on cluster views and temporal views.
CiteSpace uses a force-directed layout to provide a high-
level overview of important or seminal works. Bodenreider
and McCray [9] examine several network visualization
methods to explore semantic relationships from the Unified
Medical Language System, a database of medical concepts
and terminology gathered from many medical vocabularies.

3 DATA RETRIEVAL

To facilitate exploration of the NCBI databases, we
designed a data collector to retrieve a small subset of the
entire data collection, based on an initial keyword query
and coupled with subsequent node and link expansion. In
this section, we describe our entity-relation graph model in
more detail, as well as the web services available through
NCBI’s website, both of which influenced our final data
collector design.

3.1 Database Model

Fig. 2 shows the largest of NCBI’s databases, along with
interdatabase associations. As mentioned previously, rather
than keeping these databases distinct within our data
collection and visualizations, we abstract NCBI’s databases
into an entity-relation graph. In this graph, NCBI database

items, such as documents, genes, and proteins correspond to

nodes of the graph. Nodes have unique identifiers as well as

many other attribute values corresponding to each node’s

associated information. Also, the set of attributes varies

according to the type of node. For example, PubMed

document nodes include attributes for the document’s title,

authors, year of publication, and keywords, while Gene

nodes have attributes for gene name, genus and species name,

and chromosome location, among others. To ensure mean-

ingful node placement in semantic substrate regions, several

node attributes that represent semantic information should

be selected from each node. Fortunately, each node type in the

NCBI graph has many attributes and it was therefore easy to

settle on appropriate attributes for node layout.
While database items correspond to nodes of the entity-

relation graph, database associations correspond to links of

the graph. Each link has pointers to the two nodes that it joins,

as well as a type classification, such as “document citation” or

“content similarity.” In addition, the graph has several link

properties that make it more difficult to visualize:

1. Nodes may be connected by multiple links.
2. Links may be weighted or unweighted.
3. Links may be directed or undirected.

For example, suppose two medical report documents

d1; d2 concerning breast cancer appear in the PubMed

database. d1 may cite d2, so after mapping to the graph, a

“document citation” link would point from d1 to d2. Like-

wise, because d1 and d2 have similar content, an undirected

“content similarity” link, with weight of 0.9, might join d1

and d2. It is therefore vital to incorporate a method of

distinguishing or filtering links based on link attributes.
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Fig. 2. The largest of NCBI’s databases, where each node corresponds
to a database, and node color representing the database’s size. Links
between databases are also shown. Associations between databases
are numerous, and being able to explore these relationships is key to
understanding data from these databases (from http://www.ncbi.nlm.
nih.gov/Database/).



3.2 Data Collection

To retrieve data, we use the Entrez Programming Utilities
(eUtils).1 eUtils is a programming interface to the Entrez
Global Query Cross-Database Search System outside of
NCBI’s regular web browser-based query interface. We use
the following eUtils services in our data collector:

1. eSearch, which executes a keyword search query in a
specified database, returning a set of matching
record ids and relevance scores.

2. eLink, which retrieves links from a given set of
record ids to record ids from another database.

3. eFetch, which retrieves all record attribute values for
a given record id.

Responses are retrieved in an XML format, and thus are
easy to parse with any standard software. In addition to
eUtils, NCBI provides a web service that offers access to the
Entrez Utilities via the Simple Object Access Protocol
(SOAP). We developed our data collector in C# .NET using
this service.

3.3 Data Collector Design

As we want our tools to be used by as wide an audience as
possible, we designed our data collection tools to work with
any NCBI database that users might want to query. Fig. 3
depicts our data collector’s user interface. It enables user
queries of NCBI databases by making use of a keyword
search query coupled with a query tree. The search query is a
collection of keywords and an initial database (e.g., in Fig. 3,
OMIM) in which to search. The query tree is a specification
of the requested links between the search results and entities
in other databases. This tree represents the path of data
retrieval that will be taken by the data collector. Each node
in the tree corresponds to one of NCBI’s databases, with the
root node corresponding to the initial search query’s
database. Links between nodes in the query tree represent
interdatabase links that will be collected between records
from different databases. To retrieve intradatabase links,
users can link a database to itself. For example, in Fig. 3, the
user has specified “alcoholism” as the initial query string
and OMIM as the initial database. The corresponding query

tree specifies that links from OMIM to the PubMed and
Gene databases should next be retrieved, as well as links
from the resulting set of PubMed documents into the Gene
database. This query tree will cause the data collector to
retrieve links into the Gene database from multiple sources,
allowing for potentially interesting visualizations that make
it easy to find the genes most linked with alcoholism.

The data collector proceeds by executing an eSearch
query in the database corresponding to the root node of the
query tree. It then gathers data links and nodes by
traversing the tree and executing corresponding eLink
queries. Finally, node attributes for all collected nodes are
retrieved using the eFetch utility. The data collector
generates two tab-delimited text files as output correspond-
ing to node data and link data.

Because our visualization method (see Section 4) relies
heavily on node attributes for node placement, we designed
our data collector to allow users a flexible definition of
required attributes without interacting with the data
collector’s code. We store a list of attributes to be retrieved
outside of the software in an external XML attribute
description file. Each attribute in the XML file is composed
of attribute name, attribute type, optional filter string, an
indicator of whether the attribute can have multiple values
(e.g., author names), and optional conversion rules for
specific attribute values. These conversion rules were some-
times necessary to resolve Entrez database field inconsis-
tencies. For example, Gene records corresponding to human
genes have attributes for the chromosome on which the gene
is found, which can be either numeric (e.g., 9) or nominal
(e.g., X and Y). Using a conversion rule, we mapped X and Y
to chromosome numbers 23 and 24, respectively, to allow for
more meaningful Gene node positioning.

3.4 Data Retrieval Limitations

NCBI enforces rate limits for programs using the XML
eUtils interface. Programs using the interface are limited to
a single request every three seconds. In addition, the system
imposes limits to avoid, particularly, time-consuming
queries. If a query takes longer than 30 seconds to complete,
the query is canceled and no results are returned. These
limits create a challenge for interactive retrieval of query
result nodes and links, as the data collector must obey these
limits to ensure a full set of query results. They also prevent
the timely retrieval of potentially interesting nodes and
links between the results of independent keyword queries,
or independent clusters of nodes.

Our initial versions of the data collector experienced
time-outs and service disconnects due to these limits,
resulting in incomplete or missing query results. To avoid
these problems in later versions, we used a combination of
query batching, attribute filtering, and result prefetching.
We also executed several simpler queries using the same
query text, but searching different node attributes in each
query, such as the title, body text, or clinical synopsis
attributes. Thus, we ensured that each individual query was
completed within the required time limit, and still collected
enough data to be useful. Due to these multiple indepen-
dent queries, we often retrieved redundant node records,
which were removed from the final result.

An alternative to working within NCBI’s rate limits is to
download a copy of NCBI’s public databases and simply
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1. http://eutils.ncbi.nlm.nih.gov/.

Fig. 3. The main interface of our data collector. Users specify a keyword
query in the search entry field, and a query tree representing the path of
data retrieval. The data collector then traverses the query tree, collecting
nodes and links along the retrieval path. Here, “alcoholism” will be the
initial query in the OMIM database, and links into the Gene and PubMed
databases will be collected.



query the local copy. However, as the NCBI’s biomedical
databases continue to grow and be augmented with
additional semantic information, the feasibility of storing
and querying a local copy rapidly diminishes, due to size
and synchronization issues.

4 SEMANTIC SUBSTRATES

Typical graph visualizations within the biomedical domain
use force-directed node layouts [19]. However, as stated
earlier, force-directed layouts make little or no use of node
attributes for node positioning, and thus overlook an
important dimension of semantic information. Furthermore,
it can be difficult to visually distinguish nodes of different
types using force-directed layouts, as demonstrated by the
“hairball” visualization in Fig. 1b. Even though node color,
shape, or size can be used to differentiate node attributes (in
Fig. 1b, color is used), the emphasis on placement using
links causes a cluttered and confusing display, even for
some small to moderately sized networks. This clutter
extends to the network’s links in that it is difficult to follow
links from source to destination. As a result, force-directed
layouts tend to hamper the type of high-dimensional, cross-
database exploration that we seek.

Therefore, instead of using link strength (as force-
directed layouts do), we position nodes within semantic
substrates. A semantic substrate consists of a collection of
nonoverlapping regions within which nodes are placed and
positioned based on node type and other node attributes. To
create a semantic substrate, users create a set of regions, and
select node attributes and values that determine into which
region each node is placed. For example, a natural way to
segregate nodes into regions would be to place all PubMed
nodes in a single region, all Gene nodes in another region,
and so on for each database under consideration. Next, for
each substrate region, users select additional node attributes
and values to determine how nodes are positioned within
the region, such as positioning PubMed nodes based on
their publication date, with older publication dates in the
left portion of the region, and newer dates to the right.

Rather than relying on links between nodes, semantic
substrates provide a consistent node layout, mostly in-
dependent of link data. While this may result in more link
overlaps, semantic substrates preserve relationships among
nodes of the same type. Thus, if users already have ideas or
expectations of the types of patterns in their data (as is
usually the case with biomedical data), placing nodes based
on known attribute values provides a useful visual
grounding for further data exploration. For example, the
PubMed region layout mentioned above, where PubMed
nodes are positioned by publication date, allows users to
quickly find the most recent articles covering their topic of
interest, rather than having to hunt for them on the screen.
As another example, Gene nodes might be positioned
within a gridded substrate region according to their genetic
locus, with the X-position corresponding to the gene’s
chromosome, and the Y-position corresponding to the
gene’s chromosome band.

Semantic substrates are also useful for cross-database
exploration because they provide a natural way to group
nodes of the same type together. Each database can be

represented in a substrate by its own region (e.g., having
separate regions for PubMed, Gene, Protein, OMIM, and
Taxonomy). As a result, it is easy to distinguish intradata-
base links from interdatabase links by visual inspection.
Segregating nodes into distinct regions also simplifies the
user interaction necessary to filter nodes and links to a
selected subset of interest, which is important when
visualizing large databases with many relationships be-
tween nodes. Links can be identified using the attribute
values of the nodes that they connect, which can be
determined easily using the nodes’ positions, and can be
filtered based on both node and link attribute values. For
example, users might find a cluster of interesting links
between certain PubMed nodes and Gene nodes, where the
PubMed nodes’ publication date was after 1980 and the
Gene locus was on chromosomes 12 and 13.

An additional benefit of using semantic substrates is that
they provide a natural and powerful way of creating
multiple views of the same data set. To do so, users can
simply create another semantic substrate by choosing a
different region layout, or selecting different node attributes
and values to use for region placement and positioning.
Having multiple views of the same data is especially useful
for visualizing the large, high-dimensional data sets used
by the biomedical community, where new and interesting
visualizations can be obtained by using a different subset of
attributes and values. These different visualizations can
afford different insights into the data set under considera-
tion. We used the implementation of semantic substrates
called Network Visualization by Semantic Substrates.

We now provide an overview of the semantic substrate
design process, and the visualization controls available in
NVSS.

4.1 Designing a Semantic Substrate

Designing a substrate in NVSS amounts to deciding the
number of substrate regions, their positions on the display,
and which attributes to use for node placement into and
within regions. In general, the process of designing
satisfying and useful substrates is an iterative procedure.
Often, it is hard to tell how useful a given substrate will be
for exploration prior to loading and exploring the data. In
addition, the node placement method (i.e., along the
regions’ X-axis, Y-axis, or both) may affect the visualiza-
tion’s usefulness.

Fortunately, NVSS simplifies the creation of multiple
semantic substrates using a built-in substrate designer, fully
described by Aris and Shneiderman [2] and shown in Fig. 4.
Users draw substrate regions in the right pane of the
designer, and then set properties for each region in the left
pane. For each region, the most important settings are those
which determine the nodes that will be placed in the region,
set using the “Attribute” and “Attribute value” fields. In
Fig. 4, the user has created six regions, corresponding to
nodes of type Gene (the central selected region), Homo-
logene, OMIM, PubMed, Protein, and Taxonomy. For each
region, the node positioning within the region is further set
using the “Placement method” field, which opens another
dialog box with node positioning options. In the figure, for
the central Gene region, the “GridPlot XY” method was
chosen, with the gene chromosome number used along the
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X-axis and the chromosome band used along the Y-axis.
Apart from node placement and positioning, various
display properties for each region can be set, including
region labels, node colors, and region fill colors.

To illustrate the substrate design process and show the
dramatic difference when using different node placement
and positioning attributes, we now describe the process we
followed to create a substrate region containing PubMed
nodes. These nodes have several attributes which could be
useful for node placement, such as authors, publication
dates, and publication types. They were also of particular
interest and a challenge to visualize due to the relatively
large number of PubMed results in our queries and their
somewhat skewed distribution of publication dates.

Fig. 5 contains three variants of a substrate region
containing the same data, namely PubMed nodes from a
query about “cervical cancer.” Fig. 5a is our initial
visualization of these nodes, using the publication year
attribute for layout along the X-axis and with uniform
attribute binning. As can be seen, the right portion of the
region is overcrowded with nodes, indicating that most
documents in the query result were published within the
past 10 years. Another problem with the initial layout, of
which we were not aware before visualizing the data, is the
large gap in PubMed results between 1948 and 1980. This
layout wastes screen space and apart from distinguishing
the 1948 publication, provides no useful information about
the visualized data.

To remedy these problems, we used a different layout,
shown in Fig. 5b. In particular, we used the Y-axis for node
placement and used custom (i.e., nonuniform) bin sizes to
group nodes. This layout causes nodes to be spaced more
evenly, and allow users to more easily distinguish
individual nodes, which is important for useful data
exploration especially in combination with link visualiza-
tions. We also size-coded each node to indicate the node’s
indegree, to impart some measure of the node’s importance
to the query as a whole. Note that choosing appropriate
custom bin sizes requires prior knowledge about the
distribution of attribute values, so proper bin lengths can
best be set after an initial visualization. These difficulties
can also be somewhat mitigated by integrating additional
statistical displays, such as attribute value histograms, into
the substrate designer, as well as incorporating scrolling or
zooming features within the visualization itself to view
compact regions more closely. We plan to extend NVSS to
address some of these limitations.

For a third example layout, shown in Fig. 5c, we created

a 2D layout using two attributes: publication year along the

X-axis, and publication type along the Y-axis. This layout

allows users to find interesting groups of publications by

both type and year simultaneously, and provides a quick

overview of the types of publications relevant to the query

of interest. It also demonstrates how using a different

semantic substrate can provide a different means of

exploring the same data.

4.2 Visualization Controls

After designing substrates, users proceed to visualize their

data using NVSS’s visualization module, which has a

variety of additional controls. Here, we describe these

controls; we will provide complete visualization examples

in subsequent sections. Fig. 6 shows the control panel of

NVSS’s visualization module. In the top portion, users can

customize node, region, and link colors. The numbers next

to each region and link type represent the number of nodes

in regions and links between regions, respectively. In

addition, users can control the visibility of links using the

link check boxes. In the figure, the user has chosen to show

the six links from Gene nodes to Homologene nodes, and

the 103 links from Gene nodes to Protein nodes.
The lower portion contains additional link filters based

on source and destination node attributes. These filters are
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Fig. 4. The NVSS substrate designer. Users draw regions in the right
pane. Each region’s node grouping and display properties can be set in
the left pane.

Fig. 5. Three variants of a region with PubMed nodes using different
node positioning attributes: (a) Publication year along X-axis with
uniform binning. (b) Publication year along Y-axis with custom binning
and size coding for node indegree. (c) Publication year along X-axis and
publication type along Y-axis.



vital when exploring very large databases with many node
relationships, as are often present in the biomedical domain,
to ensure a meaningful and useful visualization. In the
figure, three attribute value filters are activated, including
links from those Gene nodes with chromosome number
between 7-20 and genus Homo or Mus, as well as a filter for
OMIM nodes with modification dates between 2001 and
2009. In addition to the above controls, NVSS provides node
details when nodes are selected in the display, accessible by
clicking the “Node Details” tab at the top. Furthermore, by
clicking on a node in the visualization, users can open a web
browser to display a URL associated with the node, which
for our data sets and queries, was the NCBI webpage
corresponding to that node. This feature was especially
important to our users, as our data collector was unable to
retrieve all the attributes in which biomedical researchers
were interested due to database access limitations.

5 SAMPLE VISUALIZATIONS

Based on our interviews with domain experts (see Section 6),
we created several visualizations of sample queries that
might interest typical biomedical researchers, based around
diseases being actively researched at NCBI, the National
Institutes of Health (NIH), and other biomedical centers.
Our queries encompassed six NCBI Entrez databases,

namely PubMed, OMIM, Gene, Protein, Homologene, and
Taxonomy.

In collecting data from these databases, we found that
the set of attributes available through the Entrez system was
rather limited in size and breadth. As a result, the node
placement and positioning attributes we used for demon-
stration purposes would be of somewhat limited use for the
highly specific queries of biomedical research. NCBI’s
internal databases, hidden from the web, contain a much
richer set of attributes, and it is these attributes that would
make for even more interesting visualizations using
semantic substrates, which thrive on rich attribute spaces.
See Section 6 for a description of some of these attributes
and their potential use.

The queries and their visualizations are detailed below.

5.1 Hypertension

Our first query was of the general form: “What are the most
significant publications, genes, and diseases related to
hypertension?” To execute this query, we performed a
keyword search in the OMIM database for “hypertension,”
and retrieved links from the resulting set of OMIM nodes to
the Gene and PubMed databases. We also retrieved links
from the Gene nodes to PubMed nodes, as well as some
similarity links between PubMed records. For the hyperten-
sion query, we collected a total of 433 nodes, including
357 PubMed records, 45 Gene records, and 31 OMIM entries,
in addition to 440 links.

Fig. 7 shows one visualization of the query results, using a
substrate with separate regions for each database. To
position nodes within regions, we ordered PubMed and
OMIM nodes by publication year and modification year,
respectively, while for Gene nodes, we used a 2D layout
using each node’s Genus and Chromosome Number
attributes. In the figure, the links have been filtered to only
those PubMed documents published in 2002, using NVSS’s
slider bar filters. Notice that the collection of PubMed
documents within that time range are linked from all three
databases, and most are linked from a single source only. The
figure exemplifies the need for visual cross-database ex-
ploration, in that this phenomenon likely resulted from our
not knowing the correct keywords to use to return all
relevant results. This is a typical problem with strict
keyword searches, even those performed by domain experts.
To retrieve the equivalent set of results in a traditional
textual exploration interface would require repeating the
query several times in multiple databases, and manually
merge the results. Using semantic substrates, we can easily
perform these cross-database searches and visually display
query results in an intuitive and comprehensible manner.

5.2 Mental Disorders

Our next query was gene-centric and involved finding
genes implicated in several mental disorders, namely
anxiety, depression, addiction, and schizophrenia, as well
as publications related to these genes. For this query, we
used the same databases as used in our hypertension query
(i.e., OMIM, Gene, and PubMed). However, we performed
four separate keyword searches in OMIM, and retrieved
links from each separate search to the Gene database. We
then retrieved links to PubMed from the Gene result nodes.
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Fig. 6. Visualization and filtering controls available in NVSS. Above,
users select colors for substrate regions, nodes, and links. Check boxes
also allow users to selectively display subsets of links based on source
and destination region. Below, users perform additional link filtering
based on additional source and destination node attributes, using
checkboxes to enable filters, and two-way sliders to select attribute
value ranges.



Fig. 8 shows our visualization. Even though we used the

same databases as before, our substrate is substantially

different, demonstrating the ease of creating multiple views

of the same data. The four OMIM keyword search results

are placed into different regions, labeled Anxiety, Depres-

sion, Addiction, and Schizophrenia, respectively, which

provide a simple means of visually distinguishing OMIM

nodes from the different keyword searches. Gene and
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Fig. 7. Results of a cross-database query about hypertension. Gene-PubMed, OMIM-PubMed, and PubMed-PubMed links are shown where the
link’s target publication was published in 2002. Notice that links to the relevant publications are scattered across multiple sources and would be
difficult to find using nonvisual cross-database exploration methods.

Fig. 8. Results from a query about genes implicated in several mental disorders. Multiple OMIM keyword searches allow a visual query intersection
of Gene nodes. Also, link statistics from Gene nodes to PubMed nodes are used to find the most prevalent publications related to these genes.



PubMed nodes again are given their own substrate regions.
For OMIM node positioning, we used database identifiers,
while Gene nodes are positioned using chromosome
number (Y-axis) and chromosome band (X-axis). PubMed
nodes are positioned using publication date (Y-axis) and
node indegree (X-axis), which allow visual determination of
PubMed nodes’ recency of publication and importance in
terms of citation by Gene nodes. We collected a total of 80
OMIM nodes (20 per keyword search), 98 Gene nodes, and
1,317 PubMed nodes, and a total of 2,034 links.

We can see that several clusters of genes collected
through links from OMIM can be found in the Gene region,
which maybe difficult to find using nonvisual search
methods. Also, when applying filtering to show links from
OMIM nodes to centrosomal Gene nodes (i.e., those genes
with middle band numbers), we observe that these genes
have links from a large number of OMIM nodes related to
all four queried mental disorders. This may indicate that the
genes under consideration have strong ties to all these
disorders. Upon examining the PubMed nodes, obtained
through links from the Gene nodes (but not shown), we see
that research into genes related to the queried mental
disorders has a rich history. In addition, the PubMed nodes
with large indegree (i.e., those nodes with a large influence
on the Gene nodes as measured by number of links from
Gene nodes) readily stand out, allowing quick determina-
tion of the most relevant publications related to the genes of
interest. As this example shows, NVSS’s interactive filters
allow the exploration of data in a variety of useful ways.

5.3 Breast Carcinoma

For our third query, we searched for cross-species genetic
information and publications related to breast carcinoma.
An initial keyword search for “breast carcinoma” was
performed in the Homologene database to retrieve cross-
species information. Links to the Gene, OMIM, Taxonomy,
and PubMed databases were then retrieved. We also
retrieved additional links from the returned OMIM nodes
to PubMed nodes. In total, we retrieved 14 Homologene,

15 Taxonomy, 26 OMIM, 129 Gene, and 587 PubMed nodes,
along with 908 links.

Fig. 9 shows our query results in a substrate with five
regions, with each region corresponding to a different
database accessed in our query. For Homologene node
positioning, we chose a taxonomy ID associated with the
node, which indicated its primary species association. Of
course, each node had several such associations, as
evidenced by the links from each Homologene node to
multiple Taxonomy nodes. We divided the Taxonomy
region based on the species division as specified in the
Taxonomy database. For the OMIM region, both the
modification date (Y-axis) and indegree (X-axis) were used
for node positioning. Finally, for the PubMed and Gene
regions, we used the same node layouts as those in our
previous query about mental disorders.

By interactively filtering links, we quickly found a
Homologene node with links to many Taxonomy nodes
(highlighted in Fig. 9). In other words, we found a gene
with many cross-species links that was especially relevant
to breast carcinoma. The node’s details are shown in NVSS’s
right panel, which indicates the underlying gene symbol as
BCAS2 and corresponding title “breast carcinoma amplified
sequence 2.” Also note that the Homologene node in
question has links to a tight cluster of Gene nodes, which
may indicate the disease’s approximate genetic locus. As
before, finding relevant OMIM entries and PubMed docu-
ments becomes simple when using the indegree for node
layout in their respective regions. All these visual indica-
tions can allow domain experts to find useful starting points
for more in-depth exploration.

5.4 Obesity

Our final example query for relevant entries about
“obesity” also used the Protein database to find relevant
proteins, in addition to the previously used PubMed,
Gene, OMIM, Homologene, and Taxonomy databases. We
began with two keyword searches for “obesity” in the
Gene and PubMed databases. Next, we retrieved links
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Fig. 9. Results from our query on breast carcinoma. The highlighted Homologene entry, corresponding to the BCAS2 conserved gene, contains links
to a wide variety of Gene and Taxonomy nodes, indicating its importance to breast carcinoma.



from the Gene node results to nodes in the OMIM,
Homologene, Protein, and PubMed databases. Finally, we
retrieved links from the Homologene results to Taxonomy
database nodes. A total of 200 PubMed, 27 Gene, 18 OMIM,
7 Homologene, 12 Taxonomy, and 103 Protein nodes were
retrieved, and 425 links.

Fig. 10 contains our obesity query visualization. For node
positioning in the Protein region, we used the correspond-
ing protein’s length, which served as a rough clustering
measure for the protein nodes. For the remaining regions
we used the same attributes as in the previous visualization.
In the figure, we filtered the links to show only those from
Gene nodes to Protein and OMIM nodes, as well as links
from Homologene nodes to Taxonomy nodes. In doing so,
we observe that several Gene nodes have links to multiple
OMIM nodes, indicating their possible connection with
several diseases or medical conditions related to obesity. In
addition, some Gene nodes have links to multiple clusters
of Protein nodes, which may indicate their importance to
the query result. With different node filtering, domain
experts can explore the query results to discover additional
details useful in their research.

6 EXPERT EVALUATION

To judge the effectiveness of our visualization methods
using semantic substrates, we met with 10 bioinformatics
specialists from the National Library of Medicine. These
researchers have expertise in a variety of areas, including
biomedical informatics, biomedical ontologies, machine
learning, and text analysis. Most also hold medical degrees
and the PhDs in medical informatics and computer science,
and have on average 15 years of experience in their
respective fields.

These researchers mainly used the PubMed, Gene, and
OMIM databases for their work, in addition to NCBI’s

various other databases. In general, they were dissatisfied
with the current state of affairs in bioinformatics visualiza-
tions, especially related to visualization of manually or
automatically extracted semantic relationships among
PubMed documents, as well as the hierarchical relation-
ships of the MeSH and GO ontologies. For example, text
mining methods on a large collection of PubMed docu-
ments, Gene records, and OMIM articles might yield
relationships such as “gene X is correlated with disease
Y.” They had tried using off-the-shelf tools such as Prefuse
[25] and GraphViz [22] to visualize these relationships, but
found them to be inadequate for exploratory purposes,
mainly due to “insufficient flexibility” of the data visualiza-
tion and their “limited navigation paradigms.” The sheer
number of semantic relationships extracted from PubMed
documents—in the hundreds of thousands—was also a
limiting factor, as most visualizations lost their effectiveness
when the number of visualized relationships exceeded the
hundreds. Also, these tools generally did not allow
integration of data from multiple sources, which severely
limited their utility. Unlike the existing visualizations,
semantic substrates’ powerful filtering capabilities are
better-suited for showing interesting subsets of large,
complicated networks.

We arranged a 1.5 hour combined presentation and focus
group discussion with the team of experts. A half-hour was
dedicated to a presentation of our exploration methodology
using semantic substrates, after which we asked for
comments and feedback from the experts for the remaining
hour. We asked the experts how biologists seeking
information from the NLM or NCBI databases would
normally explore their vast collections of data. They
commented that detailed literature and topical surveys are
normally carried out by the NLM’s expert librarians, who
maintain their own private indexing systems, separate from
the public interfaces available through the Internet. They
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Fig. 10. A substrate showing results from our obesity query. Several interesting patterns emerge, such as several Gene nodes with links to multiple
OMIM nodes or multiple Protein node clusters.



also mentioned that typical keyword searches using the
NCBI’s web interfaces would not return an exhaustive
collection of relevant literature and information, as query
results are heavily dependent on the exact terms used, and
do not adequately take synonyms and other relationships
into account. They were excited that our approach
augmented an initial keyword search with link information
that effectively expands the results of a given query in
possibly interesting ways. In other words, they believed
that it is not strictly necessary to know all the synonyms or
related terms for a given keyword query, as these synonyms
are implicit in the link relationships found among the query
results. They further commented that semantic substrates
offer a “useful visual metaphor” for exploring ever-
expanding collections of semantic relationships in a scalable
way. The researchers also mentioned that “pulling in
multiple databases for cross-searching” was the correct
way to explore large collections of biomedical data.

To evaluate our methods in the context of specific
technical queries, we used our data collector to prepare
sample query results involving the PubMed, Gene, and
OMIM databases. We retrieved data based on several
queries from the TREC 2007 Genomics Protocol [27], three
of which were as follows:

1. What centrosomal genes are implicated in diseases
of brain development?

2. What is the genetic component of alcoholism?
3. What mutations in apolipoprotein genes are asso-

ciated with disease?

We visualized the query results in NVSS, using one region
for each of the PubMed, Gene, and OMIM data. Fig. 11 is one

such visualization of the brain development query. The figure
shows one particular OMIM node, corresponding to schizo-
phrenia, and all the Gene and PubMed records that it
references. The Gene records are organized by chromosome
number, PubMed documents are ordered by year of publica-
tion, and OMIM entries by the last date of modification.

The NLM team commented that the referenced genes
were likely implicated in or related to schizophrenia. They
liked that they were able to see, at a glance, what the most
important genes and documents related to schizophrenia
were. They also suggested that using more attributes of each
node type would make it easier to answer the query. In
particular, “centrosomal genes” refer to those genes with a
central physical location on their respective chromosomes—
in other words, with a middle band number. As evidenced
by Figs. 8, 9, and 10, gene chromosome and band numbers
serve as natural and useful attributes for node positioning
within semantic substrate regions. To improve the visualiza-
tion of this query’s results, we could position Gene nodes
using chromosome number and chromosome band number,
as we had done earlier. This modified layout would allow
users to quickly find centrosomal genes at a glance, by
examining the nodes’ spatial positions within the region.

To improve the PubMed and OMIM regions, the
researchers suggested additional node attributes to use.
For PubMed nodes, genotypic and phenotypic associations
might make for interesting visual classifications. Also, for
OMIM nodes, rather than using modification date for node
positioning, they suggested using the class of disease
connected with the OMIM entry. The researchers commen-
ted that this richer set of node attributes would greatly

LIEBERMAN ET AL.: VISUAL EXPLORATION ACROSS BIOMEDICAL DATABASES 547

Fig. 11. A visualization of results from the query: “What centrosomal genes are implicated in diseases of brain development?” Links from an OMIM
record about schizophrenia are shown to relevant genes and PubMed documents.



enhance the visualization and make it immediately useful
for answering a variety of queries. Unfortunately, these
attributes, while present in internal NCBI databases, were
not accessible through the NCBI’s web interfaces. However,
if available, these attributes could be easily integrated into
semantic substrate designs and would be useful for
exploring query results.

The NLM researchers offered several suggestions for
making cross-database exploration in NVSS more dynamic.
In particular, they wanted ways to refine their initial query
based on additional keywords found in the set of results, or
selectively filter or expand subsets of the graph. Also, the
NLM team suggested that it would be useful to dynami-
cally add more substrate regions, and reposition regions if
the current substrate layout was not found to be useful. We
plan to integrate these improvements into future versions
of NVSS.

7 CONCLUSION

Parting from textual query result lists like those at NCBI’s
website, semantic substrates offer a novel way to browse
and explore biomedical data across multiple databases. This
browsing would be further enhanced by incorporating
dynamic query retrieval of nodes and links and the
subsequent visualization of results within appropriate
substrate regions. Furthermore, new methods would have
to be developed for visualizing the number of results, and
determining and displaying the most interesting or relevant
results. Navigating through the various sets of query
results, in a manner analogous to a web browser’s forward
and back buttons, also poses a challenge. One way to
incorporate query navigation might be to navigate using a
tree, in the same way that our data collector uses a query
tree. However, instead of nodes corresponding to data-
bases, nodes of this navigation tree would correspond to
substrates in the navigation history, similar to the history
mechanism used for VisPad [43]. When a node is clicked,
the previous exploration state corresponding to that node
would be loaded into the visualization.

Also, as many biomedical data sets involve ontological or
hierarchical relationships (e.g., Gene Ontology, MeSH
terms, and Taxonomic/Phylogenetic trees), our visualiza-
tions could be enhanced by incorporating additional
visualization methods within the semantic substrate frame-
work. In particular, the regions within semantic substrates
could use a treemap [8], [18] to hierarchically organize
nodes. For example, a visualization involving genes of
multiple species might incorporate a treemap subdividing
the region space hierarchically according to the taxonomy
of genes in the data set. Node positioning within each
treemap cell could be customizable depending on users’
preferences. Some of the many existing alternative network
visualization algorithms (e.g., layered [46]) could be
incorporated as well. Another useful feature would be a
means of displaying or interacting with the ontological
information associated with each node, if present.

In addition, while our current visualization favors ex-
ploration of individual nodes, such as PubMed documents or
genes, more sophisticated link filtering and exploration may
improve our visualization tool. In particular, NVSS currently

supports link filtering based on source and destination node
attributes, but would benefit from additional filtering
options based on other link attributes. Also, NVSS’s handling
of multiple link filters is currently limited to “AND” rules
(e.g., show links with source in region X and destination in
region Y), but does not allow “OR” rules (e.g., show links
with source in region X and destination in either Y or Z).
Adding better support for link filtering and manipulation
would allow more expressive queries for user exploration
using semantic substrates.

As the amount of semantically tagged biomedical data
continues to grow, we believe that semantically relevant
visualizations like semantic substrates will have increas-
ingly important roles in exploring and understanding
biomedical databases in the near future.
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