
We use an annotated
digital photo
collection to
demonstrate a two-
level auto-layout
technique consisting
of a central primary
region with
secondary regions
surrounding it.
Because the object
sizes within regions
can only be changed
in discrete units, we
refer to them as
quantum content.
Our real-time
algorithms enable a
compelling
interactive display as
users resize the
canvas, or move and
resize the primary
region.

62 1070-986X/06/$20.00 © 2006 IEEE Published by the IEEE Computer Society

Feature Article

A
utomatic text-flow algorithms have
brought about a revolution in the
page-layout process. Writers and
publishers now take for granted that

text will break correctly at the end of a line, or
flow around a drawing within a document.1

Today’s Web browsers work on this same princi-
ple of dynamic flow, and most Web pages will
reflow the text as the window is resized. If users
print a document, properly configured text will
reflow to meet the paper’s dimensions.

This article explores the possibility of perform-
ing rapid, automatic layout with nonoverlapping,
2D fixed-aspect-ratio objects, such as photos.
These objects can appear in a central primary
region, which defines the entire layout, or in sec-
ondary regions that offer lower-level detail, such
as parents in the primary region, surrounded by
secondary regions containing many pictures of
each of their children. We address such common
two-level categories in this article, leaving more
complex layouts for future work. In all cases, the
primary region highlights one photo, concept, or
text block; the secondary regions serve the pur-
pose of showing organized subcollections that the-
matically relate to the primary region.

The techniques presented here apply espe-
cially to photo libraries, but might have variants
that apply to newspaper layouts, online maga-
zines, and electronic product catalogs. A com-
pelling aspect of these algorithms is the
interactive redisplay as users change the rectan-
gular canvas size and shape, add or delete sec-
ondary regions, and add or delete objects to a
secondary region. We combine these algorithms
and refer to them holistically as the bilevel radial
quantum, or BRQ algorithm—pronounced as

“brick,” not only for pronunciation of the
acronym, but also because of its playful resem-
blance to a brick wall. This engaging animated
interaction (see the “Dynamic behavior” section)
is an important feature for consumer applications
such as personal photo management.

Case study: Photo layout
In many commercial photo management

tools—such as ACD’s ACDSee, Adobe’s Photoshop,
Apple’s iPhoto, and Google’s Picasa—photos are
presented in a simple grid. Because all of the pho-
tos are the same size we refer to them as quantum
content. While these programs allow advanced
metadata annotation, such annotation doesn’t
carry over to the presentation mode so that users
could view photos with different annotations
simultaneously, sorted appropriately.

Web-based commercial stock photo vendors—
such as Punchstock, Corbis, and Getty—also use
simple grid layouts to show search results, even
though they often have rich metadata that
would support more orderly presentations.

Our work extends beyond the design of tools
such as PhotoMesa (designed by the University of
Maryland’s Human–Computer Interaction Labora-
tory), which show the benefits of a grid layout
based on the directory structure or metadata anno-
tations. In this article, we present several screen
shots with accompanying descriptions that illus-
trate how such a bilevel layout presents interesting
possibilities for this domain. More extensive justi-
fication and a user study appear elsewhere.2

We generated all of our screen shots with the
BRQLayer tool, which implements the algorithms
we describe. The program and source code are
freely available at http://www.cs.umd.edu/hcil/
brqlayer. We created each layout by choosing sev-
eral tags from the annotated collection (for exam-
ple, family members Al, Shuly, Esther, Simmy, and
Lani in Figure 1), and then choosing a representa-
tive photo for the primary region in the center.
The layouts were then sized to the desired dimen-
sions, and the primary region was filled and scaled
to the desired location and size. Throughout, the
thumbnails in the secondary regions maintained a
maximal size as they resized and moved them-
selves in response to changes in the primary
region; no user input was required in creating the
regions or choosing the thumbnail size.

Family photo collection
Figure 1 depicts a family layout, in which the

user has chosen photos for each family member.

Hierarchical
Layouts for
Photo Libraries

Jack Kustanowitz and Ben Shneiderman
University of Maryland

In it, similar quantities of photos are in each
region, which lends itself to a balanced view.
Layouts with reasonably similar quantities
should be able to minimize wasted space, and
with some manipulation of the size and position
of the primary region, the user can create a lay-
out that’s efficient and attractive.

Vacation trips
Figure 2 depicts a generated layout of photos

taken during a trip to Italy. This is a case in which
the ordering is important, so that users can read-
ily find a part of the trip that was toward the
beginning, middle, or end. This is also a good
example of having more than four photo regions,
along with the need for dynamic and proper bal-
ancing. While other timeline-generation utilities
exist (Picasa has a particularly appealing interac-
tive timeline), this application allows the dynam-
ic creation of a printable layout that shows the
entire photo collection, supplemented with time-
line information.

Organization charts
A common way of grouping is to represent

organizational hierarchies, but they don’t usually
have a sequential layout requirement. Figure 3
(next page) shows six regions representing some
research areas of the University of Maryland’s
Computer Science Department with a photo for
faculty members. The primary region shows the
department chair. In this case, we chose a layout
that contained enough horizontal blank space for
the titles. As an example, if the primary region
were enlarged to the left, the thumbnail size could
remain constant, but the text “Scientific
Computing” would get truncated.

Real estate browser
Figure 4 presents a hypothetical real estate

Web site, containing a bilevel radial quantum
photo layout within a Web page. As users
change the browser window size, the layout,
regions, and photos all size dynamically to
allow for the largest photo size possible given
the relative number of photos in each area. In
this way, the photo flow resembles text reflow-
ing or resizing.

Should a new house come on the market in
Silver Spring, it would fit nicely in the blank
space under the houses currently visible. A new
house in one of the other regions could push
the photo size smaller, or might instead cause
the secondary regions to be distributed differ-

ently about the primary region, possibly with-
out requiring smaller photos.

Problem definition and requirements
As we defined the problem, certain require-

ments became clear. For example, we wanted the
canvas size to remain stable, even if an algorithm
could discover an improved layout by reducing
or enlarging the canvas dimension. Similarly,
uniform size for all photo thumbnails was an
important goal, even if an algorithm could

63

Figure 1. Family photo collection depicting the main subjects in a primary

region surrounded by grouped photos of family members. Even a collection of

this size can be resized and manipulated in real time.

Figure 2. Honeymoon

in Italy showing six

locations during a two-

week trip. The radial

increase in shading

along with the date

captions reinforce the

sequential nature of

this series.

reduce unused space by reducing or enlarging
some thumbnails. Future research might relax
some of the requirements or produce interesting
variations that are potentially applicable in other
domains. Earlier work on layout requirements for
photos and interfaces provided guidance for our
work1,3-5 (see also the “Related Work” sidebar).

Fixed canvas size
The algorithm can’t change the canvas size

(width by height, usually the window size cho-
sen by users). As users vary the canvas size (the
algorithm runs again with each resize), the lay-
out will change, still filling the canvas exactly,
never causing it to grow or shrink under algo-
rithmic control.

Relaxing this requirement would let the can-
vas size grow if the algorithm determined that a
better layout could be achieved if the canvas were
5 percent wider, for example. While possibly use-
ful, this introduces a feedback loop in which the
canvas size determines layout, which in turn
determines canvas size. Preserving this require-
ment allows the algorithm to be deterministic,
avoids nonlinearity, and maintains the user’s
sense of control.

Fixed primary region size and location
The user sets the primary region’s size and

location; the algorithm doesn’t modify this. If
users change the primary region’s size and loca-
tion, then the layout will be updated to reflect
the new size and position. As we mentioned in
the “Fixed canvas size” section, relaxing this
requirement also introduces a feedback loop that
we avoid for similar reasons.

Uniform quantum size and aspect ratio
Initially, all of the quanta (in the test case,

photo thumbnails) must be the same size and
aspect ratio. Photos that are intrinsically differ-
ent sizes can be placed on a background that’s
constant, so that some photos take up the whole
background and on some the background shows
through on the margins. Once the layout is in
place, this requirement can be removed to mini-
mize wasted space in each region. This should
occur as a later step to avoid feedback in the ini-
tial layout algorithm.

Secondary regions distributed in quadrants
We based the algorithms on the idea of having

four fixed quadrants surrounding the primary
region (see Figure 5a on p. 66). Within each quad-
rant we can place several secondary regions, but
no secondary region can cross a quadrant bound-
ary. Additionally, each quadrant must contain at
least one region. The benefit is a tight alignment
of secondary regions with the edges of the pri-
mary region, thus making a visually appealing
layout that enables easy-to-scan grids of photos
in each secondary region.

64

IE
EE

 M
ul

ti
M

ed
ia

Figure 3. University of Maryland’s Computer Science Department organization

chart with seven research areas. In this layout, the constant thumbnail size

was enforced, causing a layout that doesn’t give artificial prominence to any

group of photos, at the expense of unused space in each region.

Figure 4. Real estate

browser with five

communities and the

price ranges of selected

homes. This illustrates

a potential use of the

BRQ algorithm on the

Web, which depends

heavily on real-time

page rendering and

dynamic reflowing as

the browser is resized.

65

Our work extends the work on ordered and quantum
treemaps1 applied in PhotoMesa.Treemaps map a hierarchy onto
a rectangular region in a space-filling manner; ordered treemaps
add an additional requirement of maintaining order in the layout.

Order-preserving layouts reduce the effect of rectangles
shifting position as the item sizes change. The quantum require-
ment is useful in photo layouts, in which each rectangle has
subrectangles of a fixed size. The layout algorithms described
in this article add a central (both in importance and in position)
rectangle, which can itself be sized and moved around the lay-
out, with the other rectangles in turn rapidly moving and resiz-
ing. This bilevel property gives prominence to a certain layout
feature, whether it’s a graphic, descriptive text, or central fea-
ture of a nonphoto application.

While our approach is to define the interaction of requirements
in a way that guarantees a solution, other creative ways to solve
problems with interrelated constraints include using Monte Carlo
methods or genetic algorithms.2,3 Genetic algorithms have been
used to solve image placement problems in the context of auto-
mated page layout in a digital album, using principles such as bal-
ance, spacing, emphasis, and unity.4 These algorithms produce
useful results that are appropriate in cases where the constraints in
question are fuzzy or subjective. In our work they’re more quan-
tifiable, which allows for simpler and faster algorithms.

In this article, we present a radial algorithm for two-level lay-
outs. Multilevel radial animations are described elsewhere,5 in
the context of navigating an expanding and contracting graph
that works based on polar coordinates. It’s possible that this
work could be expanded either to higher-level layouts, or that
a collection of photos could be navigated using a radial anima-
tion to get from one two-level layout to a related one.

New presentation media could drive the demand for alter-
nate 2D dynamic layout techniques. The Personal Digital
Historian (PDH),6 for example, describes a tabletop display sev-
eral times larger than the screens currently used to view photo
collections. While PDH groups similar photos based on user
modeling, the algorithms described here could provide an alter-
nate way to dynamically adjust the layout of a tabletop or other
large displays based on the user’s position at the table or cate-
gory of interest. On still larger wall-sized displays, thousands of
photos could be accommodated, making the utility of mean-
ingful organization still greater. Even in a smaller, nontraditional
display,7 our work could allow a control panel to be smoothly
moved around the screen while the surrounding photos resized
and flowed accordingly.

Our layout algorithm’s final result is that it provides a “focus +
content” display, similar to the semantic fisheye view (SFEV)
described elsewhere.8 The SFEV also uses image annotation data
to generate a layout based on relationships between terms and
similarities in the annotation text. Similar to the SFEV layouts,
we can engineer the layouts produced in our work to have a

fisheye look, with the advantages of focusing the viewer’s atten-
tion on a primary feature while still showing related images as
being connected, if at a smaller size.

The Bramble system9 describes a toolkit for a constraint-based
layout, using a differential, continuous approach. This allows for
dynamic enabling or disabling of specific constraints, potentially in
a 3D space. While we describe in the “Problem definition and
requirements” section on the problem requirements that resemble
constraint-based programming to a degree, our focus was on real-
time, smooth, 2D motion to provide maximum interactivity.
Generic constraint-based problem solvers require large memory
capacity and slow down as the problem size increases, while the
domain-specific algorithms we chose often provide real-time per-
formance at the expense of generality.10 By avoiding backtracking
in the algorithms and using today’s fast processors, we succeeded
by simply recomputing the layout when the parameters changed.

References
1. B. Bederson, B. Shneiderman, and M. Wattenberg, “Ordered

and Quantum Treemaps: Making Effective Use of 2D Space to

Display Hierarchies,” ACM Trans. Graphics, vol. 21, no. 4, 2002,

pp. 833-854.

2. W. Graf, “Constraint-Based Layout Framework LayLab and Its

Applications,” Proc. ACM Workshop on Effective Abstractions in

Multimedia, ACM Press, 1995; http://www.cs.uic.edu/~ifc/

mmwsproc/graf/mm95.html.

3. L. Purvis et al., “Creating Personalized Documents: An

Optimization Approach,” Proc. ACM Symp. Document

Engineering, ACM Press, 2003, pp. 68-77.

4. J. Geigel and A. Loui, “Using Genetic Algorithms for Album Page

Layouts,”IEEE MultiMedia, vol. 10, no. 4, 2003, pp. 16-27.

5. K. Yee et al., “Animated Exploration of Graphs with Radial

Layout,”Proc. IEEE Symp. Information Visualization, IEEE CS Press,

2001, pp. 43-50.

6. B. Moghaddam et al.,“Visualization & Layout for Personal Photo

Libraries,” Int’l Workshop Content-Based Multimedia Indexing,

2001; http://www.merl.com/publications/TR2001-028.

7. M. Balabanovic, L. Chu, and G. Wolff, “Storytelling with Digital

Photographs,” Proc. Conf. Human Factors in Computing Systems,

ACM Press, 2000, pp. 564-571.

8. P. Janacek and P. Pu, “An Evaluation of Semantic Fisheye Views

for Opportunistic Search in an Annotated Image Collection,”

Int’l J. Digital Libraries, vol. 5, no. 1, 2005, pp. 42-56.

9. M. Gleicher, “A Graphics Toolkit Based on Differential

Constraints,” Proc. 1993 ACM Symp. User Interface Technology,

ACM Press, 1993, pp. 109-120.

10. W. Hower and W. Graf, “Research in Constraint-Based Layout,

Visualization, CAD, and Related Topics: A Bibliographical

Survey,” Proc. Int’l Workshop on Constraints for Graphics and

Visualization (CGV 95), 1995; http://citeseer.ist.psu.edu/

hower95research.html.

Related Work

66

The alternatives are either to tighten this
requirement or to remove it entirely. Tightening
to eight octants (eight boxes surrounding the pri-
mary region) would maintain alignment with the
primary region to some degree, but would allow
degenerate cases with L-shaped and C-shaped
regions, which could pose scanning problems as
the viewer tries to determine if the photos should
be viewed left-to-right, up-and-down, and so on
(see region 4 in Figure 5b). In the case of quad-
rants, this is only a problem if there are fewer
than four regions, and it can be avoided by forc-
ing the primary region to a corner in these cases.
For octants, L- and C-shaped regions remain a
possibility for up to eight regions, which covers
many of the most common scenarios.

Removing the quadrant requirement entirely
complicates things even further, as C-shapes and
L-shapes would be allowed with no guarantees of
lining edges up with the primary region (see
Figure 5c). Trying to place regular thumbnails in
regions 5 or 7 of Figure 5c could prove difficult.
Additionally, layouts causing irregularly shaped
regions make it difficult to provide an easily
scannable photo grid.

Fixed number of thumbnails
The number of thumbnails in a given region

is fixed, in that the algorithm cannot arbitrarily
add or remove thumbnails to create a more bal-
anced layout. If one region has dramatically
more thumbnails than another, an application
might find it advantageous to allow a region to
have only x times the number of thumbnails of
another, or to specify a minimum thumbnail size

which (given a fixed canvas size) necessarily
changes the number of thumbnails that are visi-
ble. In these cases, a scrollbar or a “More” button
could be added to view the thumbnails that were
left out.

For the purpose of this discussion, we let users
decide on the number of thumbnails, but once
that decision is made, the number of thumbnails
that the algorithm works with is fixed. Allowing
the algorithm to internally fine-tune these para-
meters introduces the undesirable feedback loop
discussed previously.

Fixed order of regions
The regions should be laid out in the order in

which they are added. This is useful in applica-
tions where order is important, whether it’s
alphabetic, the age of children, or a numeric page
order for a table of contents. Preserving order
offers the additional benefit of stability when
resizing, because it’s distracting and undesirable
to have regions jumping around when the can-
vas is resized.6

Bilevel radial quantum layout
Based on the requirements that we discuss in

the “Problem definition and requirements” sec-
tion, the following algorithms (that are part of
BRQ) will generate regions with the largest pos-
sible thumbnail size. We describe the layouts as
bilevel to indicate our solution is for two-level
hierarchies, as radial to indicate that the sec-
ondary regions wrap around the primary region
in an ordered manner, and as quantum to indi-
cate that the items in each region are fixed in size
and shape.

BRQ layout algorithm
The BRQ layout algorithm comprises three

steps:

1. Distribute the secondary tiles among the four
quadrants, using the RegionSplit algorithm
(see Figure 6).

Rgn1 Rgn2 Rgn3

Rgn4

Rgn5Rgn6

Rgn7 PrimaryPrimaryPrimary

Quad2

Quad3

Quad4

Quad1 Rgn1

Rgn4 Rgn3

Rgn2

(a) (b) (c)

Figure 5. (a) Four

quadrants distributed

about a primary region.

This is our chosen

solution. (b) Awkward

L-shape caused by

using octants for

secondary regions. Our

solution prevents this.

(c) Misalignments

caused by arbitrary

region placements. Our

solution prevents this.

Second split Second splitFirst split

Rgn1 Rgn2 Rgn3 Rgn4 Rgn5

Figure 6. Distribution

of five secondary

regions among the four

quadrants.

2. Set the initial quantum width and height,
which is guaranteed to be an upper bound on
the possible quantum dimensions, using the
InitialQuantumDim algorithm.

3. Reduce the quantum dimensions (keeping the
same aspect ratio) until there is no overflow,
using the ReviseQuantumDim algorithm. If the
quantum dimensions drop below a specified
minimum, handle the layout as a special case.

RegionSplit algorithm. This algorithm opti-
mally divides regions up among the four quad-
rants and works as follows:

1. Choose the region n (0 < n = NumRegions)
such that the sum of the thumbnails in all
regions up to and including region n is clos-
est to 1/2 of the total number of thumbnails
in all regions. This will split the regions into
two groups.

2. Do Step 1 for each of the two groups, gener-
ating a total of four groups.

The RegionSplit algorithm requires three calls,
the first splitting the entire collection of regions
in two, and then once again on each half result-
ing from the first step. Thus, the time for
RegionSplit scales linearly with the number of
secondary regions.

InitialQuantumDim algorithm. This algo-
rithm sets initial dimensions for maximal
thumbnail size. This means that the algorithm’s
output (tlength, twidth) is defined to be an upper
bound on the thumbnails’ size. In the (rare) case
where every region has exactly rows × columns
thumbnails, this will also be the final thumbnail
size. In every other case, the thumbnail size will
need to be reduced until there is no overflow.
The algorithm works as follows:

1. Create four rectangles with the same dimen-
sions as the quadrants, as in Figure 7.

2. Let |ti| {1 < i = 4} = the total number of thumb-
nails in the quadrant by summing the total
number of thumbnails in each region in the
quadrant.

3. If the thumbnails must exactly fit the space,
then the following would be true for each
quadrant:

theightCandidate ∗ twidthCandidate ∗ |ti| =
clientAreai

4. Solve for quadrant 1, using the known aspect
ratio of the thumbnails:

theightCandidate =
Sqrt(clientArea1 ∗ thumbnailAspectRatio/|t1|)

twidthCandidate =
theightCandidate/thumbnailAspectRatio

These two values are now upper bounds on the
thumbnail size (the “Optimality discussion” sec-
tion explains why).

5. Solve for the other three quadrants, reducing
theightCandidate and twidthCandidate if lower
values are found.

The InitialQuantumDim algorithm is simply
a set of calculations for each of the four regions,
and thus operates in constant time.

ReviseQuantumDim algorithm. This algo-
rithm takes as its input dimensions that are an
upper bound on the possible thumbnail dimen-
sions. It revises those dimensions downward
until there are no more columns (quadrants 2
and 4) or rows (quadrants 1 and 3) than any of
the quadrants has room for. The algorithm oper-
ates as follows:

1. For quadrant 1, determine the number of
columns used by the first region as follows:

columns =
ceiling(quadrantClientWidth/tWidthCandidate)

67

O
cto

b
er–D

ecem
b

er 2006

Figure 7. Quadrant

rectangles for

computing an upper

bound of the

thumbnail size.

68

IE
EE

 M
ul

ti
M

ed
ia

Using the ceiling allows for columns that are
only partially full, but which still take up hori-
zontal space, as in Figure 8.

2. Because an uneven number of thumbnails
exist and some regions might contain empty
space, others might contain overflow.
Determine the region that contains the
largest number of overflowing thumbnails
and keep reducing the thumbnail width for
all regions by 1 pixel until there is no more
overflow.

3. Redistribute whatever extra space is at the
end (shaded in Figure 8) among all of the
regions in the quadrant.

4. Using the current thumbnail size, repeat for
the other quadrants.

5. When all quadrants have been processed, the
last thumbnail size will be the correct one.

It might be possible to do Step 2 analytically,
although for the pixel width and height in this
context, this progressive technique is a reason-
able approach.

The ReviseQuantumDim algorithm starts with
the upper bound on the thumbnail width, and
reduces by one each time until it reaches either a
defined minimum, or zero in the worst case. If it
needs to go until zero, the algorithm will run in
O[maximum thumbnail width]. This factor will only
get large in the case of a large display with few

thumbnails, and even in that case it will likely ter-
minate before the thumbnail width reaches zero.

Edge layouts. The algorithms work well for a
centered rectangle. However, if the primary
region is moved or sized so that a quadrant does-
n’t have room for any regions, edge layouts occur
in which the primary region is aligned with one
or more edges of the layout, as in Figure 9. To
correctly handle these layouts, the RegionSplit
algorithm must be modified. To do this, the sys-
tem needs to determine the number of nonemp-
ty quadrants and proceed as follows:

1. If there are four, proceed to the normal
RegionSplit.

2. If there are three, proceed to TriRegionSplit.

3. If there are two, perform RegionSplit only
once, to yield two regions.

4. If there is one, allocate all regions to that
quadrant.

5. If there are none, do not show any regions.

Each of these layout algorithms runs in time that
is linear with the number of regions, as described
in the initial “RegionSplit” section.

TriRegionSplit. This algorithm is a special
version of RegionSplit to handle division of a col-
lection of n discrete-sized pieces as evenly as pos-
sible in thirds (see Figure 10). While it’s

 Figure 8. Secondary

regions with free space.

Quad 2 Q
uad 2Q

uad 4

Quad 1

Quad 3 Quad 3

Figure 9. Edge layouts,

in which some

quadrants are empty.

conceptually similar to RegionSplit, it’s worth
discussing separately, because it might not be
immediately obvious how to make a bifurcating
algorithm generate three regions:

1. Divide the n regions into two, as described in
the first step of the RegionSplit algorithm. At
this point, there are two regions closest to the
RegionSplit split point; one to the left and
one to the right, at distances a and b, where
the distance is the number of thumbnails in
the adjacent region.

2. Move one of the regions adjacent to the
RegionSplit split point to a third pile, such
that after the move, the average distance from
each side to the absolute center n/2 is as close
to equal as possible. In Figure 10, b would be
added.

3. Repeat Step 2 until adding a region causes |n/3 −
new pile’s area| to be more than it was before
that iteration of step 2. When this happens,
backtrack one and save the result as the answer.

Postprocessing
Once the algorithm has run, certain actions

can incrementally improve the automatically
generated layout. We describe two here. In gen-
eral, these actions can be suggested by going over
the requirements of the “Problem definitions and
requirements” section, and violating one of them
at this later stage, whereas violating them during
the initial layout would cause undesirable feed-
back and backtracking. For example, violating
the fixed primary region size and location
requirement suggests resizing or repositioning
the primary region to get a “better” layout
according to some metric.

Vary thumbnail size. Once the initial algo-
rithm has run, it’s possible to increment the
thumbnail size in each region until any further
increase would cause overflow of the region. This
allows each region to have a minimum of wast-
ed space, at the expense of the photos in differ-
ent regions no longer lining up. This must be
done as a postprocessing step to avoid violating
the uniform thumbnail size requirement.

Add scrollbar. For the layouts to scale proper-
ly, a scrollbar can appear in a region if that region
has substantially more thumbnails (currently set
at 20x) than the smallest region, or than any

other region, depending on the user’s preference.
Adding the scrollbar involves deciding how many
thumbnails to show (some maximum per region),
and then adding to that number on a per-region
basis to enforce a full grid when not all photos are
visible. For example, if a maximum of 40 thumb-
nails out of a region’s 70 are shown, and there are
seven columns, the fifth row will have only five
thumbnails. In this case, two thumbnails should
be added to the last row so that the grid will be
full unless the scrollbar is at the last position.
These must be added as a postprocessing step so
that the fixed number of thumbnails requirement
isn’t violated during the initial layout.

Dynamic behavior
The algorithms described previously allow for

interactive, dynamic behavior that encourages
experimenting with primary rectangle place-
ment, size, and overall dimensions. This goal led
us to develop computed layouts, avoiding the
hill-climbing or backtracking strategies that are
often used in constraint satisfaction problems.
The typical behavior we wished to support is to
allow users to move the primary rectangle from
the upper-left corner into the center, and then
enlarge it to highlight its contents (see Figure 11,
next page). Other behaviors include users resiz-
ing the canvas and adding and deleting regions
as well as thumbnails.

Performance
To confirm the dynamic behavior described

for these algorithms, we conducted three trials,
in which regions were incrementally added with
10, 50, and 100 thumbnails per region, until
there were 100 regions added. Execution time
was measured for the three algorithms, demon-
strating that the algorithms were rapid enough,
with no unforeseen explosions even at the high
end of 100 thumbnails in each of the 100
regions, for a total of 10,000 quanta being posi-
tioned. For this test case, the RegionSplit,
InitialQuantumDim, and ReviseQuantumDim
algorithms took 0.037 millisecond (ms), 0.014
ms, and 0.14 ms, respectively, on a Pentium IV

69

O
cto

b
er–D

ecem
b

er 2006

Regionsplit

Split point
n/2

b
a

Figure 10. Dividing

secondary regions

among three

quadrants.

2.4-gigahertz processor with 1 Gbyte of RAM.
Additional tests confirmed the linear growth of
time with the number of thumbnails.

Drawing the photos was more time consum-
ing, exerting as much as three orders of magni-
tude (350 ms) greater drag on performance than
any of the resizing algorithms. With better image
storage allocation, we can solve these photo dis-
play problems, independent of the algorithmic
performance outlined in this article.

Optimality discussion
It’s hard to quantify what makes one photo

layout better than another, as subjective mea-
sures could vary in different applications and for
different users. For our purposes, however, we use
the following definition to try to describe an
optimal layout:

A layout is said to be optimal if there is no
layout that results in larger thumbnails.

Because any available space should be used for
increasing thumbnail size, this is equivalent to a
second definition:

A layout is said to be optimal if there’s a min-
imum of unused space.

Using these definitions, the algorithms
described here produce optimal layouts given the
requirements. The relaxation of one or more of
these requirements could provide a layout that
better meets these optimality criteria, but at the
expense of ease of scanning, consistent region
placement, equal thumbnail prominence, and
other problems. While some of the following
observations are reasonably intuitive, they’re
worth noting in the interest of thoroughness.

Distribution of regions into quadrants
RegionSplit divides the regions among the

quadrants as evenly as possible. Imbalances tend
to occur for a thumbnail distribution, which is
heavy on one side (for example: five regions,
where regions 1 through 4 have five thumbnails
each and region 5 has 50). In this case, RegionSplit
wants to put regions 1 through 4 in quadrants 1
and 2, but then region 5 would need to get placed
in quadrants 3 and 4, violating one of our require-
ments and causing the undesirable L-shaped
region. So in this example, regions 4 and 5 would
go into quadrants 3 and 4, causing a reduction in
thumbnail size.

Upper bound on thumbnail size
The InitialQuantumDim algorithm calculates

a value for thumbnail size using height, width,
and number of thumbnails, ignoring row versus
column layouts and uneven distribution among
regions. To show that this is an upper bound,
consider w′, a proposed thumbnail width that is
wider than w, the value claimed to be maximal.
(Since the aspect ratio is fixed, this also implies
an h′ > h.) Therefore, w′ × h′ × (number of thumb-
nails) > clientAreai, which means that the thumb-
nails take up more absolute area than is available.

70

Figure 11. Dynamic

behavior of BRQ layout

showing user control

over dragging and

sizing the primary

region.

Original layout

After moving the primary region

After resizing the primary image

Thus, the values w and h are upper bounds from
which ReviseQuantumDim can confidently
revise only downward.

Final thumbnail size
The ReviseQuantumDim algorithm will

always result in at least one quadrant containing
all of its rows (quadrants 2, 4) or columns (quad-
rants 1, 3) having at least one thumbnail, thus
tightly fitting the set of thumbnails to the quad-
rant’s client area. As a result, the other quadrants
by definition have a minimum of unused space
and the largest possible thumbnails, since if the
thumbnails were made any larger they would
overflow the tightest-fitting quadrant (because all
thumbnails are required to be the same size).

Improvements by relaxing requirements
There are several ways in which users might

want to improve the quality of the generated lay-
out by manually adjusting some of the require-
ments. Users could choose, for example, to
increase the primary rectangle’s dimensions, or
change its position, if an initial layout showed
extra space. A manual change in ordering the
regions could also result in a better layout. The
“same-size thumbnails” requirement might be
relaxed, with thumbnails growing to different
sizes in their various regions until there is no
wasted space, at the expense of having different-
sized thumbnails in each region.

We should view these user actions as occur-
ring at the application level: The algorithms dis-
cussed here provide a starting point given certain
requirements, and if those are modified, they will
again generate a best layout based on the new
requirements. Any interaction between the appli-
cation level and the algorithm layer causes feed-
back loops that make deterministic solutions
impossible.

If the user desires a better solution, at the
expense of the feedback loops previously
described, an approach would be to generate a set
of thumbnail dimensions for points about the
current solution, for a given requirement. For
example, once the algorithm finishes, it could
generate what-if scenarios, varying the main rec-
tangle’s size or its position by up to some thresh-
old. Depending on how many requirements were
violated and to what extent, some number of
hypothetical dimensions could be generated.
Because the calculations are relatively trivial,
many of these could be generated in a short peri-
od of time, and by looking at this space, a better

solution could be found. This type of operation
should only be allowed at the user’s explicit
request, as someone trying to exactly locate the
primary rectangle could be frustrated by an auto-
mated agent “improving” the position to enlarge
the thumbnails by changing the position that
the user wants to obtain.

Usability study
To gauge user responses to these BRQ layouts

we asked four knowledgeable users of photo
library software to review our interface for 30 to
40 minutes.3 In this modest usability study, they
were shown the on-screen, but static, layouts in
Figures 1 through 4 in order and asked what they
understood about the layout and relationship
among the regions in each figure. The users
understood why a particular thumbnail size was
chosen, although sometimes only after carefully
comparing regions to find a constrained one.
Several voiced interest in a feature that would
relax the same thumbnail size requirement to
have less wasted space. They all appreciated the
ability to manipulate the layout in real time.

In response to the user feedback, we added an
option to dynamically change between constant
thumbnail size and allowing thumbnails to fill
the available space. After that addition, users
tended to choose the variable size to minimize
wasted space. There were also several requests to
remove photos from the layout and to choose an
already-visible photo for the primary region.
These were implemented with additional context
menu items to allow a more intuitive direct
manipulation of the final layout. One user com-
mented that to truly generate a polished, print-
able finished product, full control would have to
be given to the user in terms of relative position-
ing of text, line weights, choice of photos within
a collection, and so on. While this would
undoubtedly increase the tool’s value, imple-
menting these features was beyond the scope of
the prototype, which was designed primarily to
demonstrate the algorithms and show the poten-
tial for this type of layout.

Conclusion
Many applications, such as digital photo lay-

outs, could use our algorithms to do dynamic lay-
out quickly and deterministically. A vital aspect
of the BRQ layout algorithm is its rapid perfor-
mance, which enables compelling interactive
experiences as users resize the canvas, add or
delete regions, and add or delete items to a region.

71

O
cto

b
er–D

ecem
b

er 2006

Our future work includes investigating the
requirements we’ve described, with an eye to
removing some of them, such as the fixed size
and location of the primary region, or the quan-
tum size and aspect ratio. A further challenge is
to extend these ideas to a three-level hierarchical
layout, which presents additional difficulties. A
three-level layout of digital photos could be use-
ful to show grandparents, parents, and grand-
children in one large ensemble, or an
organizational chart with the CEO, then vice
presidents, and finally senior managers in con-
centric rectangles. MM

Acknowledgments
We would like to thank Adobe Corporation

for its support, which has made this research pos-
sible. We would also like to thank Ben Bederson,
Alexander Loui, and Martin Wattenberg for their
valuable comments; Jonathan Katz for his sug-
gestions regarding the thumbnail sizing algo-
rithms; and our reviewers for their detailed and
thoughtful comments.

References
1. C. Jacobs et al., “Adaptive Grid-Based Document

Layout,” ACM Trans. Graphics, vol. 22, no. 3, 2003,

pp. 838-847.

2. J. Kustanowitz and B. Shneiderman,“Meaningful

Presentations of Photo Libraries: Rationale and

Applications of Bilevel Radial Quantum Layouts,”

Proc. ACM/IEEE Joint Conf. Digital Libraries, ACM

Press, 2005, pp. 188-196.

3. S. Lok and S. Feiner, “A Survey of Automated

Layout Techniques for Information Presentations,”

Proc. SmartGraphics Symp., ACM Press, 2001, pp.

61-68; http://www.smartgraphics.org/sg01/.

4. S. Lok, S. Feiner, and G. Ngai, “Evaluation of Visual

Balance for Automated Layout,” Proc. 9th Int’l Conf.

Intelligent User Interfaces, ACM Press, 2004, pp.

101-108.

5. K. Rodden and W. Basalaj, “Does Organization by

Similarity Assist Image Browsing?” Proc. Special

Interest Group on Human–Computer Interaction

(SIGCHI 01), ACM Press, 2001, pp. 190-197.

6. B. Bederson, B. Shneiderman, and M. Wattenberg,

“Ordered and Quantum Treemaps: Making

Effective Use of 2D Space to Display Hierarchies,”

ACM Trans. Graphics, vol. 21, no. 4, 2002, pp. 833-

854.

Jack Kustanowitz is currently

the director of infrastructure at

the HealthCentral Network. His

research interests include human–

computer interaction, applica-

tions of annotated media,

knowledge management sys-

tems, Internet search, and online communities.

Kustanowitz has an MS in computer science from the

University of Maryland at College Park, where he stud-

ied interactions between individuals and their growing

collections of personal digital photos.

Ben Shneiderman is a professor

in the Department of Computer

Science, founding director of the

Human–Computer Interaction

Laboratory, and member of the

Institute for Advanced Computer

Studies and the Institute for

Systems Research, all at the University of Maryland at

College Park. He’s the author of Leonardo’s Laptop:

Human Needs and the New Computing Technologies.

Readers may contact Jack Kustanowitz at jkustan@

umd.edu and Ben Shneiderman at ben@cs.umd.edu.

72

computer.org/e-News

Available for FREE
to members.

Be alerted to

•articles and
special issues

•conference news

•registration
deadlines

Sign Up Today
for the IEEE

Computer
Society’s

e-News

Sign Up Today
for the IEEE

Computer
Society’s

e-News

