
Edgar H. Sibley 
Panel Editor 

In many situations, embedded menus represent an attractive alternative to 
the more traditional explicit menus, particularly in touchtext, spelling 
checkers, language-based program editors, and graphics-based systems. 

EMBEDDED MEWS: SELECTING 
ITEMS IN COUTEXT 

When compared to command driven systems, com- 
puter menu systems are appealing because they re- 
duce memorization of commands, reduce training, 
and structure the user’s decision making [12]. 
Menus can be categorized as either embedded or ex- 
plicit [6], the difference being the context in which 
the menu items are presented. 

Explicit menus (Figure 1) usually supply an ex- 
plicitly enumerated list of items from which the user 
selects by typing a number or letter; a variant to this 
theme highlights or capitalizes the first letter of the 
selectable item. The use of icons, where all selecta- 
ble icons are displa.yed on the screen, is a kind of 
enumeration and therefore also a form of explicit 
menu. Instead of entering numbers, letters, or icons, 
some systems permit the user to point to an item in 
the menu by physilcally touching the screen (if a 
touch screen is used), or by using arrow keys or a 
mouse. The item to be selected is highlighted (e.g., 
intensified, underlined, or put in reverse video), and 
pressing another key or button selects the item. 

While explicit en.umeration of menu items poses 
certain obvious advantages over command driven 
systems, in some situations explicit menus can 
themselves be inefficient: Listing items wastes view- 
ing space on the computer display, and extracting 

O1986ACMOOOl.0782/'86/'0400-0312 756 

information from the original context to construct 
menu items may mean the items have to be exces- 
sively verbose to be meaningful. 

Embedded menus, where menu items are embed- 
ded within the information being displayed on the 
screen, in some respects represent an improvement 
on the more traditional explicit menu. In embedded 
menus (Figure 2), highlighted or underlined words 
or phrases within the text become the menu items, 
and are selectable using the commonly used touch 
screen, cursor, and mouse methods cited above. 

Our own experience with embedded menus began 
in the interest of providing adequate man-machine 
interfaces for two textual databases: The Interactive 
Encyclopedia Systems (TIES), a European history da- 
tabase functioning in a museum environment [13], 
and the OnLine Maintenance Manual (OLMM) sys- 
tem, an on-line maintenance manual for electrical 
and mechanical equipment repair [7, 151. In this ar- 
ticle, we review the use of embedded menus in 
these two specific systems and examine the more 
general application of embedded menus in interac- 
tive spelling checkers, language-based program edi- 
tors, and interactive graphics systems. In so doing, 
we address the relative advantages and disadvan- 
tages of embedded menus in different contexts, 
highlighting areas of equivocation where more re- 
search is warranted. 

312 Communications of the ACM April 1986 Volume 29 Number 4 



Computing Practices 

THE INTERACTIVE ENCYCLOPEDIA SYSTEM 
TIES was designed for a museum environment 
where visitors walk up to a TIES machine and ex- 
plore a database on European history [13]. Since 
most TIES users were expected to be novices (i.e., 
people who had never used TIES or even, perhaps, a 
computer), the simplicity of the user interface was 
considered paramount. To this end, instead of ex- 
tracting menu items and displaying them as an ex- 
plicit menu, selectable items were highlighted di- 
rectly in the text (Figure 3), a method of displaying 
text with embedded items that has since become 
known as touchtext. 

In TIES, there are three active keys-move cursor 
left, move cursor right, and select menu item-each 
of which is activated by a single key stroke. The 
initial screen presents an article with highlighted 

Enter the number of the item.of interest: 
1 - New Books 
2 - All Books 
3 - New Periodicals 
4 - All Periodicals 
5 - Other Library Services 

Enter the first letter of the word to make 
a selection: 

Complle Edit Run 

Save Options Quit 
. 

The menu items are explicitly enumerated. 

/ 

FIGURE 1. Explicit Menu 

The options for the NESW intercom system 
are controlled by a set of switches on the 
controller card. Locate the controller card 
and remove it from the system unit. 
Find the serial number. 

Set the switches based on the serial num 
ber. Once the switches are set, 
insert the controller card. 

. 

The menu items are the underlined phrases: To make a 
selection, the user moves the cursor to the desired phrase 
and presses the select key. 

FIGURE 2. Embedded Menu 

EVENTS: ANSCHLUSS Page 2 of I 
The victorious Allies disapproved of such 
a union and specifically forbade it in 
both the Treaty of Versailles and the 
Treaty of St. Germain-en-Laye. Austrian 
nationalism remained weak throughout 
the interwar period (1918-1939). During 
these years, Austria, like Germany, gave 
rise to a number of right-wing and 
fascist political movements. Indeed, 
Adolph Hitler’s own Nazi Party had 
a sizable Austrian branch. In 1934, 
Engelbert Dollfuss, a member of the 
Christian Social Party, destroyed the 
FirstRepublic’s fragile parliamentary 
democracy and established a right-wing 
dictatorship. 

Next Page Previous Page Return to FREUD, SIGMUND 

i 

The above example is an embedded menu from a 
TIES database. The menu items are shown in bold 
type, and the cursor is an inverse video bar. 

FIGURE 3. TIES Menu 

phrases-the selectable menu items-and the user 
positions the cursor on the phrase for which more 
detail is desired, and selects the item; a new article 
is retrieved, and the process is repeated, if desired. 

The top line of the screen shows the article title 
and page number. At the bottom of the screen are 
additional page-turning commands listed in the form 
of an explicit menu: “Next Page,” “Previous Page,” 
and “Return to (previous article).” Menu items not 
applicable are omitted (e.g., the “Previous Page” op- 
tion when the first page of an article is being dis- 
played). 

All in all, TIES provides a very simple strategy for 
accessing information. To the user, the database is a 
network of related articles that can be retrieved by 
starting with an introductory article and then mak- 
ing menu selections. At every node in the network 
(except the introduction), the user can request a re- 
turn to a previous article. 

ONLINE MAINTENANCE MANUAL 
In many respects, the OLMM system is similar to 
TIES: It also uses touchtext, and the syntax and se- 
mantics of the two systems are almost the same 
[7, 151. The OLMM is designed to be used with data- 
bases containing training, diagnostic, and repair 

April 1986 Volum2 29 Number 4 Communications of the ACM 313 



Computing Practices 

manuals: Its objective is to replace paper manuals 
with on-line versions through the use of alternate 
modes of presentation and database structuring. 

Replacing paper manuals with on-line versions, 
however, is fraught with problems: First of all, the 
process of flipping through the pages of a book to 
find a section of interest is a familiar one to most 
people: Place markers are commonly inserted, and 
even notations made in margins-possibilities not 
frequently available with on-line systems. Also, the 
informational content per page in a book is greater 
than on a 24-line screen. Furthermore, in most 
cases, manuals are stored on-line as they would be 
printed on paper, and typically suffer from overly 
complex retrieval methods, limited display space, 
and poor screen readability [:2, 4, 8, 161. 

To deal with the diagrams and pictures commonly 
found in maintenance manuals, graphical data in the 
OLMM are associated with each database node so 
that, each time a new section of the manual is re- 
trieved from the database, an illustration is also re- 
trieved and displayed on an accompanying graphics 
screen. In the initial implementation of the OLMM, 
only simple line drawings were included, although 
more complex graphics are possible-even anima- 
tion or videodiscs. The types of output possible are 
limited only by the capabilities of the graphics hard- 
ware and software, and the writer’s imagination. 

SPELLING CHECKING AND 
CORRECTING PROGRAMS 
Touchtext is only one example of an embedded 
menu. Another familiar example is the use of 
embedded menus in interactive spelling programs, 
where the document is displayed to the user as it 
was given to the spelling program, but words detected 
as possibly misspelled are highlighted or underlined; 
the user points to a highlighted misspelled word and 
requests that the spelling program display an explicit 
menu of the possible correct spellings (Figure 4). 
Once the user selects a correct spelling from the 
menu, the spelling program substitutes the correct 
for the incorrect spelling. If the user determines that 
a highlighted word :is in fact spelled correctly, he or 
she can simply skip past the word, avoiding an un- 
necessary search in the dictionary. Typically a com- 
mand, possibly a sin.gle keystroke, moves the cursor 
to the next misspelled word in the document. 

The style checker-a variant of the spelling pro- 
gram-goes one step further and detects possible 
misuses of a word in a given context, highlighting 
the possibly incorrect word. In. a document contain- 
ing the word “than” when the correct word should 
probably be “then,” the program will highlight the 
word “than” to indicate that it may be incorrectly 
used. 

Two experiments were conducted to evalate 
two styles of on-line documents. One exper- 
iment compared two methods of retri 
on-line information that allowd the 
to specify the direction of the inf 
search. The iirst manual recorded e 
the reader's decisions (menu selections). 
The second manual did not record the deci- 
sions, and had to ask the reader for the 
same information several tims in order to 
complete the task. The manual that recorded 
the information allowed people to work over 
twice as fast and was preferred over the 
other manual. 

The misspelled words are highlighted in the embedded menu. 
Since the word “evaluate” is tonsidered to be the most likely 
correct spelling, it is at the top of the list of words in the 
explicit menu. 

FIGURE 4. Spelling Checker with Embedded 
Menu and Possible Correct Choices 

The use of embedded menus in spelling programs 
is a natural one as the possibly misspelled words are 
presented within the original context of their usage. 
The alternative, taking words out of context, greatly 
increases the difficulty of determining whether a 
particular word is actually misspelled or simply not 
in the program’s dictionary. If a spelling program 
were to extract all supposedly misspelled words 
from the document and simply display them as an 
explicit menu without showing where in the docu- 
ment the misspelled words were located [I], it 
would be difficult to decide if the word “Martian” 
was the adjective to describe an inhabitant of the 
planet Mars, or whether the word should be “Mar- 
tial.” In a situation like this, the user simply guesses 
whether or not the word is correct. Moreover, it is 
possible that a word may be correctly spelled in one 
place in the document and incorrectly in another. 

LANGUAGE-BASED PROGRAM EDITORS 
In recent years, there has been increased interest in 
language-based editors like the Cornell Program 
Synthesizer [14]. Language-based editors differ from 
text editors in that they incorporate the syntax of 
the programming language to help create syntacti- 
cally correct programs by only permitting the entry 
of information that maintains a syntactically correct 
program. One beneficial by-product of these editors 
is the automatic pretty printing of programs. 

In a language-based editor, the program is main- 
tained as a syntax tree. The user creates a new pro- 
gram in a top-down fashion, generating program 

314 Communicntions ofthr- ACM April 1986 Volume 29 Number4 



Compufing Practices 

constructs and filling in the details. In many re- 
spects, it is akin to a fill-in-the-blanks style of edit- 
ing. The user moves the cursor to the desired part of 
the program, for example, the (statement) nonter- 
minal in the derivation tree. The (if) command then 
causes the editor to expand the (statement) nonter- 
minal into a new subtree containing the derivation 
subtree for an IF-THEN statement, with nontermi- 
nals (boolean-expression) and (statement) (see Figure 
5). Each of these nonterminals may be expanded or 
filled in with appropriate terminal and nonterminal 
symbols, or modified, or deleted. 

Because the program is represented as a syntax 
tree, it is possible to hide the details of a program 
subtree-for example, the details of a procedure 
body or a while loop (Figure 6). This procedure is 
known as holophrasting [3]. In this way, the user is 
able to manipulate the display of the subtrees so that 
only certain portions of the syntax trees are dis- 
played, and the details of other portions are hidden 
from view. By pointing to the appropriate subtree, 
the user is able to expand (zoom) or contract (un- 
zoom) the view of these hidden subtrees. 

Language-based editors also make it possible to 
easily locate and display the declarations of an iden- 
tifier. If a user points to a variable in a program, the 
editor can search through the syntax tree, using the 
language’s scoping rules, to locate the declaration of 

Program Example (Input, Output); 
\ 

"ar 
(identifier) : (type); 

begin 
(STATEMENT) 

end. 

(a) 

Program Example (Input, Output); 

var 
(identifier) : (type); 

begin 
if (boolean-expression) then 

(statement); 
end. 

(b) 

\ / 

Part (a) is a basic program template. By pointing to (state- 
ment) and selecting the (if) function, the nonterminal was 
expanded, resulting in part (b). 

FIGURE 5. Language-Based Editor 

\ 
Program Example (Input, Output); 

var 
(identifier) : (type); 

Procedure Hidden; 
. . . 

begin 

while Conditlonl do 
. . . 

while Condition2 do 
. . . 

(statement) 
end. 

The body and declarations of the procedure Hidden are Sup 
pressed, indicated by the ellipses; and the body of the pro- 
gram contains two while loops, the bodies of which are also 
suppressed. This suppression of details allows more of the 
high-level structure of the program to be displayed on the 
screen. 

FIGURE 6. Holophrasting 

the variable in the current context. The same is true 
of procedure and function declarations. 

An explicit menu system that would perform a 
comparable function for language-based editors 
would be extremely cumbersome or seem very un- 
natural. With an explicit menu, the editor would ask 
the user which subtree should be manipulated based 
on its location within the program (see Figure 7, on 
the next page), and by entering a number between 1 

and 4, the user would designate the assignment 
statement to be modified or deleted. The explicit 
enumeration of menu items, however, would con- 
sume a large portion of the available display space, 
thereby reducing the amount available for program 
text: it would also remove the statements from con- 
text, making the user’s decision more difficult as 
several items may be syntactically identical. 

FURTHER EXAMPLES 
Spatial Data Management Systems (SDMS) [5] uses a 
technique of displaying general database information 
by using graphics. Presented with a map of the 
United States, a user wishing to see all counties with 
a population greater than l,OOO,OOO would be shown 
those locations satisfying the criterion on the graph- 
ics display. The user may then use a pointing device 
to select a particular region of the map and thereby 
retrieve a more detailed map from the database. By 
entering more selection criteria (e.g., manufacturing 
or industry), the user may continue the database 
search process. The leaves of the database are repre- 

April 1986 Volume 29 Number 4 Communications of the ACM 315 



Computirlg Practices 

f 
-- 

Program Example (Input, Output); 
. . . 

Function Compute (Arg : Integer); 

hegin 
. . 

d:=d+l; 

b:=CoIripute(d); 

d:=d+b; 

c:=Compute(d); 
d:=d+b; 

b:=Compute(a); 
d:=d+b; 

. . . 

end. 
- 

Enter the number of the statement to be 
deleted: 

\ 

(1) d:=d+l; 
(2) d:=d+b; 

(3) d:=d+b; 

(4) d:=d+b; 

. / 

Since the assignment statements are removed from their 
context, it is more difficult to determine which of the four 
assignment statements should be deleted. 

FIGURE 7. Using an Explicit Menu to Modify a Program 

sented as icons displayed on the screen and may be 
selected by the user. At any time, the user can undo 
the effects of the selection process by returning to 
the less detailed maps. 

Embedded menus are also found in graphics-based 
systems. For example, when designing a VLSI chip 
the user interacts with the system through direct 
manipulation of the graphical objects [9, 111. The 
objects displayed on the screen form an embedded 
menu from which the user may make selections. A 
selection is made by pointing to a desired object and 
then requesting th.at it be moved, copied, deleted, etc. 

DISCUSSION 
Despite the many obvious benefits of embedded 
menus, more research is needed. In the case of. 
touchtext, for example, it is not clear what kind of 
negative effects may arise from the use of high- 
lighted or underlined menu items. It is possible that 
the highlighting of phrases is disruptive, causing re- 
duced reading speed and comprehension. Also, since 
embedded menu items can be selected in any order, 
the novice or inexperienced user may get lost by 
jumping around in the material rather than travers- 
ing the database in an in-order or sequential fashion. 

The touchtext systems do not enforce a search order. 
On the other hand, for experts, or searches initiated 
to locate very specific information, the ability to skip 
material or peruse the material in a different order 
may be enormously beneficial and may dramatically 
reduce search time [7]. 

Another possible drawback, particularly for touch- 
text systems, is that the mixing of information with 
menu selection items may be disruptive to the learn- 
ing process in the sense that the user may be in- 
clined to examine a particular subject or subjects in 
detail without first getting an appreciation of the 
overall context. By traversing down through several 
levels of the database, the user may forget the origi- 
nal context in which the material was retrieved. 

For the frequent or sophisticated user, embedded 
menus that require frequent traversals of familiar 
paths to access details of the system may become 
cumbersome: An alternative may be offering short- 
cuts or command languages as a means of bypassing 
certain menus. 

Finally, more research is needed in the area of 
computerized books and documents, which are not 
well understood from the cognitive point of view 
and for which improved man-machine interfaces 
are necessary. We do know that reading material 
from most currently used computer screens is slower 
than from paper, although the specific reasons are 
not completely understood [Z]. To compensate, we 
can try to use the technology and capabilities of the 
computer to provide new means of storing, locating, 
retrieving, and displaying information. This new 
technology, however, presents the users with an en- 
vironment that is quite different and not particularly 
well understood: the syntax and semantics of com- 
puterized books and documents being quite distinct 
from that of their paper counterparts. Special train- 
ing will be needed, although the use of embedded 
menus may help reduce the amount of time needed. 

EXPERIMENTAL RESULTS 
Several experiments conducted with embedded 
menus seem to indicate that, all things considered, 
embedded menus may represent an attractive alter- 
native to traditional menus and command syntax. 

One of the first experiments performed to com- 
pare embedded and explicit menus used TIES with a 
database describing the Student Union of the Uni- 
versity of Maryland at College Park [lo]. A within- 
subject experimental design required that subjects 
search the TIES database for answers to 20 questions 
about the Student Union, all in a Is-minute period. 
The number of correctly answered questions was 
recorded for each experimental condition-embed- 
ded versus explicit menu. The results showed that 

316 CommuGcations of the .4CM April 1986 Volume 29 Number 4 



Computing Practices 

many more questions were answered correctly using 
embedded menus than with explicit menus (p < 
0.001); in addition, fewer screens were viewed when 
using embedded menus (p < O.OOl), and the subjects 
actually preferred the embedded over the explicit 
menu (p < 0.001). 

A second between-subjects experiment was con- 
ducted with the OLMM system to compare embed- 
ded menus versus page-turning commands for on- 
line manuals [7, 151. In the page-turning mode, the 
text on the screens was augmented with the page 
number for each embedded menu item: However, 
instead of allowing embedded menu selection, page- 
turning mechanisms were provided-forward and 
backward and “first-page” keys, and page-number 
entry for direct access to specific pages. Results gath- 
ered from a posttest questionnaire revealed that 
embedded menus were preferred to the page-turning 
method (p < 0.03) even though the design of the 
material in the embedded menu condition prevented 
subjects from solving problems as fast as with the 
page-turning technique (p < 0.01). This slowness 
was due to the fact that the design forced subjects to 
view more pages to solve each probIem (p < O.OG), 
which suggests a need to investigate alternative 
rapid access strategies, particularly for frequent 
users. 

A third experiment involving the OLMM system 
was conducted to study the performance of people 
using a novel textual database searching technique 
known as pruning [7]. In this within-subject experi- 
ment using embedded menus, a pruning technique 
was used to trim text not relevant to the task at 
hand. This reduced both the amount of text that had 
to be read, and the complexity of the questions that 
had to be answered to complete each problem. Using 
embedded menus and the pruning technique, prob- 
lems were solved in less than half the time (p < 
0.001) and required the viewing of fewer pages (p < 
0.001); in addition, less time was spent viewing each 
page (p < 0.001). These results are considered im- 
portant because, for many applications, reading from 
manuals printed on paper is faster than from com- 
puter displays [Z, 4, 8, 161. The results also suggest 
that embedded menus, together with the pruning 
technique, may make on-line manuals an effective 
alternative to printed manuals. 

CONCLUSION 
Using embedded menus makes it easier to avoid 
computer-related syntax and semantics issues when 
referring directly to the object being manipulated. 
The embedded menu can be much simpler than a 
comparable explicit menu since only a simple cursor 
movement is required to find an object of interest: In 

April 1986 Volume 29 Number 4 

the case of textual information, the cursor control 
may be as simple as a single cursor movement key; 
for graphics-based systems, the cursor may be cross 
hairs pointing to the object of interest. Of course, the 
newer pointing devices-the mouse, track ball, and 
touch screen-can also be used to point to either 
textual or graphical information. The selection 
mechanism in this case is either a single keystroke 
or the click of a mouse button. 

In an explicit menu approach, the viewing be- 
comes divorced from the selection process, and may 
become unwieldy if the selection command must 
include operation type as well as operands to specify 
the target of the operation. When this happens, the 
association between displayed information and 
menu items may become less clear. 

One of the most appealing aspects of embedded 
menus is the direct manipulation approach to con- 
trolling the application. It allows the user to point 
directly to an object of interest, with the underlying 
system performing the desired operation. Embedded 
menus in some respects resemble WYSIWYG (what- 
you-see-is-what-you-get) text editors. There is no ar- 
bitrary syntax associated with the menu selection 
process: Instead, the syntax consists of simply mov- 
ing the cursor, or rectangular window in graphics 
systems, to a desired location on the display, and 
requesting that an operation be performed on the 
currently referenced object. 

With the emergence of very small portable com- 
puters and a space limitation of 24 or 25 lines by 80 
columns for many of today’s screens, space saving 
techniques will remain important. Although in the 
future we expect larger computer displays to be- 
come more common and the conserving of screen 
space less critical for some applications, we believe 
that embedded menus will remain an important 
human-computer interaction technique. 

REFERENCES 
1. Bentley, J. Programming pearls: A spelling checker. Commun. ACM 

28, 5 (May 19851, 456-462. Techniques for implementing spelling 
checkers. 

2. Gould, J.D., and Grischkowsky, N. Doing the same work with hard 
copy and with cathode-ray tube (CRT) computer terminals. Hum. 
Factors 26, 3 (June 1984), 323-337. A study was conducted to deter- 
mine the potential negative effects CRT displays may have on peo- 
ple using them. One result of the study showed that people read 
from computer displays slower than from paper. 

3. Hansen, W.J. User engineering principles for interactive systems. In 
Proceedings of the Fall Joint Computer Conference, vol. 39 (Las Vegas, 
Nev., Nov. 16-18). AFIPS Press, Montvale, N.J., 1971. pp. 523-532. 
The Emily program editor is described, and also gives guidelines for 
the design of user interfaces. 

4. Hansen, W.J., Doring, R., and Whitlock, L.R., Why an examination 
was slower on-line than on paper. Int. J. Man-Mach. Stud. 10, 5 (Sept. 
1978). 507-519. Students were given an examination on-line, and 
the reasons for why the examination took longer to use were stud- 
ied. 

5. Herot, CF. Graphical user interfaces. In Human Factors and Znterac- 
tive Cornpurer Systems. Y. Vassiliou, Ed. Able& Norwood, N.J., 1984, 
p,p;-;03. A description of the Spatial Data Management System 

Communications of the ACM 317 



Computing Practices 

8. Koved, L. Implicit versus Explicit Menus. IBM Thomas J. Watson Re- 
search Center, Yorktown Heights, N.Y., 1984. Embedded and ex- 
plicit menus are described, and some examples are given. 

7. Koved. L. Restructuring textual information for online retrieval. 
Master’s thesis, TR-1529. Dept. of Computer Science, Univ. of Mary- 
land, College Park, July 1985. (Also, IBM Res. Div. Rep. KC 11278, 
IBM Thomas J. Watson Research Center, Yorktown Heights, N.Y.) 
Two different techniques for storing manuals on-line are used in 
experiments to evaluate their design. The “pruning” technique en- 
abled simple tasks io be accomplished in half the time than if the 
technique was not used. 

8. Mills, C.B., and Weldon, L.J. Reading from computer screens. Tech. 
Rep. CAR-TR-94, Human-Computer Interaction Laboratory, Center 
for Automation Research, Univ. of Maryland, College Park, Oct. 
1984. Survey of issues relating to the readability of computer 
screens. General Terms: Human Factors 

9. Newcomer, J.M.. Ed. SUDS Users’ Manual. Carnegie-Mellon Univ., Additional Key Words and Phrases: embedded menus, explicit 
Pittsburgh, Pa., 1980. Describes a logic and PC board design system. menus 

10. Powell, fi. Experimental Evaluation of Two Menu Designs fo; Informa- 
tion Retrieval. Dept. of Computer Science, Univ. of Maryland, Col- 
lege Park, 1985. An experiment was conducted to compare embed- 
ded and explicit menus. 

11. Shneiderman, B. Direct manipulation: A step beyond programming 
languages. Computer 16, 8 (Aug. 1983), 57-69. Describes direct 
manipulation, and Fjves examples:. 

12. Shneiderman, B. Designing menu selection systems. 1. Am. Sot. If. 
Sci. To be published. 

13. Shneiderman, B.. and Ostroff, D. TIES authoring system. Univ. of 
Maryland, College Park, Dec. 1985 Author’s manual for creating 
TIES databases. 

14. Teitelbaum, T., and Reps, T. The ICornell Program Synthesizer: A 
syntax-directed programming environment. Commun. ACM 24, 9 
(Sept. 1981), 563-57.3. Describes a language-based (syntax-directed) 
program editor. 

15. 

16. 

Weldon, L.J.. Mills, C.B., Koved, L., and Shneiderman, B. The struc- 
ture of information in online and paper technical manuals. In Pro- 
ceedings of the Human Factors Society Conference (Baltimore, Md.. 
Sept. 29-Oct. 3). Human Factors Society, Santa Monica, Calif., 1985, 
pp. 1110-1113. An experiment on user performance, comparing pa- 
per and on-line manuals. 
Wright, P., and Lickorish. A. Proof-reading texts on screen and pa- 
per. Behav. Inf Technol. 2.3 (July-Sept. 1983), 227-235. Both speed 
and accuracy are poorer when using a CRT screen than if the same 
task were done on paper. 

CR Categories and Subject Descriptors: D.2.2 [Software Engineer- 
ing]: Tools and Techniques--user interfaces; H.1.2 [Models and Princi- 
ples]: User/Machine Systems--human factors 

Received 9/85: accepted 11/85 

Authors’ Present Addresses: Larry Koved. IBM Thomas J. Watson Re- 
search Center, P.O. Box 218, Yorktown Heights, NY 10598; Ben Shnei- 
derman, Dept. of Computer Science and Human-Computer Interaction 
Laboratory, University of Maryland, Collage Park, MD 20742. 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct commer- 
cial advantage, the ACM copyright notice and the title of the publication 
and its date appear, and notice is given that copying is by permission of 
the Association for Computing Machinery. To copy otherwise, or to 
republish, requires a fee and/or specific permission. 

1987 ACM 
COMPUTER SCIENCE 

CONFERENCE” 
FEBRUARY ‘17-l 9 ST. LOUIS, MISSOURI 

Quality Technical Program 
Educational Exhibits 
CSC Employment Register 
National Scholastic 

Programming Contest 
SICCSE Technical Symposium 

Attendance & Exhibits Information: 
ACM CSC ‘87, Conference Dept. Q 

11 West 42nd Street, New York, NY 10036 
*8: (2121869-7440 

318 Communications of the ACM April 1986 Volume 29 Number 4 


