
PAPERS CHI 97 * 22-27 MARCH 1997

Elastic Windows: Evaluation of Multi-Window Operations

Eser Kandogan and Ben Shneiderman*
Department of Computer Science,

Human-Computer Interaction Laboratory
*Institute for Systems Research

University of Maryland, College Park, MD 20742
kandogan@cs.umd. edu, ben@cs.umd.edu

ABSTRACT
Most windowing systems follow the independent overlap-
ping windows approach, which emerged as an answer to
the needs of the 1980s’ technology. Due to advances in
computers and display technology, and increased informa-
tion needs, modem users demand more functionality from
window management systems. We proposed Elastic Win-
dows with improved spatial layout and rapid multi-window
operations as an alternative to current window management
strategies for efficient personal role management [12]. In this
approach, multi-window operations are achieved by issurng
operations on window groups hierarchically organized in a
space-filling tiled layout. ‘l%is paper describes the Elastic
Windows interface briefly and then presents a study compar-
ing user performance with Elastic Windows and traditional
window management techniques for 2, 6, and 12 window
situations. Elastic Whdows users had statistically signifi-
cantly faster performance for all 6 and 12 window situations,
for task environment setup, task environment switching, and
task execution. For some tasks there was a ten-fold speed-up
in performance These results suggest promising possibili-
ties for multiple window operations and hierarchical nesting,
which can be applied to the next generation of tiled as well
as overlapped window managers.

Keywords
Window Management, Multi-window operations, Personal
Role Management, Tiled Layout, User Interfaces, Informa-
tion Access and Organization.

INTRODUCTION
As Card et al. [5] stated, an analysis of window management
strategies can only be done by a careful consideration of
the tasks for which windows are used. They attempted to
categorize tasks by the functions provided by windows which
they listed as:

● More information

● Access to multiple sources of information
● Combining multiple sources of information

l’ermission to make dlgitalhwd copies ofal] or pwt of[his ma[erial tbr
personal or cliwsroom use is granted wilhout lee provided that the copies
are not made or distributed for prolit or commercial advmtage, the copy-
righl notice, lhe Iitle ot’the puhlicalicm and its dzte appear, and notice is
gi veil Ihal copyright is hy permission of the ACh4. lx. “I_ocopy otherwise,

10 reputrlish. 10 posl on servers or 10 rcdistrilmte to Iisls, requires specitic
permission red/or fee

Cl+] 97, Atlanla (;A I ISA

Copyright 1997 ACM 0-89791-802-9/97/03 ...$3.50

● Independent control of multiple programs
● Reminding
● Command contexthctive forms
● Multiple representations

Most current windowing systems follow the independent
overlapping windows approach, which emerged as an answer
to the needs of 1980’s applications and technology. These
windowing systems no longer provide efficient means to serve
the functions in this list for today’s information-intensive ap-
plications. Whh advances in computer networks, especially
the Internet, users are collecting more information in image,
video, sound, and structured text formats.

With the introduction of windows, users can employ spatial
attributes like location of icons or open windows to access
information. However, current systems provide limited capa-
bilities of icon and window organization; generally a single
screen space where icons and windows can be placed inde-
pendently anywhere on the scrwxs. As a result, the computer
screen becomes cluttered and windows are hidden, making it
harder to access information using spatial attributes.

Access to and use of multiple sources of information or mul-
tiple representations are difficult because operations are per-
formed one window at a time. Providing multiple window
operations with a single action is likely to help users.

Novel approaches emphasize a docu-centric approach (Mi-
crosoft OLE and Apple’s OpenDoc) in which documents
become more important and applications fade into the back-
ground. The enriched document can contain various types of
objects such as text, image, video, sounds, spreadsheets, etc.

Although these innovations are one step toward achieving
a computer working environment in harmony with users’
perceptions of their work, an effective organization of infor-
mation according to users’ roles that reflects this perception
may bring further benefits [19, 16].

The key to personal role management is organizing infor-
mation according to the roles of an individual. When users
are working in a role, they have the most relevant objects
regarding that role like schedules, documents, tools, corre-
spondence with people, etc. all visually available. These
visual cues remind them of their goals, related individuals,
required tasks, and scheduled events all within the context of
the current role. Users should be able to create and abandon
roles as well as extend and modify the role hierarchy.

250

CHI 97 * 22-27 MARCH 1997 PAPERS

OfNtmOc map amsdlalbn

Figure 1: Hierarchical Organization of a Professor’s Roles: University Research and Teaching, Industry, and Personal

Our earlier work [12] stated the requirements for future win-
dowing systems. A more complete list is as follows:

, SupP~ a unifi~ framework for information organization

and coordination according to users’ roles.
● Provide a visual, spatial layout that matches semantics.
● Support multi-window operations for fast arrangement of
information.
● Support information access with partial knowledge of its
nominal, spatial, temporal, and visual attributes and relation-
ships to other pieces of information.
● Allow fast switching and resumption among roles.
● Free users’ cognitive resources to work on task domain
operations rather than computer domain operations.
● Use sewen space efficiently and productively for tasks.

The next section gives a brief description of the Elastic Win-
dows approach, followed by an analytic comparison of win-
dowing systems. Next, the study comparing performance
of Elastic Windows to traditional Independent Overlapping
Windows is described in detail, along with the results and
observations made.

ELASTIC WINDOWS
The Elastic Windows design is based on three principles:
hierarchical window organization, multi-window operations,
and space-filling tiled layout.

Hierarchical Window Organization
Hierarchical window organization supports users structuring
their work environment according to their roles. It allows
users to map their role hierarchy onto the nested rectangle
tree structure. Hierarchical grouping of windows is indicated
by gradually changing border colors according to the level of
the window (Figure 1).

Figure 1 displays the hierarchical organization of different
roles of a university professor. This professor is advisor to a
number of graduate students in a number of research projects,
teaches two courses this semester at the university, is liaison
to three companies, and has personal duties.

The hierarchical layout clearly indicates the hierarchic rela-
tionship between the contents of the windows by the spatial
cues in the organization of windows. It provides the users
with an overview of all their roles, where they can pick any
role or parts of it and start working on it.

251

PAPERS CHI 97 k 22-27 MARCH 1997

Figure 2: a) Maximize university roles from Figure 1
b) Maximize research roles within the university

Hierarchical grouping provides role-based context for infor-
mation organization. It also supports graphical information
hiding capability where window hierarchies can be collapsed
into a single icon (or other primitives) making the approach
scalable. Collapsed hierarchy of windows can be saved and
retrieved, which allows users to reuse a previous window
organization. Besides, layouts can be saved under different
names giving users flexibility in using alternative layouts for
different subtasks within the same context.

Current window management strategies have a limited no-
tion of workspace. Most of the systems provide only one
screen, whereas more novel systems, following the Rooms
approach [11], provide multiple virtual screen spaces where
windows can be placed in any of these spaces. Rooms also
provides an overview where users can look at thumbnail im-
ages of the screen layouts and use the overview to switch to
these screens. Users are limited to an overview level and the
workspace level. In Elastic Windows, however, multi-level
task focus is provided by allowing users to make any window
full screen at any point in the hierarchy (Figure 2).

Muftiple Whdow Operations

Typically, people organize papers on their desk as piles, and
move all of them simultaneously. Malone [14] found that
users like to group items spatially. Multi-window operations
on groups of windows can decrease the cognitive load on
users by decreasing the number of window operations.

Figure 3: a) An empty container window opened on
the right b) Multi-window open for selected items

In Elastic Windows, multiple window operations are achieved
by applying the operation to groups of windows at any level
of the hierwchy. The results of operations are propagated
to lower level windows inside that group recursively. In this
way, a hierarchy of windows can be packed, resized, or closed
with a single operation. Operations like multi-window open,
close, resize, maximize, and pack enable users to change the
window organization quickly to compare, filter, and apply the
information.

In Elastic Windows, window groups can be created by open-
ing a container window and dragging and dropping selected
items inside this window (Figure 3). Separate windows are
opened for each item in the selection as a member of the group
surrounded by the container-window borders. Multiple items
can be added to or removed from the group at any time. It is
also possible to open a new container window within another
container window to create hierarchical windows.

Space4illing Tiled Layout
We took a space-filling tiled approach at this stage of our
research to explore its potential for productive use of screen
space. Non-overlapping approaches may have an advantage
in that they avoid wasted space and disturbing overlaps.

In Elastic Windows, groups of windows stretch like an elastic
material as they are resi zeal, and other windows shrink propor-
tionally to make space (Figure 4). Users are given flexibility
in the placement of sub-windows in a group. There is no strict

252

CHI 97 * 22-27 MARCH 1997 PAPERS

horizontal or vertical placement rule within window groups.
The extent of window operations is limited to the windows in
the same group and their sub-windows. Effects in the upper
levels are propagated down to sub-windows recursively.

Figure 4: Elastic resizing of Teaching window on the
original layout of Figure 1.

EVALUATING WINDOWING SYSTEMS

A 1985 study by Bury et al. [4] comparing user performance in
windowed systems to non-windowed systems revealed that
task-completion times in windowed systems can be longer
due to window arrangement time. However, in a detailed
analysis, the actual times spent on task execution were found
to be shorter, and the error rates were significantly lower in
windowed systems.

Bly and Rosenberg [3] compared user performance of tiled
and overlapping window strategies for regular and irregular
tasks, where regularity is determined by the organization of
information in a window. Their results supported tiled win-
dows for regular tasks. For irregular tasks, however, expert
performance was faster in overlapping windows, whereas
novice performance was faster in tiled windows.

Gaylin [9] observed that the number of window operations to
switch the active window set constitutes 639’oof all the oper-
ations in an independent overlapped window manager. This
result supports the findings by Bannon et al. [1] that people
switch among tasks frequent] y, forcing them to change the
visible set of windows on the screen. According to Gaylin’s
observations, create and delete window operations accounted
for about 15Y0, whereas move and resize for 670, with twice
as many moves as resizes.

Gaylin also measured window operation frequencies during
log-on, as users set up their computers in a typical work
configuration. Although, the most frequent] y used commands
are still those used to switch the active windows, window
creation operations accounted for 1790, move operation for
17%, and resize for 12%.

Gaylin used window operation frequencies to create a win-
dowing system benchmark. We believe that a more reliable
benchmark test should be based on task-domain rather than
interface-domain operations (e.g. window operations).

In our evaluation, we measured user performance on Task
Environment Setup, Task Environment Switch, and Task Exe-
cution (Figure 5).

TASK ENVIRONMENT SETUP

ml

1 ●
2

● ’.

6
.0

TASK EXECUTKW4

o
rn
[
TASK ENVIRONMIWT SWTHIW

Figure 5: Three categories for evaluation.

Task Environment Setup is the act of accessing information
objects needed for the task, opening windows for them, and
arranging the layout. An example would be for programmers
to open source code modules in multiple windows and to
arrange them on the screen.

Task Environment Switching is the act of changing the screen
contents to an existing environment setup. An example would
be to switch to reading specifications in the middle of pro-
gramming.

Task Executions are actions with information contained in
windows in a task environment layout. An example would
be looking sequentially through many job descriptions to
find the best paying job. We identified four task execution
types: Sequential Scanning, Comparr”son, Determine Con-
text+ Scan, and Recall Context+Scan (Figure 6).

Sequential scanning is looking sequentially through a num-
ber of information sources for a certain attribute of the in-
formation, such as the job salary. Comparison is comparing
a number of information sources based on one or more at-
tributes, such as job descriptions or benefits. It is different
from sequential scanning because users tend to glance back
and forth multiple times till they comprehend the distinctions
well enough to make a judgment. Determine Context+Scan
is a filtering based on an attribute to establish a context for
further scanning. For example, once a decision is made to
seek jobs in California, this context enables the users to limit
scanning to only Californiajobs. In Recall Context+Scan, the
context is not determined rather recalled based on previous
interaction with the same information sources. It is designed
to test how well the windowing system supports recall based
on spatial attributes.

We are aware that not all the tasks users do with computers
are this regular and this list is not complete. We have chosen
these four types of task execution because of their significance
in personal role management. Task executions types chosen
cover basic information management tasks such as a quick

253

PAPERS CHI 97 * 22-27 MARCH 1997

SEOUEliTIAL 9CANWi.3 OEIERMI= CCWCEXT . SCAN
-— .

Figure 6: Task execution types

scan of multiple information to gain an overview, comparison
of multiple information, and filtering of a set of information
from a larger set.

EXPERIMENTS
Subjects
Twelve computer science graduate students, 11 of which had
more than 5 years experience with windowing systems, par-
ticipated in the experiments. Seven subjects had experience
with 3 or more windowing systems and 9 used a windowing
system for more than 20 hours weekly.

Design
The experiment design was a within-subject counterbalanced
design with 12 subjects. Each subject was tested on both
of the interfaces but the order of interfaces was reversed
for half of the users. To reduce the chance of performance
improvement, a parallel set of questions was used on the
second interface. The order of the question set was also
reversed for half of the subjects in each group. The order
of the tasks in both of the sets was the same. Since all
four permutations were included, results are presented for
aggregated groups. Paired T-tests were used to compare user
performance at the 0.05 level of statistical significance.

Hypothesis

Elastic Windows with multiple window operations yieldsfater
performance than independent overlapped windows for ex-
pert users of current windowing systemsfor task environment
setup, switching, and task executionfor medium and complex
task environments.

Independent variables were the windowing interface (Elastic
Windows, and Independent Overlapping Windows), and task
environment complexity (2, 6, and 12 windows). Dependent
variables were task environment setup times, switching times,
and task execution times.

Tesks
Subjects were tested using the information hierarchy of a hy-
pothetical student. User performance was measured on task
environment setup, task environment switching, and task ex-
ecution at all three task complexities. In the student role
context, the task environment complexity was: Low (2 re-
ports of a course project), medium (6 e-mail messages from
the boss), and high (12 modules of programming code).

Each subject performed three task environment setups, one
from each complexity, three task environment stitchings,
and a total of 12 task executions, covering all task execution
types at all three complexities. The order of task environment

complexities were varied across subjects to test all combina-
tions of task environment stitchings.

Training
Prior to the experiment, each subject was given 15 minutes
of training supplemented with a practice test. Users were
expected to develop strategies for handling multiple windows
in both of the interfaces during this practice. Users were also
given 5 minutes of training on the information hierarchy used
in the experiment.

Training on the Elastic Windows interface began with the hi-
erarchical coloring scheme, and the elastic nature of windows
with the proportional space allocation strategy. It covered
openinglclosing, resizing, packinglunpacking, and maximiz-
ing a hierarchy of windows.

Training on the independent windows interface covered sim-
ilar tasks, including opening a window, iconifying and re-
opening windows, resizing, and closing windows as well as
traversing the information hierarchy using the file manager.

Procedure
The subjects received a brief description of the experiment,
filled out a subject information sheet, and signed a consent
form. The experiment took about an hour, including the
training and practice test. Subjects were free to ask any
questions during the training session and before starting each
task during the experiment.

Systems
The Elastic Windows interface and a twin-clone window
manager with the OpenWlndows file-manager were both run-
ning on a Sun Spare 20, using SunOS operating system under
X windows.

RESULTS AND DISCUSSION
User Performance
Task Environment Setup Although average task environ-
ment setup time for Elastic Windows in the low complexity
treatment happened to be less than that of the Independent
Overlapping Windows, there was no statistically significant
difference. For medium and high complexities, however,
Elastic Window’s setup times were lower, and the difference
was statistically significant (Figure 7). Standard deviations
are shown as rectandes over the bars in the chart. and the

= ~ E-e, ~ E*,, ~

I (Cornplexity-lntodatx)

Figure 7: Task Environment Setup Times

254

CHI 97 * 22-27 MARCH 1997 PAPERS

Task Environment Switching Times 1
, LOW -> MEDIUM MEDIUM->1OW 1OW->HIGH HIGH->LOW MEDIUM->HIGH HIGH->MEDIUM I

140
120
100
ao
60
40
20
0

I Ekntic Independent Elastic Independent Elastic Independent Elastlc Independent Ela$tlc Independent Elnstk Independent

*
[Switch-lntetfacel

● ● * I
Figure 8: Task Environment Switching Times

In Elastic Whdows, the steps for setting up a task environ-
ment include opening a container window, selecting multiple
task-related objects, and dragging and dropping them in the
container window. Some subjects maximized the container
window to full screen for more efficient utilization of the
scrmm space. Average task environment setup times stayed
nearly constant for all task complexities as shown in Figure 7.
The increase was mostly due to the loading of larger number
of files.

In Independent Overlapping Windows, each icon has to be
double-clicked and the windows placed appropriately on the
screen, one by one. The setup times are heavily dependent
on the number of windows. However, the dependency is
more than linear since as the number of windows on the
screen increases, it becomes much more difficult to arrarige
windows. We believe that the high standard deviation for
the high complexity task environment setup is due to the
diverse approaches taken by the subjects in their organization
of windows.

Multiple selection and open can easily be added to the existing
windowing systems, but what is lacking is the framework to
identify and operate on multiple windows as a group.

Task ErrvirorrrnerrtSwifching All results supported the Elas-
tic Windows interface. The differences were statistically
significant except for low to medium and low to high envi-
ronment stitchings (Figure 8).

Elastic Windows allows multiple levels of workspaces where
a hierarchy of windows at any level can be made to fill the
whole screen. During the experiments, some of the sub-
jects used three actions to enlarge a window to maximize,
whereas some used only two. Variation among task switch
performances was mainly caused by the number of actions to
achieve maximization. Although the switching times from
low to medium and low to high complexities were less for the
Elastic Windows interface, the variation among the subjects
prevented a possible statistically significant difference.

Diverse strategies in switching among environments, led to

variances in performance times. Still, the average time to do a
task environment switch was nearly constant, independent of
the environment complexity. In the Independent Overlapping
Windows, however, the switching time increased as task en-
vironment complexity increased, This was mainly due to the

one window at a time approach. Providing an ove;view and
a set of workspaces, as in Rooms [11], would certainly make
task switching time independent of the number of windows
involved, but Rooms offers only two levels.

Task Execution Task execution times for all task complex-
ities and task execution types were statistically significantly
shorter for Elastic Windows, except for Sequential Scanning
and Recall Context+Scan for the low complexity treatment
(Figure 9).

In Sequential Scanning, having a stable layout during the task
execution helped subjects greatly. In Elastic Windows, win-
dows are well-organized, side-by-side, and during task exe-
cution subjects did not find it necessary to manipulate (resize,
move) windows. However, in Independent Overlapping Win-
dows, the layout was continuously changing, windows were
raised, moved, and resized frequently, due to limited screen
space. Subjects produced dramatic changes from the initial
layout during task execution. These disruptive changes were
more prevalent as task environment complexity increased.

In Comparison, having windows side-by-side in Elastic Win-
dows helped users to compare window contents. Since win-
dows are well organized, users adopted a visual approach
in comparing window contents, and eliminated some win-
dows immediately. However, in Independent Overlapping
Whdows, users had to look at each window one by one,
changing the layout constantly, which made it harder to do
the comparison after a while. ‘l%e problem was more severe
in the high complexity treatment.

In Determine Context+Scan, subjects using Elastic Windows
maximized a subset of the windows belonging to the context,
enabling them to focus on the context more easily due to
larger screen space allocated. In Independent Overlapping
Windows, however, subjects did not reorganize the layout.

Recall was easier in the Elastic Windows interface because of
the more stable window organization across task executions.
Subjects stated that it was easier to remember window loca-
tions than in the Independent Overlapping Windows. Since
the window organization was modified in the overlapping
windows interface for each task execution in the sequence,
the locational memory of users was lost. In the low complex-
ity task environment with only two windows on the screen, it
was not difficult to recall window locations.

255

PAPERS CHI 97 * 22-27 MARc H 1997

Task Execution Times: sequential Scanning

LOW MEDIUM HIGH

[Complexity-lntefface)

Tmk ExecutlofITimexDetwnlneContext+Scon

Low MEDIUM HIGH
50
45
40

10
5
0

smtk**~ m ●pe@bwMm SO** kwwudwd
(Cotndexttv-lntetfocel

Figure 9: Task Execution Times

Subject Interviews
After the experiments subjects were debriefed about their
usual use of multiple windows. Most of the subjects ex-
pressed a preference to use more windows for some tasks,
given efficient means to do so. They described opening mul-
tiple copies of the same source file to view different parts of
the program code, thereby avoiding disruptive scrolling and
find commands.

Some subjects claimed that, although it was not easy to see
the hierarchy at first, they got used to it after several tasks.
According to our observations during the experiment, sub-
jects were initially following the hierarchy to access infor-
mation, however, after some time, they started to use their
locational memory and access information directly based on
that knowledge. This observation was confirmed by most
of the subjects. Some subjects, however, had no problems
visualizing the hierarchy. One subject said that he liked the
overview of hierarchical roles as a guide to his daily tasks.

RELATED WORK
The Rooms system [11] uses multiple virtual workspaces,
where the overlapping window strategy is used in each of
these single-screen workspaces. Each task is devoted to a
workspace, where users can switch to other tasks using ei-
ther the overview or the doors between workspaces for rapid
transitions. Rooms has no support for multiple window op-
erations.

Recent research in more advanced information management
user interfaces has generated a handful of interesting innova-
tions. The WebBook work at Xerox extends the 2D desktop
metaphor to a 3D office metaphor [6]. Pad++ introduced
a novel technique for spatially organizing information on
an infinite] y zoom-able surface [2]. LifeStreams organizes
documents by temporal attributes on a linear timeline [10].
In LifeLines [17], users can access documents from a com-
pact temporal overview consisting of multipletime-lines each
characterizing different aspects of the information through
direct manipulation. IGD is a hypertext system which sup-
ports the creation of large graphical documents with an ar-
bitrary directed graph structure, with graphical information
hiding and structure manipulation capabilities [8]. The Dy-
lan programming environment uses a pane-based window
system [7], which allows both horizontal and vertical panes,
with a mechanism to create links between panes.

Lansdale [13] argues that people employ a number of differ-
ent strategies to access information during their daily prac-
tices, and it would be beneficial to support those strategies
in computer environments. In [18], a number of interesting
strategies are introduced to coordinate information in mul-
tiple windows. Myers has an excellent taxonomy of early
windowing systems [15].

SUMMARY AND FUTURE WORK
We believe that there is an opportunity to improve today’s
window management strategies. This paper suggest require-
ments for future windowing systems, and then reviews the
Elastic Windows approach. Its hierarchical structure of win-
dow organization enables users to do multiple window opera-
tions by applying window operations on groups of windows.

256

CHI 97 * 22-27 Pvl~~CH 1997 PAPERS

Our experiment compared Elastic Windows with Independent
Overlapping Windows in terms of user performance times on
task environment setup, switching, and four task execution
types. We found statistically significant performance differ-
ences in support of the Elastic Windows interface for most
of the tasks. For some tasks there was a ten-fold speed-up
in performance. We are working on extending and formal-
izing our evaluation method, possibly leading to a window
benchmarking test based on task domain actions.

These results suggest promising possibilities for multiple
window operations and hierarchical nesting, which can be
applied to the next generation of tiled as well as overlapped
window managers. They should enable users to more readily
deal with increasingly complex tasks.

Role management was not explicitly tested in this study, but
users appeared to grasp this novel layout strategy and use it
competently. A future study will focus on the benefits of role
management and alternate layouts to support it.

ACKNOWLEDGEMENT
We are grateful to Kent L. Norman for his contribution in the
anal ysis of experiment results, Catherine Plaisant, Egemen
Tanin, and Chris North for their reviews on the draft of this
paper. Special thanks go to Visix Software Inc. for their
donation of the Galaxy Application Environment used in the
development of Elastic Windows. This research is supported
by grants from the National Science Foundation under Grant
No. NSF EEC 94-02384 and NSF IRI 96-15534, and -by
IBM.

REFERENCES
1. Bannon, L., Cypher, A., Greenspan, S., Monty, M. L.,

Evaluation and analysis of users’ activity organization,
Proc. CHI’83, Human Factors in Computing Systems Con-
ference, ACM, New York, NY, (1983), pp. 54-57.

2. Bederson, B., B., Hollan, J., D., Pad++: A zooming graph-
ical interface for exploring alternate interface physics,
Proc. UIST’94, User Interjace Sofmare and Technology
Conference, (1994), pp. 17-26.

3. Bly, S., Rosenberg, J., A comparison of tiled and overlap-
ping windows, PrDc. CHI ’86 Conference - Human Fac-
tors in Computing Systems, ACM, New York, NY, (1986),
pp. 101-106.

4. Bury, K. F., Davies, S. E., and Darnell, M. J., Window
management: A review of issues and some results from
user testing, IBM Human Factors Center Repoti HFC-53,
San Jose, CA, (June 1985), 36 pages.

5. Card, S. K., Pave], M., and Farrell, J. E., Whdow-based
computer dialogues, INTERACT ’84, First IFIP Con-
ference on Human-Computer Interaction, London, UK,
(1984), pp. 355-359.

6. Card, S., Robertson, G., York, W., The WebBook and the
Web Forager: An information workspace for the World-
W~de Web, Proc. CHI’96 Conferwwe - Human Factors in
Computing Systems, New York, NY, (1996), pp. 111-117.

7.

8.

9.

Dumas, J., Parsons, P., Discovering the way programmers
think about new programming environments, Communi-
cations of the ACM 38, 6, (June 1995), pp. 45-56.

Feiner, S., Seeing the forest for the trees: Hierarchical dis-
play for hypertext structure, Proc. UIST’90, User Inte@ace
Software and Technology, (1990), pp. 205-212.

Gaylin, K., B., How are windows used ? Some notes
on ~reating empirical y-based windowing benchmark task,
Proc. CHI ’86 Conference - Human Factors in Computing
Systems, ACM, New York, NY, (1986), pp. 96-100.

10. Freeman, E., Gelernter., D., LifeStreams: A storage
model for personal data, ACM SIGMOD Bulletin 25, 1,
(March 1996), pp. 80-86.

11. Henderson, A., Card, S. K., Rooms: The use of mul-
tiple virtual workspaces to reduce space contention in a
window-based graphical user interface, ACM Transactions
on Graphics 5, 3, (1986), pp. 211-243.

12. Kandogan, E., Shneiderman, B., Elastic Windows: Im-
proved Spatial Layout and Rapid Multiple Window Oper-
ations, Proc. Advanced Ksual Inte~aces ’96, ACM, New
York, NY, (May 1996), pp. 29-38.

13. Lansdale, M., The psychology of personal information
management, Applied Ergonomics, (March 1988), pp. 55-
67.

14. Malone, T. W., How do people organize their desks?
Implications for the design of office automation systems,
ACM Transactions on Ofice Information Systems I, pp.
99-112.

15. Myers, B., Window interfaces: A taxonomy of window
manager user interfaces, IEEE Computer Graphics and
Applications 8,5 (September 1988), pp. 65-84.

16. Plaisant, C., Shneiderman, B., Organization overviews
and role management: Inspiration for future desktop envi-
ronments, Proc. IEEE 4th Workshop on Enabling Tech-
nologies: Infrastructure for Collaborative Enterprises,
(April 1995), pp. 14-22.

17. Plaisant, C., Milash, B., Rose, A., Wldoff, S., Shneider-
man, B., LifeLines: Visualizing personal histories, Proc.
CHI ’96 Conference - Human Factors in Computing Sys-
tems, New York, NY, (1996), pp. 221-227.

18. Shneiderrnan, B., Designing the User Intetiace: Strate-
gies for Effective Human-Computer Interaction: Second
Edition, Addison Wesley Publ. Co., Reading, MA, (1992),
Ch.9.

19. Shneiderman, B., Plaisant, C., The future of graphic user
interfaces: Personal role managers, People and Computers
1X, Cambridge University Press, (Aug 1994), pp. 3-8.

257

