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Abstract 

Dynamic Queries is a querying technique for doing range 
search on multi-key data nets. It b a direct manipulation 
mechanism where the query is formulated using graph&d 
widgets and the results are displayed graphically preferably 
within 100 milliseconds. 
This paper evaluates four data structures, the multilist, the 
grid file, k-d tree and the quad tree wed to organize data in 
high epeed storage for dynamic queries. The effect of factors 
like size, distribution and dimeusionslity of data on the etor- 
age overhead and the speed of search is explored. Analytical 
models for estimating the storage and the search overheads 
are presented, and verified to be correct by empirical data. 
Results indicate that multilists are suitable for small (few 
thousand points) data sets irrespective of the data distri- 
bution. For large data sets the grid files are excellent for 
uniformly distributed data, and trees are good for skewed 
data distributions. There was no sign&cant difference in 
performance between the tree structures. 

1 Introduction 

Most users of database systems must learn a queryiug lan- 
guage which they use to nekct and retrieve information. A 
query language is a special purpose language for constructing 
queries to retrieve information from a database of inform& 
tion stored in the computer [la]. 

Dynamic queries [l] is a novel way to explore information. 
This mechanism is well euited for multi-key data sete where 
the resulta of the search fit completely on a single screen. 
Figure 1 shows an application of dynamic queries in search- 
ing a real estate database. The query is formulated using 
widgets such se buttons and sliders, one widget being used 
for every key. A etudy [23] was conducted which compared 
dynamic queries (DQ) to a natural language system known 
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as ‘Q 6c A” and a traditional paper listing sorted by several 
fields. There was a statistically significant difference in the 
performance of the DQ interface compared to the other two 
interfaces. The DQ interface enabled users to perform faeter 
and was rated higher than the other two in the terms of user 
satisfaction. The DQ interface was very useful iu spotting 
trends and exceptions to trends as compared to the other 
two interfaces. 

One of the important features of a DQ interface is the imme- 
diate display of the results of the query. In fact, users should 
be able to perform tens of queries in a span of a few seconds 
so that the mechanism remains dynamic. Using larger data 
sets slows down the mechanism so that there is a noticeable 
time interval (greater than 300 milliseconds) between the 
movement of sliders and the display of results. 

The speed of DQ depends mainly on how the query is com- 
puted and the results displayed. The speed of display de- 
pends mainly on the graphic capabilities of the machine 
used. Even though the query computation depends to a 
great extent on the hardware of the machine used, it can be 
optimised to a great extent by using suitable data structures. 

In this paper data structures for the high speed storage are 
examined. We assumed that the data sets remains frozen i.e. 
there are no insertions, deletions or updates. The time taken 
to load the data into the high speed storage memory i.e. the 
preprocessing time is ignored as it is done only once. Only 
simple rectangular queries are considered i.e. queries will be 
a simple conjunct of the ranges epeciiled by the sliders. 

2 Multi Attribute Range Search Meth- 
ods 

The problem of range seerrch on multi attribute data nets can 
be dellned as: 
For o given multi-o&lute doto ret, ond o query which rpec- 
ifier o mnge for each ottribute, find 011 recorda whose ot- 
tributer lie in the given mnger. 
The cost functions of various data structures rue provided 
where N is the number of records, t is the number of at- 
tributes and F is the number of records found. 
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Figure 1: The Dynamic Home Finder 

l S(N, L) is the cost of etorage required by the data struc- 
ture. 

l Q(N, k) is the search time or query cost. 

Figure 2 ebows cost functions for structures that are suitable 
for rectangular queries. For the quad tree h’i is the num- 
ber of nodes in the tree. Further details about these data 
structures can be obtained from the references. Many other 
complex etracturea exist, but they are mainly of theoretical 
interest only because of their high storage overhead. It can 
be seen that range treea and k-rangea have relatively high 
storage overheada and are thun eliminated from considera- 
tion. 

3 Data Structures 

We assume the following characteristics of dynamic queries. 
The paranreters of search are specified using sliders with one 
slider being used for each dimension. There are a limited 
number of positions the dragbox of a slider can take. This 
redte in the ranges getting broken into discrete intervals. If 
every nlider ia assumed to break a range into G intervds, and 
if the data net has D dimensions then the search space can 
be spbt into GD buckets. A bucket is the smallest unit of 
search and it is not possible to differentiate between points 
in a bucket. During search all or none of the data points of a 
bucket get included in the solution set. It may happen that 

Multilist OW) O(Nk) 

C&9 O(Nk) 0(2’.F) 

k-d ‘Dee OWk) O(N-I* + F) 

gaad Tree O(Nk) O(Nl’-“’ + F) 

Range The O(Nlogk-lN) O(log’N + F) 

k-Ranges O(NZk-‘) O(klogh’ + F) 

Figure 2: Storage and Search time overheads for various data 
structures 
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in certbin data distributions some buckets are empty. Unlike 
the case in bucket methods for storage on disks, there is no 
limit on the number of points in a bucket when the high 
speed storage is used. 

Four data structurea sre described in this section. The datb 
points are stored in a simple array. It is assumed that points 
belonging to the same bucket will be stored consecutively. 
The data structures will be used to maintain an index on 
the array so that the search time is reduced. To maintain 
these indices, memory overhead is incurred which needs to be 
kept low. These etrnctnrea can be da&led in two categories 

i.e. bucket and non-bucket methods. In bucket methods an 
index ia maintained on buckets and in non-bucket methods 
it is maintained on dbtb points. The linked array which is 
a non-bucket method is described first. Later the bucket 
methods are described. 

3.1 Linked Array 

dklerl d&r2 

' ' ' ' 

12 3 4 

data array 
f2 

Figure 3: Liked Array need to index the Data Array 

Figure 3 shows a part of the linked array when the dbta in 
two dimensional (i.e. D = 2). Ah shown in the figure is a 
data brrby. The data array is an array which holds the data 
points. With every interval in the slider range is associated 
a linked list. Every point in the data set will lie in one and 
only one linked list of every slider. Also with every record is 
associated a flag (not shown in the figure). This flag keeps 
count of the number of fields of the record which satisfy the 
region of iutereat. When this count becomea equal to the 
number of dimensions then the record is displayed. 

3.2 Grid Array 

Figure 4 shows a part of the grid array md to index the 
data array for the two dimensional csse. This is a bucket 
method and a bucket is essentially a pair of index numbers 
or pointers which point to the first and last record in the 
data array that belong to the bucket. These buckets form b 
part of the D dimensional search space. Therefore, to index 
them a D dimensional array is used. 

I elIdeI 
1 

2 

l 
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4 

rlkferl 

Figure 4: Grid Array used to index the Data Array 

3.3 k-d Tree 
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Figure 5: k-d ‘lhe seed to index the Data Array 

Figure 5 shows a part of a k-d tree and the data array as- 
sociated with it. In kd trees, the concept of the buckets 
is again the same as the grid array. For our optimized k- 
d tree not ah nodes St the same level in the tree have the 
same discriminator key. Nor are dl the leaves at the same 
level. Therefore, in each node, beeides the die&minator key 
vdue, the type of the discriminator key and a flag (not shown 
in the figure) which indicates the type of children (node or 
leaf) is also stored. This helps in reducing tree size when the 
number of non-empty buckets is smdl. It is possible that af- 
ter optimization some leaves may move so thbt they are no 
longer at the level they were in the non-optimized tree. In 
such cases an additiond check needs to be done to ensure 
that the bucket reached falls iu the region of interest. A flag 
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(not shown in the figure) in the leaven indicates whether this 
check needs to done. 

Figure 6: Quad Tree used to index the Data Array 

Just as k-d trees could be used to index the buckets, quad 
trees can also be used to index the buckets as shown in Fig- 
ure 6. Each node has D d&riminator keys and 2O pointers 
for the children. Just m in the cae of a k-d tree, the chil- 
dren of a non-leaf node may be a mix of leaves and (non-leaf) 
nodes which is determined by a flag. One bit is required to 
maintain this information about each child. It is assumed 
that D in at most 5, hence the number of children is at 
most 32 and one word (32 bits or 4 bytes) suffices to store 
leaf/non-leaf information for all the children of a node. In 
some casea, after optimization, some leaves may move, (as 
in the k-d tree) and a check may be required to ensure cor- 
rectness which is indicated by a flag. 

4 Analytical Model 

We analyze the storage and search overheads of data stmc- 
turw used for dynamic queries in this section. Storage over- 
head refers to the additional storage requirements for the 
data structure used. Search overhead is the number of oper- 
ations required to compute the query result when the slider 
ie moved. These two metrica will be wed throughout thie 
section to evaluate the data structnrea for dynamic queries. 
Search overhead will depend on how large the space being 
searched is, At any given moment the sliders define some- 
thing called the t-&on of intenst, which is the portion of the 
search space being displayed. Every movement of a slider is 
a query which increw or d&eases the region of inter&. 
It is rssumed that at any time only one dragbox of a slider 
will move in steps of one discrete interval. As a result of this 
move, poiuts have to be removed or added to the display. 
In the case of the search overhead, it is assumed that the 
case where the region of interest is increasing will apply as a 
general case. For the worst csse the increment in the region 
of interest should be the greatest. This happens when D - 1 
sliders have their left and right dragboxes in the extreme left 

and right respectively. In this case with every move of the 
D’h slider CD-’ buckets are added to the region of interest. 
The effectiveness of a method will be studied with respect 
to factors such ay the distribution, dimensionality (D) and 
sise (N) of the data sets. 

4.1 Comparing Bucket Methods 

In this section a comparison of bucket methods is presented. 
Only the number of non-empty buckets will be considered 
in the analysis. The number of tuples does not effect the 
performance in any way. As mentioned earlier, two perfor- 
mance metrics used in the analysis are the storage overhead 
for the index on buckets and the worst case search time. 

The following symbols will be used (i is the dimensionality): 

N : Number of points. 
D : Number of dimensions. 
G : Number of intervals in each slider range. 
Noi : Nodes in the structure. 
Bi : Non-empty buckets (leaves) in the structure. 
Nvi : Nodes (non-leaf) visited (worst csae). 
Bvi : Non-empty buckets (leaves) visited (worst csse). 

The storage overhead is the cost of maintaining an index on 
the data points. In computing the storage overheads, it is 
assumed that each integer is 4 bytes, each character is 1 byte 
and each pointer is 4 bytes. If the number of dimensions is 
i, then the following holds true: 

Grid Array: In grid arrays, 2 integer indices (first and last) 
are maintained for each bucket, irrespective of data distri- 
bution. So, 8 bytes are required for each bucket. Therefore, 
Total storsge overhead = 8G’ bytes . 

k-d Tree: In k-d trees, each non-leaf node has an integer 
discriminator key (4 bytes), a character dis&minator key 
type (1 byte), a character flag for type of children (1 byte) 
and two pointem for left and right children (4 bytes each), 
resulting in a total of 14 bytes. Each leaf (non-empty bucket) 
has 2 integer indices (4 bytea each) and a character flag (1 
byte), resulting in a totd of 9 bytes. Therefore, 
Total etorage overhead = 14Noi + 9Bi bytes. 

Quad nee: In quad trees, each non-leaf node has 2’ point- 
em for children of the node (4 bytes each), i integer dincrim- 
inator keys (4 byke each) and one flag for maintaining types 
of children (4 bytea), resulting in a total of 4(2’+i+l) bytes. 
Each leaf (non-empty bucket) requires 9 bytes as in the csse 
of k-d trees. Therefore, 
Total storage overhead = 4(2’ + i + l)Noi + 9Bi bytes. 

The following assumptions have been made in calculating the 
search time overhead. i is used to indicate that the terms 
are for i dimensional case. 

l For every non-empty bucket visited it is assumed that 
one operation ia done to report that the bn.cket is non- 
empty. 

4 



l For the grid array one operation is required to visit a 

bucket and if it is non-empty then another operation is 
performed. 

s For the k-d tree every non-leaf node visited has to be 
put into the stack and then later retrieved from the 
eta&. This requires 2 operations. In processing every 
node two comparisons have to be made. This makes it 
a total of 4 operations for every non-leaf node visited. 
In visiting leaves, 2 operations will always be required: 
1 operation for reporting that the bucket is non-empty 
(as discussed earlier) and 1 operation to get to the leaf. 
In some cssea, because of the optimizations on the tree 
that were discussed earlier, an additional check is re- 
quired to ensure that the bucket reached is the correct 
one. This may require up to 2i operations. 

s For the quad tree every non-leaf node visited has to be 
put into the stack and later retrieved from the stack. 
This requires 2 operations. 2i comparisons are required 
to determine which children of the node to search. 2 
operations me required for checking the flags to deter- 
mine the type of children. So, in all 2i+4 operations are 
done for every non-leaf node visited. In visiting leaves, 
2 operations will always be required: 1 operation for 
reporting that the bucket is non-empty (as discussed 
earlier) and one operation to get to the leaf. As in the 
case of k-d trees, an additionsl check may be required 
to ensure correctness of the leaf reached which requires 
2i operations. 

l In the worst CM, for both k-d tree and quad tree, it 
is assumed that the number of nodes visited, when the 
data is i dimensional is Noi-1. This is because in the 
worst case i - 1 sliders do not restrict the search in any 
way. The slider restricting the search has only one of its 
discrete intervals to be searched for. It is like taking a 
slice of thickness 1 from the i dimensional search space. 

4.1.1 Uniform Data Distribution 

In this subsubsection we present the storage overheads and 
search time requirements for the case when the data dL+ 
tribntiop is nniform. An important factor effecting these 
performance metrics is the percentsge of buckets which are 
non-empty. Two extreme cases were considered in this sub- 
section, when all the buckets are non-empty and when only 
25% of the buckets are non-empty. We briefly state the im- 
portant results here. Detailed analysis for deriving these 
results is presented in [ll]. 

Figures 9 and 10 show how the storage and sesrch over- 
heads vary as the fraction of non-empty buckets changes for 
nniformly distributed data. The values used were, G = 16 
and D = 4. Figures 7 and 8 show the overheads for the 
case of uniformly distributed data. These results indicate 
that, the grid array is a significantly better structure to use 
when data is uniformly distributed and most buckets are 
non-empty. It has a lower memory and search time over- 
head than both the tree structures. However av the number 
of empty buckets rises the difference in the memory overhead 

Data 
Structure 

Grid Array 

Storage Cost Search Cost 

8GU 2GU-’ 

1 k-d ‘Tree 1 23GD I 6GD-l I 

Quad l-bee 4(2O + D + l)& 
+9GD 

(20 + 4) :“;:, 
+2G’-’ 

Figure 7: Storage and Search time overheads for Uniformly 
Distributed Data (100% buckets non-empty) 

Data 
Structure 

Grid Array 

k-d Tree 

Quad Tree 

Storage Cost 

8GD 

lJaD 
. 

4(SD + D + I)& 

+9% 

Figure 8: Storage and Search time overheads for Uniformly 
Distributed Data (25% buckets non-empty) 

reduces and the trees get better. When comparing the search 
overheads of the structures for the case where most buckets 
rue non-empty the quad tree hss a lower search overhead. 
The dimensionality of the data only increases the differences 
with the differences in performance becoming greater rur di- 
mensionality rises. 

4.1.2 Skewed Data Distribution 

In thin s&subsection, the performance of data structures is 
examined when the data distribution is skewed. Two csses 
are examined, when all the non-empty buckets are only along 
the diagonal of the search space and the case where all the 
non-empty buckets are within a distance of G/4 from the 
diagonal. As in the case of uniformly distributed data the 
detailed analysis is presented in [ll]. 

Figures 11 and 12 show the overheads for the case of skewed 
distributions. These results indicate that, there is a signif- 
icant difference between the performance of trees and the 
grid array with the trees being superior. This is reflected 
both in memory and search overheads. For the case where 
non-empty buckets lie only along the diagonal of the search 
space the difference in the trees and the grid is phenomenal. 
In the second case also the trees are significantly better. 
Amongst the trees it can be said that the k-d tree has a 
marginally lower memory overhead and a marginally higher 
search overhead than the quad tree. As in the case of uni- 
formly distributed data, higher dimensionality of data makes 
the differences more pronounced. 
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Figure 9: Idemory overhead for Uniformly Distributed Data 
Ve. the fraction of non-empty buckets 
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Figure 10: Search overhead for Uniformly Distributed Data 
Vs. the fraction of non-empty buckets 
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Figure 11: Storage and Search time overheads for Skewed 
Data Distribution (non-empty buckets along diagonal only) 

Storage Cost 

6GD 

Search Cost 

++ u--l & 
G 

23i?o ~BD-1+ 

(20 + 2)% 

4(2O + D + 1)Noo (20 + 4.)No~-~ 
+9Bn +2% 

Figure 12: Storage and Search time overheads for Skewed 
Data Distribution (all non-empty buckets withiu a distance 
of G/4 of diagonal) 

4.2 Bucket Vs Non-Bucket Methods 

In bucket methods the number of points does not effect the 
search overhead if the number of points is sufficiently large to 
make most buckets non-empty. However when the number 
of points is small or the number of dimensions is low it may 
be better to use the linked array because its storage overhead 
is directly proportional to the number of points in the data 
net and the dimension of the data set. 

Every tuple of the linked array has to be kept on D lists. 
For this D additional pointers (4 bytes) are needed. In 
addition a flag (1 byte) is required (see section 3.1). 
Therefore, storsge overhead is (4D + 1)N. 

Generally each linked list associated with a slider will 
have N/G tuples in it. Therefore, search overhead 
(worst case and average case) is 3. 

The linked array WPBB compared to the grid array for uniform 
data distributious. Only the grid array was chosen because 
it has a superior performance compared to the treea for uni- 
form distribution. With a value of G = 16 and D = 4, it 
was seen that the linked array performed much better as far 
as the search overhead is concerned. However the storage 
overhead for this structure gets very high. 

The linked array was compared with the tree structures 
for the skewed distribution. The grid array was dropped 
from consideration here because trees perform better under 
skewed data distributions. In this case the performance of 
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the tree structures, specially the quad tree is much better 
both when storage overhead and search overhesds are com- 
pared. One reason could be that in ekewed distributions the 
bucket occupancy rises very steeply when compared to the 
uniform distributions. 

5 Experimental Results 

The analytical models of section 4 were verified by impL 
menting the cases discussed. The implementation was done 
on a dedicated SUN 4/50 with 16 MB of memory and mn- 
ning SnnOS. The memory overhead ~~88 calculated by count- 
ing the nodes and leaves for the bucket methods, and the 
number of points for the finked array. Clock time in mi- 
cra5econda was used to measure the epeed of search instead 
of the number of operations an in section 4. The proceaa 
switching overhead was ignored w the machine had negligi- 
ble load. 

5.1 Comparing Bucket Methods 

The analytical model.5 of subsection 4.1 were implemented 
and the results are presented in thie eubaection. In the calcu- 
lation of memory overhead, only the extra memory required 
to maintain the index was considered. AE mentioned before 
in calculating the search time, the time for display of records 
was ignored. The value of G = 16 was naed in implementa- 
tions. 

6.1.1 Uniform Data Distribution 

m:x 14 5.1.2 Skewed Data Distribution 
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Figure 13: Memory overhead for Uniformly Distributed 
Data (100% bucket.9 non-empty) 

Figures 13 and 14 show the results of the memory and search 
time overhead respectively for the case where all buckets are 
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Figure 14: Search overhead for Uniformly Distributed Data 
(100% buckets non-empty) 

non-empty. For this case the grid array is significantly better 
than the tree structures both in terme of memory overhead 
and search time overhead. 

The case where 25% of the buckets are empty is shown in 
figures 15 and 16. The grid array is a significantly better 
structure when eeuch time overhead is considered. However 
the k-d tree ia marginally better when memory overhead is 
considered. All results in this subsubsecton closely match 
previous analytical models. 

Figurea 17 and 18 show the results of the memory and 
search time overhead respectively for the case where non- 
empty buckets rue only along the diagonal. For this c- 
both the k-d tree and the quad tree give a performance far 
superior to the grid array both for memory overhead and 
search time overhead. However there ia no Significant differ- 
ence between the performance of trees. 

When all points lie in bucketa within a distance G/4 of the 
diagonal the tree structures turn out to be excellent perform- 
ers compared to the grid array. This can be seen clearly in 
figures 19 and 20. However the difference between the tree 
rtructures themselves in not large. It should be noted that 
LB in the previous casen the results of the implementations 
follow the analytical models closely. 

5.2 Bucket Vs Non-Bucket Methods 

In the calculation of memory overhead for linked array, only 
the extra memory required to maintain the linked list was 
considered. An mentioned before in calculating the search 
time, the time for display of records found was ignored. The 
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Figure 18: Search overhead for Skewed Data Distribution 
(non-empty buckets along diagonal only) 
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values of G = 16 and D = 4 were used in the implementa- 
tions. 

5.2.1 Uniform Data Distribution 
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Figure 19: Memory overhead for Skewed Data Distribution 
(all non-empty bucketa within a distance of G/4 of diagonal) 
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Figure 20: Search overhead for Skewed Data Distribution 
(all non-empty buckets within a distance of G/4 of diagonal) 
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Figure 21: Memory overhead for Uniformly Distributed 
Data 
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Figure 22: Search overhead for Uniformly Distributed Data 

Figures 21 and 22 show the comparison between the linked 
array and the grid array. As mentioned before in subsection 
5.2 only the grid array was chosen among bucket methods as 
it hae the best performance for uniformly distributed data. 
As far as search time overhead is considered the linked ar- 
ray performed better than the grid for up to approximately 
100,000 points. However the drawback is that the memory 
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overhead for this structure keeps increasing as the size of the 
data set increases unlike the case for the grid array where it 
remains a constant. 

5.2.2 S:kewed Data Distribution 
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Figure 23: Memory overhead for Skewed Data Distribution 
(all non-empty buckets within a distance of G/4 of diagonal) 
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Figure 24: Search overhead for Skewed Data Distribution 
(all non-empty buckets within a distance of G/4 of diagonal) 

Figures 23 and 24 show the comparison between the linked 
array and the tree structures for skewed distributions. As 
mentioned before in subsection 5.2 only the trees were cho- 
sen among bucket methods 88 they have significantly better 
performa.nce for skewed data distribution. When compared 

to the linked army the tree strnctnres get significantly better 
than the linked array both in terms of search time and mem- 
ory overhead. However when the number of tuples is small 
(about 10,000) it is better to use a linked array because of 
its simplicity. 

6 Conclusions 

6.1 Contributions 

We have presented a way of rmalyzing data structures for 
dynamic query applications. The usefulness of analytical 
models was shown by empirical data. In almost sll cases the 
empirical results confirmed the analytical models. 

In the case of nniformly distributed data the linked array 
structure performed quite well but the drawback in this 
structure is that its memory overhead is very high and them- 
fore it should be used only for small data sets. For larger 
data sets it is recommended that a grid array be used. The 
advantage in the grid array is that the memory overhead 
does not depend on the number of points in the data set but 
only on the number of buckets in the data set. 

For skewed data distributions where most of the buckets 
are empty, the performance of tree structures, was much 
better than the grid array. Among tree structures the k- 
d tree used marginally less memory but had a marginally 
higher search overhead. Compared to the linked array again 
the trees were much better except for the cases where the 
number of data points were just a few thousand. However 
there is a temptation to use the linked array because of its 
simplicity. It is recommended that the tree structures be 
used for skewed data distributions if the number of points 
exceed a few thousand. 

In cases where knowledge of the data distribution is lacking 
we recommend using the k-d tree as the it is highly likely 
that the distribution is non-uniform. The k-d tree is also 
much easier to construct compared to the quad tree when 
the ranges of the sliders are not equal. It was noticed that 
the performance of a data structure does not change with the 
dimensionality of the data set. The only effect of increasing 
dimensions is that the number of buckets increases, which 
rem&s in the differencea in the performance becoming more 
pronounced. 

The data structnres discus& in this paper are practical 
and make it possible to implement dynamic queries on stan- 
dard machines in common nse without major special require- 
ments. This is essential, specially becausein addition to ex- 
perts, novice users with inexpensive machines also find DQ 
very appealing. 

6.2 Future Directions 

The assumption that data sets are frozen could be dropped 
and the effect of updates on these data structures would be 
interesting. Another assumption about the nature of queries, 
where queries were assumed to be a simple conjunct of ranges 
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could be relaxed, opening up another area of investigation. 
The segregation of data into buckets can also lead to inter- 
esting methods for compression. 

Using dynamic queries with very large data sets raises many 
interesting issues. It would be impossible to store all data in 
main memory and disk accesses become a necessity. It would 
be worth while to study applications where data is organized 
on disks. Approaching dynamic queries from the distributed 
databases point of view would be another solution for large 
data sets. Another approach to take is making dynamic 
queries run on parallel machines. 

One of the reasons dynamic query applicationa are effective 
is because they present query results in a way to help users 
visualize the data set. Therefore effective ways of visualizing 
data, specially multi-dimensional data are important for the 
success of dynamic queries. 
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