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ABSTRACT
Traditional network analysis tools support analysts in study-
ing a single network. ManyNets offers these analysts a pow-
erful new approach that enables them to work on multiple
networks simultaneously. Several thousand networks can
be presented as rows in a tabular visualization, and then in-
spected, sorted and filtered according to their attributes. The
networks to be displayed can be obtained by subdivision
of larger networks. Examples of meaningful subdivisions
used by analysts include ego networks, community extrac-
tion, and time-based slices. Cell visualizations and interac-
tive column overviews allow analysts to assess the distribu-
tion of attributes within particular sets of networks. Details,
such as traditional node-link diagrams, are available on de-
mand. We describe a case study analyzing a social network
geared towards film recommendations by means of decom-
position. A small usability study provides feedback on the
use of the interface on a set of tasks issued from the case
study.
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INTRODUCTION
The field of Social Network Analysis (SNA) has recently
gained visibility as social networking sites have increased
in relevance, numbers and participants. Sites with millions
of users are now commonplace. Analyzing these networks

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CHI 2010, April 1015, 2010, Atlanta, Georgia, USA.
Copyright 2010 ACM 978-1-60558-929-9/10/04...$10.00.

helps our understanding of how people interact and commu-
nicate. Additionally, insights into how users interact within
these systems are important to diagnose and improve them,
and to develop better systems in the future.

Exploratory analysis of large networks, such as those found
in SNA, often starts with visual overviews. Whole-network
overviews, such as those generated with node-link diagrams
or matrix representations, are hard to interpret, especially in
the case of large, dense networks. Comparing these overviews
to gain insights regarding a set of networks is even more dif-
ficult.

The need to visualize multiple networks at once arises natu-
rally in many situations. For instance, analysts may wish to
compare social networks for county managers in 3140 U.S.
counties to gain insights into the strength of their collabora-
tions. Subdivision of larger networks is also an important
source of multiple networks; for instance, [24] describes
the subdivision of an evolving social network by temporal
slices, which can then be examined to locate temporal pat-
terns or regions and periods change. In biological networks,
the distribution of “motifs” (small patterns of connectivity)
has been suggested as an indicator of their functional signifi-
cance [23]. More generally, analysts can subdivide networks
into closely-knit communities or clusters; and, in Social Net-
work Analysis, the use of ego-networks to look at individual
neighborhoods is well-established. Indeed, going one step
further, analysts may need to compare groups of networks.
They may want to discover if the ego-networks of one social
network are similar to those of a different social network,
and whether they exhibit similar temporal characteristics.

The main contribution of this paper is our approach to net-
work analysis: it is the first approach that attempts to vi-
sualize many networks (up to several thousands) at once.
We represent these groups of networks in a table, where
each row represents a single network, generally a part of a
larger network that has previously been split. Configurable
columns contain user-defined statistics. Typical columns in-
clude link count, degree distribution, or clustering coeffi-
cient. In this sense, each row of this interface represents
the fingerprint of a network, the combination of its cell val-
ues for each of the currently-displayed attribute columns.
The use of a table allows easy comparisons between rows
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Figure 1. ManyNets displaying a time-sliced cell-phone call network. Each row represents the network of calls in a 5-hour period, with a 50%
overlap with the previous row (10 rows cover an entire day). Rows with more than 40 connected components have been selected by dragging on the
“Component count” column summary histogram, and are highlighted with a light-green background in the table. Each column summary highlights
in bright green those values that correspond to currently-selected rows. In the left-most column summary, equally-spaced highlights reveal a temporal
pattern. This synthetic dataset is from the VAST 2008 Challenge [16], and contains 400 nodes and 9834 links.

and columns, and can benefit from focus+context techniques
such as those found in TableLens [30]. Our table visualiza-
tion is tightly integrated with a node-link diagram network
visualization tool, SocialAction [28], allowing on-demand
network inspection. A secondary contribution is in the gen-
eral field of table-based interfaces, in the form of “column
summaries”. These are special cells, placed on top of the
column headers, that provide an abstract of the contents of
their column. The summaries also support direct user inter-
action, and reflect application state by highlighting values
that correspond to currently-selected rows.

The next section presents our approach and describes the in-
terface in general terms, using a temporal network dataset
from the VAST 2008 Challenge [16] as a guiding exam-
ple. After a section on related work, we describe an in-
depth case-study using data from the FilmTrust social net-
work [14]. Finally, we present the results of usability study
with 7 participants.

DESIGN OF MANYNETS
We follow the Visual Information Seeking Mantra [33] to
introduce the ManyNets approach to network visualization.
The first step of this mantra calls for Overview first. Analysts
can access two distinct types of overviews. First, rows them-

selves act as overviews of the networks that they represent.
Scalar values, such as vertex (node) count and edge (link)
count, are represented with horizontal bars. When there is
a distribution of values within each network, such as in the
node degree column, the distribution is shown as a histogram
in the corresponding cell. For example, in Figure 1, the his-
tograms that represent the distributions of phone call dura-
tions can be seen to be roughly bell-shaped. On top of each
column name, column summaries provide the second type of
overview. Each column summary summarizes the contents
of an entire column. In this sense, the set of column sum-
maries is an overview of all the networks at once. Within
summaries, we use miniature histograms to represent dis-
tributions of values for both scalar values and distributions.
For example, in Figure 1, the column summary histogram
for call duration shows a much smoother bell curve that con-
siders all the distribution values in each network. In the same
figure, a histogram also shows the distribution of scalar val-
ues, like Edge Count, over all networks.

Analysts can zoom and filter (the second step of the Mantra)
collections of networks in several ways. Columns can be
resized by direct manipulation, and filtered by hiding them
using the “column control” (displayed as a small button on
top of the scrollbar). Sorting can be seen as a special type
of filtering. All columns, even those that contain distribu-
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Figure 2. Details on demand for a degree distribution histogram. In all
visualizations in ManyNets, hovering the pointer over a value displays
a tooltip.

tions, can be sorted on, and additional “multiple-column”
sorting orders can be used. In a semantical sense, it is possi-
ble to “zoom” into a given row or set of rows by slicing the
network further, revealing finer-grained details. In the case
of the dataset of Figure 1, it would be interesting to subdi-
vide the network further into node neighborhoods (“ego net-
works”). This would allow us to focus on the neighborhood
of node #200 (a caller that is present in many of the slices,
but not directly visible in the table), described in the original
dataset as an important lead (see [16]). Analysts can filter
out uninteresting networks by selecting rows to be removed
or retained. Selections can be specified by clicking on the
corresponding rows, through interaction with column sum-
maries, or by specifying a custom filter. We expect analysts
to be proficient in the use of spreadsheets; the expressions
that are used in column filters are similar in complexity to
those used in spreadsheet formulas. In Figure 1, the ex-
pression Column[’Component count’] > 40 results in the
currently-displayed selection.

Finally, details on demand are available by “mousing” (hov-
ering the mouse pointer for a few seconds, without clicking)
over any part of the interface: this will display a small tool-
tip, describing the value or values under the pointer. Larger,
more detailed views of cell contents or column summaries
can be obtained by right-clicking on them: this will display
a pop-up window with a larger view, and controls that al-
low manipulation of view settings (Figure 2). Left-clicking
any cell selects the corresponding row, and displays its con-
tents in a detail panel. The same detail panel keeps track of
the currently-selected rows. Last but not least, ManyNets is
tightly integrated with SocialAction, and any row or set of
rows can be opened in SocialAction for further inspection
as a node-link diagram. SocialAction’s interface provides
its own facilities for visualizing network overviews, zoom-
ing and filtering, and providing details on demand (see [28]
for details). For instance, SocialAction can use colors to
highlight node or links based on attribute values supplied
by ManyNets, and can perform interactive filtering based on
these same attributes.

Figure 3. Selecting statistics. Choices correspond to columns displayed
in Figure 1.

Selecting and Adding Columns
We now review selected ManyNets features in greater detail.
Basic network statistics, such as link and node counts, link
density, and component counts, are calculated and displayed
by default. More computationally expensive statistics (e.g.
network diameter) are only added if the user explicitly re-
quests them, using the dialog shown in Figure 3. Some of
these statistics return distributions instead of scalar values;
distributions are displayed as miniature histograms embed-
ded in the main table.

There can be four sources for columns. Topology-based
statistics are those that can be extracted by traversing the net-
work, without any additional domain knowledge. Domain-
dependent link attributes and node attributes define two ad-
ditional sources. In Figure 3, the Tower attribute refers to the
particular cell-phone tower from which the call was made.
Since these attributes are bound to links or nodes, they nat-
urally result in distributions that will be represented as his-
tograms. The final source for statistics is the user: columns
can be defined by entering expressions in Python. For in-
stance, the edge-vertex ratio (ratio of links to nodes) can be
added using Column[’Edge count’] / Column[’Vertex

count’]. This results in a column indistinguishable from the
default “Edge-vertex” ratio column (see Figure 4). Different
types of references to columns can be inserted by using suit-
able keywords. Among others, VarColumn[’col’] inserts
the variance of a cell in a column that contains distributions,
and MaxColumn[’col’] inserts the maximum. A similar in-
terface can be used to specify Python expressions for filters,
selections, and sorting-column definitions.

Column Summaries
The column summaries, visible on top of each column of
Figure 1, provide an overview of the values of their columns.
For instance, in Figure 1, the distribution of phone call dura-
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Figure 4. Adding a calculated column using Python. Abundant exam-
ples are available to users, lowering the effort of writing these expres-
sions. Column references are substituted by their values before they
are evaluated. They can be inserted using the drop-down combo boxes,
or typed in directly.

tions can be seen to follow a bell-shaped distribution, with a
minimum of -145 seconds (these “errors” were present in the
dataset itself) and a maximum of 2171. Column summaries
display the minimum and maximum column values under
a histogram representing the distribution of values within
the column, avoiding the need to query the summary (via
tool-tips) or sort on the column. This is especially useful
when the number of rows is large. Histograms are used to
represent column overviews; in the case of columns that al-
ready contain histograms in their cells, histograms of his-
tograms are generated by aggregating the corresponding dis-
tributions.

Summaries also provide context-dependent information when
rows are selected: selecting a set of rows highlights, in all
column summaries, the contribution that networks represented
by these rows makes towards the overall distribution of val-
ues. In Figure 1, all slices with more than 40 connected com-
ponents have been selected (green background). A tempo-
ral pattern can be observed in the column summary of slice
IDs: the highlighted values (also green) are spaced regularly
throughout the summary histogram (which uses the same or-
der as the ID column). Not only do row selections affect col-
umn summaries – it is also possible to select rows by inter-
acting directly with a corresponding summary. When drag-
ging (clicking and holding while moving) the mouse pointer
across any of these column summary histograms, all rows
that have values in the corresponding value range will be-
come selected. This can be used to quickly test for possible
dependencies between statistics, and was the method used to
select rows in Figure 1.

Ranking Columns
Sorting by a column is an expected feature in table-based
interfaces. When the number of networks (and therefore of
rows) is large, visually scanning for values is cumbersome
and provides no guarantees of not having missed the tar-
gets. Sorting does not have these drawbacks. However, it
is unclear how best to sort on a column that contains dis-
tributions. We use the distribution average by default, but
it is possible to use different sorting criteria by adding ad-

Figure 5. Using a multiple-criteria sorting column (right). In this case,
rows have been sorted by node count (red bar) and link density (green
bar). The status bar (bottom of figure) displays the steps used to obtain
the current set of networks.

ditional columns to the table. To sort rows by the maxi-
mum degree, the user would add a computed column us-
ing the expression max(Column[’Degree’]), and sort this
recently-added column instead of the original. To sort on
the difference between the maximum and the minimum de-
gree, the expression would be max(Column[’Degree’]) -

min(Column[’Degree’]).

ManyNets also allows users to sort by several attributes at
once (columns or user-defined expressions). For instance,
we may wish to find networks that are both large and dense.
Sorting first by size and then by density will not work when
both attributes are not correlated. We address this concern
by allowing users to add “multi-criteria sorting columns”.
Users can create these columns in a similar way to custom
columns; instead of being asked for one expression to cal-
culate, they have the option to specify several expressions.
The resulting column displays the normalized “score” for
each expression in a stacked bar (see Figure 5). The use of
this additional column-type presents several advantages over
inserting a conventional Python expression column. There is
visual feedback on the degree to which each criterion has in-
fluenced the total sorting score; and scores are normalized,
so that users do not need to take into account the different
value ranges for each criterion. Additionally, it is possible
to adjust the relative weights of each criterion by using the
mouse pointer to “stretch” or “shrink” any of the score-bars.
The effects of such adjustments are interactively propagated
to all other bars.

Generating Sets of Networks
So far, we have presented the interface from the point of
view of a fixed set of networks. There are several ways to
arrive at a set of networks to analyze. The most straight-
forward is to load the networks directly: there are many sit-
uations where users need to analyze and compare numbers
of independent networks (e.g. citation networks in differ-
ent scientific domains, or internal communication in differ-
ent companies). It is also possible to decompose a single
network into a set of networks. Finally, subdividing a set of
networks into yet more networks also makes sense. For ex-
ample, time-slicing several temporal networks would allow
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the temporal patterns of each to be compared. We propose
four methods to derive interesting sets of networks from a
previous set: ego-based, clustering, attributes, and feature-
based subdivisions.

Ego networks are, due to their significance in Social Net-
work Analysis, an important case. The definition of ego net-
works (a network centered on an individual) allows two de-
grees of freedom: the radius around the central individual,
and whether or not connections between non-central neigh-
bors should be included. Both are accepted as a parameters
when splitting networks with ManyNets; the default is to
split by radius 1, including neighbor-neighbor links. This is
often referred to as “radius 1.5”. Notice that any single node
will, in general, appear in multiple networks: once as a cen-
tral node, and once again per connected edge. Likewise, all
edges will appear in exactly two networks. Sets of derived
networks in ManyNets frequently share nodes and edges.

Clustering-based subdivisions take into account the regions
of strong connectivity found in the network. There is consid-
erable literature on graph clustering and community-finding
algorithms (for instance, see [37] or [25]). We have imple-
mented network subdivision into connected components, ar-
guably the simplest of clustering algorithms, and intend to
add further algorithms in future revisions.

In attribute-based subdivision, the network is divided ac-
cording to the value of an attribute; each resulting subnet
contains only a particular value or value-range for the cho-
sen attribute. If a network has a temporal dimension, as is
frequent in social networks, it is possible to “slice” the net-
work along the time axis, adopting the terminology of [24].
Slices can be instantaneous, capturing a snapshot of the net-
work at a given moment in time, or they can span time-
windows (the value-range scenario), containing the union
of all the slices within that time-window. Additionally, it
is possible to generate the slices so that they partially over-
lap. Overlapping slices provide context for evaluating small
changes, which would not be present with thinner and non-
overlapping slices. A set of time-sliced networks sorted by
time allows temporal patterns to be located with the tool, as
illustrated in Figure 1.

Local feature-based subdivisions attempt to extract all the
instances of a network feature. For instance, it is possible
to build collections of all the connected dyads or triads in
a given graph; these are a particular case of so-called “net-
work motifs”. In the context of biological networks, motif
distribution has been proposed as an indicator of functional
significance [23]. Currently, ManyNets only supports the ex-
traction of triads and dyads. In the future, we may want to
imitate a motif-specification interface similar to that found
in [31].

RELATED WORK
Many systems have been developed to aid with social net-
work analysis, and network analysis in general. Henry and
Fekete [18] broadly classify them into those that provide
frameworks that need to be extended via programming (such

as JUNG[27], GraphViz [12] and Prefuse [17]), and those
that can be directly used by means of graphical user inter-
faces (for instance Pajek [6], UCInet [7], Tulip [3] or So-
cialAction [28]). Some systems fall in-between, such as
GUESS [2] and GGobi [36]. GUESS allows access to a
host of filtering and highlighting capabilities through built-
in Python scripting, and GGobi can interface with the R
statistical package. The above tools rely almost solely on
node-link diagrams. Matrix representations are less used,
but better for performing certain tasks on dense networks
[13]. An interface that is explicitly designed to use both
visualizations is described in [18]. When comparing gen-
eral network structure, however, both matrix and node-link
representations make poor overviews: there are too many
degrees of freedom, and even two structurally identical net-
works are likely to result in very different representations. A
canonical representation based on network connectivity that
addresses this problem is presented in [5].

Efforts to make large, dense node-link diagrams simpler by
abstracting the parts of the network furthest from a user-
defined focus can be found in [40] and [38], among others.
Exploratory analysis is then driven by a top-down method-
ology, drilling into areas in order to access details. However,
this approach makes it difficult to spot low-level patterns that
may be distributed throughout the network: they would be
hidden under layers of abstractions.

The use of several statistics to represent a network or a sub-
net is frequent throughout the literature. An example of a
“network fingerprint” can be found in [39]; in this case, fin-
gerprints refer to a small node-link diagram of an ego net-
work and bar-charts for in-degree and out-degree during a
user-defined time window. Additionally, canonical represen-
tations such as the portraits proposed in [5] can be used in
the same fashion. In [8], Brandes makes a case for the use-
fulness of combining different statistics to better understand
individual networks. Leskovec [21] and Kumar [20] use dif-
ferent types of plots to compare a handful of social networks,
and their temporal evolution, to one another. The collection
of plots for a single network can be seen as a “fingerprint”,
and has been used as inspiration in ManyNets. We have not
found any prior art where the network fingerprints are ar-
ranged in a table for easy comparison and sorting. However,
tables of subnetworks that correspond to a query, without ad-
ditional attributes, are used in [11]. Outside of the field of
network analysis, the Hierarchical Clustering Explorer [32]
presents a powerful interface for visualizing relationships
between the multiple attributes (columns) of a large set of
elements (rows); several features of HCE will be added to
future versions of ManyNets (see section on Future Work).

Tables are known for their information density, and much
research has gone into building better table presentations
or dealing with screen-size limitations; well-known exam-
ples are TableLens [30] and InfoZoom [35]. This research
is gradually finding its way into mainstream applications.
For instance, recent versions of Microsoft Excel can dis-
play scalars with horizontal bars. The column summaries
found in ManyNets are similar in concept to the rows of Info-
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Zoom’s “Overview Mode” (InfoZoom uses rows for dimen-
sions, instead of columns). Within column summaries, our
use of overlays to highlight the values of currently-selected
rows was partly inspired by [10]. The spreadsheet metaphor
is another well-known success story in Human-Computer In-
teraction. It allows users to easily extend an analysis by al-
lowing any cell to build on the contents of other cells; in this
sense, we allow columns to build on the contents of exist-
ing columns. Most spreadsheet systems limit cell contents
to single elements, generally numbers or strings. Several
research systems have gone beyond these limitations, allow-
ing display and computation with complex elements as cell
values [29, 9]. In [9], different thumbnail-sized views of a
single evolving network are displayed as node-link diagrams
in individual cells. A different approach is that of NodeXL
[1], where a commercial spreadsheet has been extended to
provide single-network visualization, directly exposing ta-
bles of nodes and edges to users as spreadsheet pages.

Figure 6. Overview of the FilmTrust network (described below), us-
ing SocialAction. Directed links are colored according to their “trust”
attributes, with red highest and blue lowest.

CASE STUDY: FILMTRUST
Trust networks are social networks augmented with trust in-
formation. Links are directed and labeled with the trust that
the source user has for the sink user. Trust can be binary
or scored on a discrete or continuous scale. These networks
have been used in the computing literature in two ways. First,
trust inference is an important problem; when two users are
not directly connected, trust inference algorithms approx-
imate a trust value between them (see [15] for a survey).
Secondly, trust has been used to improve the ways users in-
teract with information. It is a tool for personalization and
has been applied to generating movie recommendations [14,
26], to assigning posting permissions in online communities
[22], to finding safe mountain ski routes [4], to improving
the performance of P2P systems [19], and to sorting and fil-
tering blog posts [22].

For this analysis we used the trust network that underlies
the FilmTrust website [14]. FilmTrust is an online social
network where users rate and review movies and also rate
how much they trust their friends about movies. Trust is
assigned on an integer scale from 1 (low trust) to 10 (high
trust). Friendship and trust are not required to be mutual
relationships; user A can add user B as a friend without B’s
approval or reciprocation. Trust ratings are also asymmetric;
users’ trust values for one another are independent and can
be very different. The FilmTrust network has been online
since 2005 and contains 666 nodes and 1396 links with one
giant component and 69 much smaller components. Figure
6 is an overview of the network generated by loading it into
ManyNets and then displaying it with SocialAction. A few
interesting patterns are visible, but there is no way to analyze
the dense central cluster without decomposing it into smaller
networks.

Analysis
The analysis was performed by one of the authors, with a
long experience in the domain of trust networks. It was split
into two sessions of 4.5 and 3 hours, during which she kept
careful logs of her observations, documenting 10 distinct hy-
potheses in the first analysis session and 5 in the second,
which was more focused.

First, she examined the node-link diagram. The next step
was to split the network into all “1.5” ego networks (each
containing a center node, its immediate neighbors, and all
links from center to neighbors or between neighbors), and
examine the results within the tool. A look at trust distribu-
tions reveals a high rate of “maximum” values, and generally
low rates of low-to-mid values, as predicted by previous re-
search in ratings. When sorting the ego networks by size, she
observed that large ego networks are overrepresented among
the low ID numbers (see highlights in the ID column sum-
mary in Figure 7); this is to be expected, and is often referred
to as “preferential attachment”.

Initially, our expert relied mainly on sorting and filtering to
browse for insights in distributions, and to look for “inter-
esting” networks. For instance, user #345 (second-to-last
row of Figure 7) stands out, with connections to 16 neigh-
bors, all of them strangers to each other, and the minimum
trust value assigned to each of these neighbors. After sorting
by trust and filtering out the smallest ego networks, it be-
came apparent that few ego-networks of more than 5 nodes
had high trust values throughout; this prompted a hypoth-
esis: does trust tend to be symmetric between users? This
is most easily observed in cliques, which can be located by
filtering by edge density. All 1.5 ego-network cliques were
of size 2 (dyads) except for 2 triplets. Examining the trust
differences showed very similar trust values in these little
pairs. However, by starting with ego-networks, only pairs of
users disconnected from the main component were shown;
this did not represent other dyads present in the graph. For
the next analysis session, we added the possibility to split a
network by dyads and triads, and a mechanism to visualize
many network-rows simultaneously within SocialAction.
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Figure 7. The “1.5” ego networks in the FilmTrust dataset ranked by size. The 20 largest have been selected, and the pop-up window is displaying a
larger version of the summary column for the trust attribute. Notice the different distribution in trust among the selected rows as compared with the
global distribution. The summary for the ID column shows that the selected rows are unevenly distributed, due to preferential attachment.

The first step in the second analysis session was a compari-
son of trust in isolated pairs with trust in all pairs of nodes
in the network. While trust assigned by isolated pairs (from
ego networks) follows the same distribution as trust assigned
among all pairs, isolated pairs seem to assign fewer mid-
dle range values. An interpretation is that participants either
trust each other’s criteria regarding films or they do not, with
little need for middle ground. The same experiment, com-
paring 3-vertex ego networks to all triplets, yields stronger
results: isolated groups of three tend to have significantly
more trust with each other than do groups of 3 embedded
within larger components (see Figure 8). This lead to a sim-
ilar question about how trust was distributed in tightly clus-
tered groups. Indeed, there appears to be no correlation be-
tween trust and edge density, except when the group is iso-
lated. By selecting the top-20 largest ego-networks (Figure
7), the trust distribution can be seen to be significantly lower
(especially regarding high ratings) than the general distribu-
tion.

A second hypothesis was to test the “transitivity” of trust. If
A trusts B and C very highly, trust between B and C can be
expected to be equally high. In this analysis, she noted the
need for sorting by distribution “similarity”, prompting us
to develop of additional statistics for user-defined columns
(such as trust variance). Using a combination of the table
view and SocialAction visualization, she found that trust did
not follow any sort of transitivity. Trust values between B
and C in this example varied widely and independently from
the values assigned by A.

Figure 8. A triplet with asymmetric trust values. Red arrows indicate
high trust, blue arrows indicate low trust.

Outcome
Our analysis of the FilmTrust network began with two ma-
jor questions that follow from conventional wisdom. First,
since trust (in this particular domain) reflects a similarity in
tastes, do nodes trusted by the same people trust one an-
other? Secondly, and a related point, does trust increase in
strongly connected sub-groups? As we pursued answers to
these questions, we made several additional insights. We
found that conventional wisdom does not hold in this trust
network. Two nodes that are trusted by a person do not
necessarily trust one another (see figure 8 for an example).
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Secondly, tightly clustered groups do not have higher lev-
els of trust than the general population; within these groups
trust tends to follow the same distribution as it does overall.
These results have significant implications for research into
trust networks and will be directly applicable to improving
trust inference algorithms, building trust network simulators,
and designing better trust-based interfaces.

In a matter of hours our trust network expert was able to
learn to use the tool, answer dozens of questions, and make
significant discoveries in a dataset she was already familiar
with: all insights described in this paper were previously un-
known to her. While results of case studies are difficult to
generalize, we believe, in the spirit of [34], that they are a
valuable tool when evaluating complex analytic tools such
as ManyNets.

USABILITY STUDY
We carried out a pilot usability study with 7 participants to
identify opportunities for improvement. All had computer
science background but no previous network analysis ex-
perience. Our goal was to understand the use of the inter-
face by novice users, and to guide the development of train-
ing materials for future users. We asked our participants to
think aloud while performing actions, and to describe any
problems as they encountered them. Before attempting the
actual tasks, participants were asked to watch an 8-minute
video describing the problem domain and the general use of
the tool. Participants were then asked to familiarize them-
selves with the tool by performing a set of common opera-
tions (split a network, rank columns, and write a filter), and
were provided with reference documentation that they could
use at any time during the actual tasks.

Our tasks were based on those that our analyst performed
when studying the FilmTrust dataset. Using this same dataset,
participants were asked to:

1. Find a pair of nodes that have rated each other with the
largest difference in their trust values, and estimate how
many such pairs can be found in the whole network.

2. Find the densest 1.5 ego network with more than 3 nodes.

3. Find the 1.5 ego network with more than 3 nodes that has
the lowest average trust among the nodes.

4. Find a group of three nodes (not necessarily an ego net-
work) with at least one high trust rating (> 8) and at least
one low trust (< 3) rating.

5. Describe any difference in the the distribution of trust val-
ues in 1.5 ego networks with 4 nodes compared to the dis-
tribution among all 1.5 ego nets.

6. Find a group of at least three nodes where one node has
given a rating > 5 to a neighbor and that neighbor’s recip-
rocal rating is < 5.

Results
Participants required around 30 minutes of hands-on experi-
ence before becoming proficient with the tool, as evidenced

Figure 9. Closeup of the details-on-demand panel, shown after selecting
the first two rows of by dragging on their trust values.

by faster task execution and greater feeling of control when
faced with the last tasks. This prompted us to extend our
initial training, and underlines the need for providing real-
world examples of tool use in training materials. Early par-
ticipants also requested more context on the significance of
our choice of tasks for real-world analysis; a motivation sec-
tion was provided to later participants.

Participants chose different ways of accomplishing the same
tasks. For instance, some participants preferred to filter net-
works into different views, and then work with the filtered
views, while others added user-defined columns and ranked
on the new column’s values. Once they found a satisfying
approach, participants tried to extend it to any further tasks,
even though alternatives would have proven more effective.
This suggests that future training materials should expose
users to different styles of analysis, highlighting the most
effective methods for different tasks.

Several usability issues were identified. Most participants
preferred the use of a details-on-demand panel that was al-
ways visible (Figure 9) to the pop-up details-on-demand di-
alog (Figure 2) which had to be manually dismissed. As
a result, newer versions of ManyNets merge both features
into an enhanced details-on-demand panel. Participants also
requested the possibility to drag-select rows on the (larger)
column overviews found in the details-on-demand panel. Fi-
nally, the expression syntax now includes better error report-
ing, and multi-criteria columns are now more discoverable.

Three participants asked for the possibility of accessing the
individual components of networks. In particular, for task 6,
it seemed more natural to access the attributes of individual
nodes by querying for them directly, instead of having to
deal with a distribution of values as seen from a network
perspective. Addressing this concern would require us to
allow direct access to the underlying data, which could again
be represented as a table of nodes or edges, similar to those
used in NodeXL [1].
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FUTURE WORK AND CONCLUSION
One of the most natural behaviors when confronted with a
set of elements is to look for similarities and differences. It
would be useful to calculate and display intra-group sim-
ilarity, based on user-defined criteria (for instance, graph
edit distance). Graphically displaying similarities (as seen in
HCE [32]) would allow identification of clusters of related
networks, and provide interesting overviews of their internal
structure. Clusters could then be used as criteria for network
subdivision, allowing additional observations to be made.

We plan to add support for bipartite networks; this would al-
low us to compare the trust values in the FilmTrust network
with the actual ratings that the users gave to the films in the
system’s database. Exposing film ratings together with trust
values may help to understand the way trust is assigned. Ad-
ditionally, our analysis were done considering only a recent
snapshot of the network. Using timestamp-data may provide
further insights.

We have described ManyNets, an interface to visualize sets
of networks, and presented a case study where the interface
was used to make new discoveries in the FilmTrust network
dataset. This case study demonstrated the effectiveness of
our interface in a representative Social Network Analysis
task, leading to insights and suggesting new research av-
enues within trust networks. The usability study has identi-
fied several areas for improvement, and suggested additional
features. Many of the comments received during both stud-
ies are finding their way into ManyNets. We believe that
ManyNets opens new ways of analyzing large social net-
works, and other collections of complex networks.
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