
Enabling Collaborative Testing Across Shared Software
Components

Teng Long1, Ilchul Yoon2, Atif Memon1, Adam Porter1 and Alan Sussman1

1UMIACS and Department of Computer Science, University of Maryland
College Park, MD, USA

2Department of Computer Science, State University of New York
Incheon, South Korea

1{tlong,atif,aporter,als}@cs.umd.edu, 2icyoon@sunykorea.ac.kr

ABSTRACT

Components of numerous software systems are developed
and maintained by multiple stakeholders, and there is sig-
nificant overlap and synergy in the process of testing sys-
tems with shared components. We have designed and imple-
mented infrastructure that enables testers of different com-
ponents to share their test results and artifacts so that they
can collaborate in testing shared components. We also de-
velop an example collaborative testing process that leverages
our infrastructure to save effort for regression testing of sys-
tems with shared components. Our empirical study of this
process shows that collaborative testing of component-based
software systems can not only save significant effort by shar-
ing test results and artifacts, but also improve test quality of
individual components by utilizing synergistic data shared
among component testers.

Keywords

component-based software, software integration

1. INTRODUCTION
The “old school” of testing advocated “test everything on

your own.” This go-it-alone approach worked well for de-
veloper groups and organizations that implemented much of
their software from scratch in isolation. Over the years, the
practice of software development has changed; so too must
the practices of testing. Rarely does a developer group or
an organization develop software from scratch anymore. In-
stead, they rely on third-party software components, knit-
ting them together to implement their system. However,
when it comes to testing these systems, they continue to
follow the old school approach.
In this paper, we posit that the paradigm shift to compo-

nent-based software development has created numerous op-
portunities for sharing test effort. We exploit these opportu-
nities in the context of an important software maintenance

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Permissions@acm.org.

CBSE’14, June 30–July 4, 2014, Marcq-en-Baroeul, France.

Copyright 2014 ACM 978-1-4503-2577-6/14/06 ...$15.00.

http://dx.doi.org/10.1145/2602458.2602468.

activity, regression testing. Our supposition is based on
two characteristics of component-based systems that we dis-
cuss via the example shown in Figure 1 (we will discuss the
nomenclature of the figure later in Section 2).

The first characteristic is that components in component-
based software systems have relationships between them,
i.e., some components use or depend on other components.
Consider the top-level right-most shaded node in Figure 1
labeled Subversion, which relies on other “lower-level” com-
ponents, in this case APR-util, SQLite, APR, Neon, and
BerkeleyDB, also shown as nodes connected directly to sub-
version via “∗” connector boxes. Opportunity 1: Exploit
such provider-user relationships to share test effort
and improve local tests of individual components.
More specifically, the higher-level components can inform
the lower-level components about the context in which they
are being used. Similarly, the lower-level components can
inform the higher-level components relying on them of the
latest code changes and the latest test efforts and results.
This bi-directional flow of information can help to avoid
overlaps in testing and also enables testers to focus their
efforts where it can do the most good.

The second characteristic is that many components are
commonly used by multiple software systems. Consider, for
example, that the Apache Portable Runtime library (APR)
in Figure 1 is used not only by Subversion, but also by other
systems, such as Serf and Flood. Building and testing any of
these systems necessarily involves building APR, and there-
fore exercises APR as well. Opportunity 2: Distribute
test effort and share results for common components
to lower cost and improve test quality. More specif-
ically, when two or more component-based systems use at
least one common component, developers of the systems
can collaborate in the testing of the common component,
for instance, when pooling their test cases would help to
achieve some desired coverage criteria. Alternatively, in the
case where two or more low-level components implement the
same interface and functionality, and could therefore be used
interchangeably by the same high-level component [15], tests
run on one low-level component could be extracted and ap-
plied to the other low-level components.

Our preliminary results [13] showed that testing top-level
components such as Subversion induced line coverage of the
lower-level components beyond that achieved by running
the lower-level components’ own unit tests. This implies
that top-level components exercise lower-level components

Figure 1: Systems with Common Components

in ways not anticipated by the testers of the lower-level com-
ponents. We also saw substantial overlap in the line coverage
induced by each individual top-level component. Moreover,
despite the overlaps, each top-level component induced line
coverage that was not induced by the other top-level com-
ponent. Such observations and prior results suggest that
collaborative testing of multiple component-based sys-
tems may provide benefits beyond that offered by individual
component unit testing and beyond that provided by testing
any single top-level component. Eliminating redundancies
in testing across different components may also reduce costs
without affecting test quality.
While the collaborative test processes we envision ap-

pear to be promising, current test approaches cannot sup-
port them effectively. First, there lacks a formal model of
test environment of component-based systems that testers
can use to describe their test environment, nor can testers
exchange their test environment efficiently, which prevents
testers from sharing and reusing their test results at all. Sec-
ond, current tools lack methods and algorithms to guide the
sharing of test efforts between provider-user pairs, or to im-
prove local tests of components from test data generated by
others. Third, collaborative testing will require efficient and
easy-to-use mechanisms to automatically coordinate the test
processes of different systems, for sharing and reusing test
artifacts, and for comparing and merging independent test
results.
As a step towards realizing collaborative test processes,

this paper proposed a formal model for a test environment,
presents a test process and support infrastructure for col-
laborative testing, and empirically explores the two oppor-
tunities we described within this process. The results of our
study demonstrate that i) significant time spent on build and
functional testing of component-based systems can be saved
by reusing test results and leveraging pre-built environments
shared from testing of other components; ii) hidden faults
in both ends of the user-provider pair are discovered by an-
alyzing shared test results, and local unit tests of provider
components can be created from tests of user components;
and iii) the size of the regression test suite to run can be
greatly reduced when changes to a subcomponent only af-
fect parts of the test suite.
The contributions of our work include:

1. Formal modeling of the environment that a component
is to be built and tested in.

2. A web-service based data sharing repository that en-
ables effective and efficient test data and environment
sharing between testers.

3. Initial implementation of a collaborative test process
over the support infrastructure we developed.

4. Empirical evaluation of the test processes over mul-
tiple component collections to explore the benefits of
collaboration.

The rest of the paper is organized as follows. Section 2
presents background that forms the foundation for our cur-
rent work. Section 3 describes our test data sharing infras-
tructure, and Section 4 explores the processes of collabora-
tive testing using our infrastructure. We present experimen-
tal results of evaluating the benefits of such collaboration in
Section 5, address related work in Section 6 and conclude in
Section 7.

2. BACKGROUND
We now discuss our prior work on modeling component-

based systems and efficiently build testing them across a
large configuration space. We also summarize an initial em-
pirical study that demonstrated the potential utility of col-
laborative testing.

2.1 Modeling Component-based Systems
We model component-based systems using a representa-

tion [21] that contains two parts: a directed acyclic graph
called the Component Dependency Graph(CDG) and a set of
Annotations. As shown in Figure 2, each node in the CDG
represents a unique component, and inter-component depen-
dencies are specified by connecting nodes with AND(*) or
XOR(+) relationships. For example, in Figure 2 compo-
nent A“depends on” component D and either one of B or C.
Here dependency means that one component requires an-
other component at build-time, runtime, or both. Anno-
tations in this example include version identifiers for com-
ponents, and constraints between different components and
component versions, written in first-order logic.

Figure 2: An Example System Model

When different systems share components, the relation-
ships between these systems can be represented by an in-
tegrated CDG with overlapping regions. In the example

CDG in Figure 1, the top-level components (Serf, Flood,
Subversion and Managelogs) depend on different provider
components. There are overlaps between the set of required
provider components, and the APR component is required
by all top-level user components. This suggests that each
top-level component developer will use his/her test resources
to build the components contained in the shared sub-graph,
starting from the APR node to the bottom node, and then
test the behavior of those components to ensure a func-
tioning build of the top-level component. In this scenario,
those developers are likely spending redundant test effort
that could be eliminated or advantageously redirected if all
of these components were able to share their test data and
artifacts.

2.2 Automatic Build Testing Framework
One concern that component developers have is to make

sure that their components build correctly. This activity
has typically been performed by manually checking com-
ponent builds on a handful of popular user configurations.
However, this is time-consuming, error-prone and limited in
scope given the large number of combinations of platforms,
components, and versions in which components might be
built. In our prior work we designed a process and infras-
tructure called Rachet [21] to address this challenge.
Rachet tackles this problem in several ways. First, it re-

duces the number of configurations that must be tested, by
applying a sampling strategy called DD-coverage. With this
coverage criteria, all direct dependencies between compo-
nents are covered at least once by sampled configurations.
Second, Rachet generates a schedule to test sampled config-
urations, and then performs build testing in parallel using
multiple nodes in a cluster or cloud computing environment.
Each configuration is tested in a virtual machine (VM) en-
vironment hosted on a physical node. Rachet further re-
duces test effort by reusing virtual machine environments
that instantiate partially-constructed configurations. Be-
cause building components is time-consuming and because
multiple configurations often share common partial config-
urations, Rachet builds systems inside virtual machines and
then reuses the virtual machines across different physical
cluster nodes.
Even though Rachet utilizes distributed resources to con-

duct build testing, its test plans and associated test tasks
are still managed and assigned in a centralized way locally
by the tester. In other words, this infrastructure is currently
designed to be used to test a single software system at a time.
In addition, the virtual machine instances that Rachet cur-
rently employs are quite large, which will be problematic in
a collaborative test situation. In order to share build test
results and cached virtual machine artifacts among multiple
testers, an external collaborative framework is needed, a set
of APIs must be provided to Rachet to interact with that
framework, and Rachet ’s virtual machine artifacts must be
compact for efficient sharing.

2.3 Overlap and Synergy in Collaborative Func-
tional Testing

In our previous work [13], we studied overlap and synergy
achievable from sharing test data across multiple component-
based systems. More specifically, we measured the line and
branch coverage of a shared component and the spectrum of
parameter values used to invoke methods of this component,

both for executing the test suite of the shared component
and for executing multiple test suites of components that
depend on the shared component. Our analysis of the re-
sulting test data showed that test cases designed and run
by the higher-level components were individually less com-
prehensive than those of the shared component, but in some
cases exhibited new behaviors or used unexpected test in-
puts not covered by the shared component’s test cases. The
results suggest that test data collected by component de-
velopers can be complementary. However, sharing such test
data is only possible when the data to be shared is well-
defined, and when a systematic way to share that data is
available to component developers. In the remainder of this
paper, we describe ways to define the desired test data and
also discuss techniques and tools for sharing the data across
multiple component-based systems.

3. DATA SHARING INFRASTRUCTURE
To support collaborative testing we have developed an au-

tomated data sharing infrastructure that provides support
for creating test environments, for storing and sharing test
data, and for efficiently managing and sharing test environ-
ments.

3.1 Environment Model
Collaborative activities work when individual efforts can

be leveraged in a common group activity or used as artifacts.
For instance, configuration management systems allow indi-
vidual developers to modify source code independently and
then merge their changes into a common version. In order
to leverage independent testing of component-based software
systems, it is necessary to control the test environment in
which a component is built and tested so that test results
will be comparable across different test efforts. Thus, we
provide a notional definition of a test environment as fol-
lows:

Definition 1: An environment for a component to be
built and tested in includes all pre-built component in-
stances in a system, the tools to be used to build the new
component, all source code needed by the build, and all
other controllable factors known to determine the result
of the component’s build process and the correct functioning
of the component.

Controlling the environment in this way maximizes the
likelihood that two testers building and testing the same
component can share and combine their test results. That is,
any differences in results should be attributable only to dif-
ferences in how the components were tested, not in where or
by whom they were tested. To gain this control, we attempt
to standardize the test environment used by each tester.
We have identified several factors that may affect the build
and functional testing of components, and therefore must be
captured by the test environment. These factors include:

• Hardware parameters (processor type, memory sys-
tem, etc.)

• Operating system (architecture, kernel version, system
core libraries, etc.)

• Build environment (compiler, compiler options, extra
instrumentation inserted, etc.)

• Provider components (versions, their build settings and
installation options, etc.)

Figure 3: Simplified example environment descrip-
tion for a VM

Of course, this approach is not bullet-proof. We cannot,
for example, account for unknowable or random factors,
such as transient hardware faults in one tester’s computing
device, which surely affect how a component behaves.
A Virtual Machine(VM) with an installed operating sys-

tem and pre-built core components is an intuitive way to
encapsulate an environment, and sharing of pre-built envi-
ronments then becomes sharing of VM images. In order to
describe the environment encapsulated in a VM image, we
associate an XML description file with each shared VM im-
age. The description contains information about the hard-
ware parameters of the VM, operating system information,
pre-built components and their build options, and other in-
formation that may affect the test results. When accessing
the repository, test tools search for VM images instantiating
specific environments based on the description files.
The information contained in a typical description file is

shown in Figure 3. In this environment there are six compo-
nents, including the operating system and a compiler. Two
of them (SQLite and APR) are built from source code, and
their build flags are shown. The other components, except
the operating system, are pre-built binary packages provided
in the Ubuntu 12.04 software distribution. Three hardware
parameters are also included in this environment.

3.2 Data Sharing Repository via Web Services
To facilitate data sharing among testers and their tools,

we have designed and implemented a web-service based data
repository called Conch. The structure of Conch is shown
in Figure 4. The repository uses a MySQL database as the
back-end, and provides a set of data query and management
methods wrapped as web services. The web services are de-
scribed using WSDL [19] and can be accessed via standard
SOAP [17] protocols. Using the protocols, testers or other
third-parties can easily write tools and plug-ins that allow
their automated test systems to access the repository, to an-

Figure 4: The Conch Data Sharing Repository

Conch Request

command_name getCDG

001

component SQLite

command_session

Figure 5: Request for SQLite dependency data

alyze repository data, and to coordinate their test processes
with those of other testers.

Depending on the type of collaborations between auto-
mated test tools, the data types shared in the repository
can be different, thus the data schema for the repository
can be customized too. For the sharing scenarios we con-
sider in this paper, the data stored in Conch has five major
types: (1) component metadata, (2) component dependency
relationships, (3) test case metadata, (4) test results, and (5)
virtual machine artifacts (environments).

When an automated test tool submits test results to the
repository, a unique test data record is created for each re-
sult. Each test data record is associated with the environ-
ment in which the test activity was performed, and with an
outcome or test result, such as test success or failure. Other
information regarding the tests (e.g., the raw output of run-
ning such tests) can also be stored in the repository for other
test tools to interpret. Testers and their tools can retrieve
existing test results by searching through the environment
descriptions of existing test results. Users can submit or
query test data by sending and receiving messages to the
repository via Web service interfaces.

A response from the Conch server may contain links to
access data, instead of actual data. For example, a response
may contain a URL that points to a virtual machine image
file. The information shown in Figure 5 and Figure 6 illus-
trates the content of example message exchanges for a user’s
request for dependency information for the SQLite compo-
nent. The dependency data is returned back to the requester
as a string in the server’s response. The data request is ini-
tiated by a user-side automatic testing system that provides
Conch with the information in Figure 5, and the response
is in the form of an XML file that contains the information
in Figure 6.

3.3 Sharing Virtual Machines with Environ-
ment Differencing

Before building and testing a component, an environment
that contains all its provider components must be prepared.

Conch Response

command_name getCDG

001

component SQLite

command_session

CDG [+ gcc pgcc intelc] ncurses tclsh

Figure 6: Conch response with SQLite dependency data

Such an environment can be encapsulated as a virtual ma-
chine (VM) image. However, unlike test results or compo-
nent metadata, the size of a VM image can be very large1.
Moreover, the sheer number of potential pre-built environ-
ments that could be shared among testers and their tools
makes it difficult to store the VM images in the reposi-
tory, and limited network bandwidth makes it challenging
to transfer the environments over a wide-area network, if
they are cached locally at individual testers’ sites.
To overcome these challenges, we have developed a tool

called Ede (Environment Differencing Engine) that sup-
ports automated Environment Differencing. Whenever a
new environment containing a pristine operating system is
prepared, Ede creates a signature file for the whole oper-
ating system, which includes the state of all existing files.
After building and installing additional components in this
environment, Ede inspects all files and records all changes as
a delta file. A delta file records file deletions and creations,
permission changes, etc., and can be automatically applied
to another VM that has the same pristine operating system
installed. More details about our work on Ede are described
in [14].
With help from Ede, test tools that target at systems with

common components can share their pre-built environments
by storing only delta files, along with environment descrip-
tions, in the repository. Sharing pre-built environments will
save time for provisioning a new environment, compared to
building an environment from scratch. Consider the com-
ponents illustrated in the CDG of Figure 2. Testing compo-
nents D and F requires an environment where G is installed.
However, a tool that tests component D can save test effort
and focus on testing only component D if the tool can reuse
a pre-built environment in which F is already built. In this
case, the tool testing component F will first retrieve from
the Conch repository a delta file for a VM that has G in-
stalled. The tool can then restore the full VM locally by
invoking Ede, build and test F in the VM, then create yet
another delta file that contains both G and F in the corre-
sponding VM. This delta file and its description file are then
stored into the repository for later sharing.
Environment Differencing requires individual test tools to

locally store root virtual machine images, which encapsulate
environments with a pristine operating system installed on a
specific hardware platform. Whenever a tester needs a pre-
built environment that is available in the Conch repository,
the test tool can download the desired delta file and automat-
ically apply it using Ede. Storing delta files and transferring
them over a wide area network is not too expensive. The
size of a typical delta file is small (often between 10MB and
100MB), and the patch process does not take long (usually
less than one minute). This enables the repository to store

1The size of a virtual machine image that encapsulates just
a Linux operating system can easily be greater than 1 GB,
even with only a minimal installation.

many environments created during test sessions. This ap-
proach is more cost effective than our previous approach of
transferring whole virtual machine images [21]. In Section 5,
we describe the performance benefits from sharing pre-built
environments.

4. COLLABORATIVE TEST PROCESS
In this section we describe a collaborative test process for

component-based software systems implemented upon the
data sharing infrastructure we introduced in Section 3. In
this process, pre-built environments and functional test re-
sults are shared by different testers, as well as coverage infor-
mation for provider components induced from testing their
user components. Testers of different components collabo-
rate by accessing test data stored in the Conch repository
and do not need to directly communicate with each other in
order to benefit from the collaboration.

4.1 Testing Procedures for Component-based
Systems

A component-based system can be considered as a top-
level user component plus all the provider components where
it depends. Thus whenever a provider component is up-
dated, part or the whole of this component-based system
needs to be rebuilt and tested to validate whether the newer
version of the modified component still works in the system
correctly. Three steps should be followed for the system
validation activity at such changes:

1. Build and run functional tests of the new version of
the provider component in desired environments.

2. Build and run functional tests of all other provider
components dependent upon the modified component
directly or indirectly.

3. Build and run functional tests of the user component.

Consider, for instance, the Subversion system in Figure 7.
If a new APR version is available for the Subversion system,
Subversion testers will first need to build the APR version
on system configurations they support, and then run the test
suite of APR to make sure it functions correctly on the con-
figurations. Afterward, all other components that directly
and indirectly depend on the APR component need to be
rebuilt and functionally tested with the new APR version.
If everything works correctly, testers will build and test Sub-
version last to make sure it behaves correctly.

Since components are developed and maintained by sepa-
rate groups, when APR is updated, testers of not only Sub-
version but also all other components in Figure 7 that use
APR may be interested in the effects of the update. Thus
part of the building and testing work conducted by testers
of Subversion may also be repeated by testers of other com-
ponents. In addition, as seen in Figure 1, APR is used by
multiple other systems as well. It is very likely that testers of
those components repeat the identical build and test activ-
ity that may have already been conducted by other testers.
Hence the opportunity to reuse existing pre-built environ-
ments and functional test results generated by other testers
does exist if component-based systems are tested collabora-
tively. In Section 4.2, we will discuss how to use Conch to
share pre-built environments and functional test results and
save test time by avoiding redundant work.

A component typically accesses only a subset of code re-
gions in its provider components when its test cases are ex-
ecuted. In the example of testing Subversion upon a newer
version of APR, testers would run the whole test suite of Sub-
version. However by sharing code coverage data, a regres-
sion test tool for Subversion can keep the mapping between
individual test cases and the code regions in APR covered
by executing the test cases. Thus the regression test tools
for Subversion and for all other user components of APR
should be notified when the APR code is changed. Then,
the tools can execute only the selected test cases relevant
to the change by analyzing the coverage data, and this will
contribute to reducing the test workload further.
If a regression test fails for a revision of a provider com-

ponent when it used to pass with a previous revision of the
provider component, it means either the newer version in-
troduces a new fault that makes the test fail, or there are
problems in the failed test itself. In the former case, testers
may provide feedback to the developer of the provider com-
ponent, so that the fault can get fixed in later revisions. In
the latter case, the testers can fix the erroneous test. In ei-
ther case, the developers and testers benefit from receiving
regression test results promptly.

4.2 Collaborative Build and Functional Test-
ing

In a component-based software system, build testing of a
specific component can be considered as a part of its func-
tional testing, because the component can be functionally
tested only if it can be successfully built in an environment
(or configuration). In addition, all the components on which
it depends (i.e., its provider components) must also be built
and function correctly.
Assuming that an operating system deployed on a hard-

ware platform provides hardware independence, one of the
primary interests of component testers will be to test the
correct build and behavior of their components on a large
set of heterogeneous environments. Note that an environ-
ment on which a component is to be built and tested is an
instantiated subgraph of a CDG – i.e., all its provider com-
ponents are assigned a specific version already.
Given a component and an environment, a test tool can

use Algorithm 1 to provision the environment. The algo-
rithm is designed to reuse existing pre-built environments
in Conch as much as possible to rapidly provision the envi-
ronment before building and testing the component.
In this algorithm,C is the subject component to be tested,

Env is the desired environment in which C will be tested,
andRepo is the data sharing repository that stores pre-built
environments as VM artifacts. If the desired environment
Env is already instantiated (by this tester or a different
tester) and available in the repository, the test tool can sim-
ply retrieve the VM that encapsulates the environment, and
build and test C (line 1–3). Otherwise, the tool retrieves
all provider components and their versions contained in Env

(line 5), finds a pre-built environment from Repo that re-
quires the minimum extra build effort to create the desired
environment (line 6). The tool can then build the extra
components required by C (line 7–8), and finally build and
test C (line 9).
The procedure findBestMatch() can be implemented us-

ing either historical records or heuristics to find a partial
environment that a test tool can modify to meet its require-

Algorithm 1: RapidTest(C, Env, Repo)

Data:
C : subject component
Env : target environment
Repo: repository that includes pre-built environments

1 if Env exists in Repo then
2 Retrieve Env from Repo;
3 Build and test component C in Env ;

4 else
5 P ← getProviders(Env);
6 subEnv ← findBestMatch(Env, Repo);
7 P’ ← getProviders(subEnv);
8 Build and test P − P’ on subEnv ;
9 Build and test component C on subEnv ;

10 end

Figure 7: Subject Systems on Ubuntu for Collaborative

Testing

ments. In the special case that no pre-built environment is
found and subEnv is empty, the test tool will have to start
from scratch – i.e., all components contained in the environ-
ment Env (except the operating system) must be built and
tested.

5. EXPERIMENTAL RESULTS
In this section we evaluate the benefits of applying the

collaborative test process described in the previous sections
to test components with overlapping regions in their CDGs,
compared to testing the components in isolation.

In Section 5.1, we evaluate the benefits of the collaborative
test process with two sets of top-level components that share
provider components, as shown in Figure 7 and 8. While
replaying the version release history of the components con-
tained in the CDGs over a period of time, we conducted
compatibility testing using Rachet [21] at each component
version release, and measured the building and testing time
that could be saved when different sharing strategies sup-
ported by Conch are applied.

In Section 5.2 we demonstrate the value of collaborative
regression testing in the development process. We ran the
regression tests of user components at new provider com-

Figure 8: Subject Systems on Debian for Collaborative

Testing

ponent version releases, and found bugs in both provider
components and user components’ test cases. That is, devel-
opers can discover problems caused by the changes in their
provider components quickly after the problems are intro-
duced, as well as can find previously undiscovered problems
in users’ tests. We also have developed a tool that uses re-
gression test data stored in Conch, selects test cases that
have to be rerun when a provider component changes, and
then triggers the regression tests with the selected test cases.
The tool uses Jenkins [11] as the automatic regression test
client. We evaluate the collaborative test process with the
version release history of the components in Figure 7 over
one year.

5.1 Collaborative Build and Functional Test-
ing

In order to evaluate the benefits of collaborative testing,
we first recorded the wall-clock time required for building
and testing the components in the CDGs shown in Fig-
ure 7 and 8 on an environment (i.e., a VM image) sand-
boxed with VirtualBox. For each component, the recorded
time includes only the time required for building and testing
the component itself, assuming that all its provider compo-
nents are already built in the environment. Only default
test suites supplied with the component source code are ex-
ecuted and the running times are measured. In Figure 7,
the top-level components are SVNKit and Serf. SVNKit is
an Open Source Pure Java Subversion Library, and Serf is
a high performance C-based HTTP client library. In Fig-
ure 8, the top-level components are Anjuta, Ns3, Bluefish,
Xchat and XBMC, all of which are user applications in the
Debian Linux system. The CDGs also show the compo-
nents on which the top-level components depend (i.e. their
provider components). Brief descriptions of the components
are given in Table 1.

Table 1: Subject Components
Component Description
SVNKit Open Source pure Java Subversion library
Subversion version control system
Neon HTTP and WebDAV client library
Zlib compression library
BerkeleyDB library for embedded database
APR supporting library for Apache projects
APR-util support library for APR

SQLite SQL database engine
Openssl open source toolkit for SSL/TLS
Gcc GNU C compiler
Ubuntu Ubuntu Operating System
Anjuta GNOME Integrated Development Environment
Ns3 discrete-event network simulator
Bluefish editor targeted towards programmers
XChat multi-platform IRC chat program
XBMC open Source Home Theater Software
Python object-oriented programming language
LibXML2 XML C parser and toolkit of Gnome
GTK+ toolkit for creating GUI on multiple platforms
Bzip2 high-quality, open-source data compressor
Debian operating system

For each component, we replayed all its version releases
over one year (between 8/3/2012 and 8/3/2013). At each
version release, we test the compatibility of the version with
existing versions of its provider components, and also trig-
ger compatibility testing of all its user components. For
the existing provider component versions, we used the ver-
sions released between 8/3/2011 and 8/3/2012. The direct-
dependency coverage (DD coverage [21]) criterion is used
to compute configurations newly introduced because of the
version releases. The recorded times required for building
and testing components are then used to simulate the total
test time using the following three sharing strategies. We
used the time cost of successfully building each component
and executing all its tests for the simulation, so that the
simulated time cost reflects the worst scenario.

Strategy 1: No sharing. This is the baseline strat-
egy, which is the most time-consuming, because testing any
component in a CDG requires both building and function-
ally testing of all its provider components (i.e., all the com-
ponents in the CDG sub-graph rooted at the component
being tested), before building and testing the target compo-
nent. In this strategy, there is no test data sharing between
testers at all. Strategy 2: Sharing test results only.
Test tools share functional test results for each component
tested. Provider components still must be built, but their
functional tests will not be run if the results are available
in the Conch repository. That is, the tools execute func-
tional tests of the provider components only when there has
been no previous test session that contains the test result.
Strategy 3: Sharing test results and pre-built envi-
ronments. Test tools share not only functional test results,
but also pre-built environments. In this strategy, a test tool
can select a pre-built environment in the format of a Virtual
Machine delta file from the repository, and only build and
test the components missing from the retrieved environment.

For Strategies 2 and 3, when a new component version is
released, we expect that different developer groups will start
testing their components with the new version at different
times. Then the group that starts its testing later will have
more opportunities to reuse test results and artifacts pro-

Table 2: Configuration Preparation Cost(hours) and

Benefits(%)
Comp. Strategy 1 Strategy 2 Strategy 3 Save-2 Save-3
SVNKit 2194.4 1863.9 1050.0 15.1 52.2
Serf 12.1 9.6 5.0 20.7 58.7
total 2206.5 1873.5 1055.0 15.1 52.2

Anjuta 2311.1 2036.1 327.8 11.9 85.8
Ns3 2330.6 2055.6 438.9 11.8 81.2

Bluefish 2500.0 2219.4 591.7 11.2 76.3
XChat 2972.2 2700.0 1072.2 9.2 63.9
XBMC 2344.4 2080.6 411.1 11.3 82.5
total 12458.3 11091.7 2841.7 11.0 77.2

duced during the test sessions performed by other groups.
For a fair evaluation, we have the repository notify the dif-
ferent developer groups in random orders for Strategies 2
and 3, and we repeated each simulation 100 times and com-
puted the average times. We assume a bandwidth of 4MB/s
for transferring VM delta files over the Internet.
To better understand the amount of work that can be

saved by sharing test information via the Conch repository,
we added up the times required for building and testing
newly introduced configurations at each version release of
the provider components of the top-level components. We
call the sum the total configuration preparation cost.
Table 2 shows the total configuration preparation cost for
each top-level component shown in Figures 7 and 8.
In Table 2, the first column shows the names of the top-

level components in both CDGs, the next three columns
present the average configuration preparation cost (in hours)
for each component in our simulation for the different strate-
gies, and the last two columns show the configuration prepa-
ration cost saving in percent for Strategy 2 and 3, respec-
tively, compared to Strategy 1. The table shows that sharing
functional test results alone reduces the preparation cost by
10% to 15% for most components. We see huge time savings
when testers start sharing test results and pre-built test en-
vironments. The total cost was reduced by 52.2% for testing
SVNKit and Serf, and by 77.2% for testing the top-level De-
bian components. These results clearly show that testers can
significantly reduce their testing workload by sharing their
test results and pre-built environments with other testers
though Conch.

5.2 Continuous Collaborative Regression Test
In this section we replay the continuous development of

three provider components, APR, Openssl and SQLite, con-
tained in the combined CDG in Figure 7 using their ver-
sion release history between 8/3/2012 and 8/3/2013. Our
tool monitors the code repositories of the three components.
Whenever there are source code changes in any of the com-
ponents, the tool (1) identifies all user components whose
regression tests could be affected, (2) automatically builds
the affected user component(s) as well as all other required
components relying on the new provider components, and
(3) reruns the selected regression tests whose result could
be affected by the code changes. Pre-built environments are
reused to reduce the component build times.
We considered two user components, Subversion and Serf,

from Figure 7. The components rely on the three provider
components described above and also have regression test
suites with reasonable sizes. The regression tests were per-
formed for fixed versions of the user components (Subver-

sion 1.8.1 and Serf 1.3.0) on the days when there were code
changes for at least one of the provider components.

During the one year time period, there were 80 APR revi-
sions, 148 Openssl revisions and 221 SQLite revisions. From
all those revisions, we had to build and test Subversion 241
times and Serf 148 times. We now demonstrate four ob-
served benefits from running regression tests of user compo-
nents when a provider component changes.

Detecting faults in provider components: Regression
tests for user components can reveal faults in provider com-
ponents, and the fault-revealing test cases of the user com-
ponents can be carved as new test cases of provider com-
ponents. Techniques have been developed that potentially
enable automatic carving of such test cases [8].

One example we found was that the test case wc-queries-
test of the Subversion failed when it was built with SQLite
revision d7a25cc797. The error occurred because a series of
valid queries to SQLite returned errors.

We manually carved out the queries and created a unit
test for SQLite and confirmed that the test case exposes
the identical fault. Even though the fault was fixed in later
releases, this example suggests that our automatic regression
test process can be used to detect faults relevant to provider
components quickly, and also to produce new test cases that
can detect the faults, thereby contributing to enriching the
test suites of the provider components. Moreover, developers
of other user components can also benefit from finding such
faults because they are informed of the faults and can avoid
spending time to find out the causes.

Discovering problems in accessing provider compo-
nents: When changes in a provider component cause prob-
lems in building and testing user components, the collabo-
rative test process can be used to notify the provider com-
ponent developers of the problems, so that they can use the
information to pinpoint the origins of the problems.

In our experiment we found that multiple test cases of
Serf and Subversion failed with the error message: Couldn’t
perform atomic initialization, when they were built and
tested with some revisions of SQLite – for example, revi-
sion 62225b4a4c). A simple Web search result revealed that
many SQLite users experienced the same problem. The
problem occurred when the SQLite library was linked in an
obsolete way that was no longer supported. If SQLite devel-
opers had been informed of the problem quickly, they could
have fixed the problem, or at least could have updated user
documentation so that users could be made aware of the
problem.

Discovering faults in user components or in their
test suites: When user components are built with a new
provider component version, running regression tests for the
user components can often reveal faults in their own test
cases.

For example, Subversion’s test cases written in Python
encountered unhandled exception errors, when Subversion
was built and tested with specific SQLite revisions (e.g. re-
vision 6f21d9cbf5). This example suggests that the quality
of user components and their test suites can be improved
if and when our collaborative test process is adopted by
provider and user component developers.

Reducing the number of regression tests to run: We
also observed that maintaining a mapping between the in-
dividual test cases of user components and code coverage

Table 3: Regression Test Selection Results

Subversion Serf
APR SQLite APR Openssl

Rerun-Required Updates 29% 72% 9% 55%
Reduced Test Suite Size 80% 59% 98% 30%

information for provider components can greatly reduce the
number of test cases that must be rerun when a provider
component changes. When the changed part of the provider
component is not previously covered by a regression test, we
don’t necessarily need to rerun that test. With help from
Conch, it is feasible for user component testers to share their
unit-test coverage data for provider components, and such
a mapping can be easily obtained by analyzing the coverage
data.
Our experimental result is presented in Table 3. The

“Rerun-Required Updates” row in the table shows the per-
centage of provider component revisions that caused rerun-
ning the regression tests of its user components, compared
to the number of revisions that contain source code changes.
As we can see, when the source code of APR changes, the re-
gression tests are triggered in only 29% of such changes. The
“Reduced Test Suite Size” row shows the average percentage
of selected regression tests that must be rerun, compared to
the total number of regression tests. In the 29% cases when
changes in APR triggered regression tests of Subversion, we
don’t need to return the whole regression test suite of Sub-
version either. On average, only 80% of the regression tests
need to be rerun. From Table 3, this trend also exists for
other evaluated components. It is evident that testers can
save considerable effort on regression testing if they share
the coverage information across components and properly
use them for regression test selection.

6. RELATED WORK
Our work focuses on component-based software systems

that share components. The components are developed by
different groups; i.e., there is no central control over the
component development. We maintain the information in a
shared repository but in a distributed manner.
Researchers have emphasized the importance of tool sup-

port for collaboration between distributed teams [3, 4]. Bird
et al. [4] reported that globally distributed software devel-
opment within a single company may not perform worse (in
terms of failures) than centralized development. In [3], Begel
et al. developed tools based on news-feeds to support devel-
oper teams collaborating with each other, because the teams
should be aware of what other teams are doing for managing
risk in their development.
Software researchers have also begun to examine the no-

tion of self-organizing software development teams. For ex-
ample, as social media gain increasing popularity, researchers
have started to discuss the impact that social media has on
software development, especially on enabling new ways for
software teams to form and work together [2].
Distributed continuous quality assurance (QA) environ-

ments such as Dart [16] and CruiseControl [6] are systems
for conducting continuous integration testing, which involves
executing build and test processes whenever check-ins to a
repository occur. Users install agents that automatically
check out software from a repository, build the software, ex-

ecute functional tests, and submit the results to the server.
However, the underlying QA process is hard-wired in Dart
and CruiseControl and therefore other QA processes or im-
plementations of the build and test process are not easily
supported.

Web services are another example of component-based
systems where each service may be developed by different
developer groups. Bai [1] developed a tool to test Web ser-
vices by coordinating distributed test agents for conduct-
ing decomposed testing tasks, and Dallmeier [7] developed a
tool to test the compatibility of Web applications on multi-
ple browsers by identifying all functionally different states of
the services at runtime. However, these approaches are de-
signed for a single developer group. Our approach is focused
on reducing the overall test cost and on deriving synergy
from the collaborative testing across developer groups.

An important aspect of our approach is the shared repos-
itory of software and test artifacts. As software gets larger
and more complex, many researchers have focused on an-
alyzing and leveraging software repositories. For example,
Zeller [18] has worked on analyzing repositories to better
understand the reason systems fail. Xie has also studied
the wide variety of information largely unused even though
the information is stored in software repositories [10]. Re-
searchers have also developed new data mining techniques
that make use of software repositories to extract error pat-
terns [12] or to understand correct API usage from code
examples [20]. Such techniques could be used to analyze
test results that are accumulated in the Conch repository.

Our work is broadly related to prioritization and selection
of regression test cases. Elbaum et al. introduced differ-
ent techniques for test case prioritization [9], with some of
them based on code coverage information, which is similar to
our regression test case selection technique. But those tech-
niques are not for component-based software systems devel-
oped independently by multiple developer groups. Berries et
al. have developed a tool called ProxiScientia [5] that helps
to visualize the dependencies among collaborating software
development teams, but that system does not provide func-
tionality to facilitate collaboration.

7. CONCLUSIONS
Our work is based on the hypothesis that when two or

more component-based systems use one or more common
components, testers of such systems can lower test cost and
improve test effectiveness by sharing test artifacts.

As a step toward making collaboration between testers of
such systems easier, we have developed infrastructure and
support tools, which include a model to specify test envi-
ronments, a sharing repository for exchanging test data, an
initial implementation of a collaborative test process, and an
empirical evaluation of the process. The model for test envi-
ronments can accurately capture the hardware, system and
inter-component relationships for build and test processes,
so that test data shared between testers are compatible. The
data sharing repository enables test tools to easily store or
retrieve test data by querying the repository. We have shown
that the example test process not only saves significant time
for build and functional testing, but also improves regression
test effectiveness.

The ultimate goal of our research is to enable collaborative
testing across different testers and their test tools to avoid
redundant work, as well as to improve test quality for all

component-based software developers. In order to accom-
plish the goal, we will continue to develop collaborative test
processes that utilize the repository for testing component-
based systems, and extend the repository to accommodate
those processes. We will also design algorithms and meth-
ods to conduct deeper analyses of test data stored in the
repository. Modifying existing frameworks such as Rachet
to use the infrastructure is also a short-term goal for better
coordination of test tasks across multiple components.

Acknowledgments

This work was partially supported by the US National Sci-
ence Foundation (ATM-0120950, CCF-0811284, CNS-1205
501, CNS-0855055), the National Research Foundation of
Korea (NRF-2013010695), and the MSIP of Korea (NIPA-
2013-H0203-13-1001).

8. REFERENCES

[1] X. Bai, G. Dai, D. Xu, and W.-T. Tsai. A multi-agent
based framework for collaborative testing on web
services. In Proceedings of the The 4th IEEE
Workshop on Software Technologies for Future
Embedded and Ubiquitous Systems, and the 2nd
International Workshop on Collaborative Computing,
Integration, and Assurance, pages 205–210, 2006.

[2] A. Begel, R. DeLine, and T. Zimmermann. Social
media for software engineering. In Proceedings of the
FSE/SDP Workshop on the Future of Software
Engineering Research, November 2010.

[3] A. Begel and T. Zimmermann. Keeping up with your
friends: Function foo, library bar.dll, and work item
24. In Proc. of the First Workshop on Web2.0 for
Software Engineering, May 2010.

[4] C. Bird, N. Nagappan, P. Devanbu, H. Gall, and
B. Murphy. Does distributed development affect
software quality? an empirical case study of windows
vista. In Proceedings of the 31st International
Conference on Software Engineering (ICSE), pages
518–528, 2009.

[5] A. Borici, K. Blincoe, A. Schroter, G. Valetto, and
D. Damian. Proxiscientia: Toward real-time
visualization of task and developer dependencies in
collaborating software development teams. In
Proceedings of the 5th International Workshop on
Cooperative and Human Aspects of Software
Engineering, pages 5–11, June 2012.

[6] Cruisecontrol. cruisecontrol.sourceforge.net/, 2010.

[7] V. Dallmeier, M. Burger, T. Orth, and A. Zeller.
Webmate: A tool for testing web 2.0 applications. In
Proceedings of the Workshop on JavaScript Tools,
pages 11–15, 2012.

[8] S. Elbaum, H. N. Chin, M. Dwyer, and M. Jorde.
Carving and replaying differential unit test cases from
system test cases. IEEE Transactions on Software
Engineering, 35(1):29–45, Jan 2009.

[9] S. Elbaum, A. G. Malishevsky, and G. Rothermel.
Test case prioritization: A family of empirical studies.
IEEE Transactions on Software Engineering,
28(2):159–182, Feb. 2002.

[10] A. E. Hassan and T. Xie. Software intelligence: the
future of mining software engineering data. In

Proceedings of the FSE/SDP workshop on Future of
software engineering research, pages 161–166, 2010.

[11] Jenkins: an extendable open source continuous
integration server. http://jenkins-ci.org/, 2013.

[12] B. Livshits and T. Zimmermann. Mining Software
Specifications: Methodologies and Applications,
chapter DynaMine: Finding Usage Patterns and Their
Violations by Mining Software Repositories. CRC
Press, May 2011.

[13] T. Long, I. Yoon, A. Porter, A. Sussman, and
A. Memon. Overlap and synergy in testing software
components across loosely-coupled communities. In
Proceedings of the 23rd IEEE International
Symposium on Software Reliability Engineering
(ISSRE), pages 171–180, November 2012.

[14] T. Long, I. Yoon, A. Sussman, A. Porter, and
A. Memon. Scalable system environment caching and
sharing for distributed virtual machines. In
Proceedings of the IPDPS Workshop on
High-Performance Grid and Cloud Computing, 2014.

[15] L. Mariani, S. Papagiannakis, and M. Pezze.
Compatibility and regression testing of
COTS-component-based software. In Proceedings of
the 29th International Conference on Software
Engineering, pages 85–95, 2007.

[16] A. M. Memon, I. Banerjee, N. Hashmi, and
A. Nagarajan. DART: A framework for regression
testing nightly/daily builds of GUI applications. In
Proceedings of the 19th International Conference on
Software Maintenance, pages 410–419, Sep. 2003.

[17] SOAP Ver. 1.2. www.w3.org/TR/soap12-part1/, 2007.

[18] W. Tichy. An interview with Prof. Andreas Zeller:
Mining your way to software reliability. Ubiquity, 2010.

[19] Web Services Description Language (WSDL) 1.1.
www.w3.org/TR/wsdl, 2001.

[20] T. Xie and J. Pei. MAPO: Mining API usages from
open source repositories. In Proceedings of the 3rd
International Workshop on Mining Software
Repositories, pages 54–57, May 2006.

[21] I.-C. Yoon, A. Sussman, A. Memon, and A. Porter.
Effective and scalable software compatibility testing.
In Proceedings of the ACM/SIGSOFT International
Symposium on Software Testing and Analysis, pages
63–74, 2008.

