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CMSC 330:  Organization of 
Programming Languages

Final Exam Review

Review Choices

• OCaml
– closures, currying, etc

• Threads
– data races, synchronization, classic probs

• Java Generics
• Topics

– garbage collection, exceptions, parameters
• Semantics and Lambda Calculus
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Environments and Closures

• An environment is a mapping from variable 
names to values
– Just like a stack frame

• A closure is a pair (f, e) consisting of function 
code f and an environment e

• When you invoke a closure, f is evaluated 
using e to look up variable bindings

Example

let add x = (fun y -> x + y)

(add 3) 4 ���� <closure> 4 ���� 3 + 4 ���� 7
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Curried Functions in OCaml

• OCaml has a really simple syntax for currying

– This is identical to all of the following:

• Thus:
– add has type int -> (int -> int)

– add 3 has type int -> int

• The return of add x evaluated with x = 3

• add 3 is a function that adds 3 to its argument
– (add 3) 4 = 7

• This works for any number of arguments

let add x y = x + y

let add = (fun x -> (fun y -> x + y))
let add = (fun x y -> x + y)
let add x = (fun y -> x+y)

Curried Functions in OCaml
(cont’d)

• Because currying is so common, OCaml
uses the following conventions:
– -> associates to the right

• Thus int -> int -> int is the same as
• int -> (int -> int)

– function application associates to the left
• Thus add 3 4 is the same as
• (add 3) 4
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Another Example of Currying

• A curried add function with three arguments:

– The same as

• Then...
– add_th has type int -> (int -> (int -> int))

– add_th 4 has type int -> (int -> int)

– add_th 4 5 has type int -> int

– add_th 4 5 6 is 15

let add_th x y z = x + y + z

let add_th x = (fun y -> (fun z -> x+y+z))

Data Types

• Rect and Circle are type constructors- here a 
shape is either a Rect or a Circle

• Use pattern matching to deconstruct values, and 
do different things depending on constructor

type shape =
Rect of float * float (* width * length *)

| Circle of float (* radius *)

let area s =
match s with

Rect (w, l) -> w *. l
| Circle r -> r *. r *. 3.14

area (Rect (3.0, 4.0))
area (Circle 3.0)



5

Data Types, con't.

type shape =

Rect of float * float (* width * length *)

| Circle of float

let l = [Rect (3.0, 4.0) ; Circle 3.0; Rect (10.0,
22.5)]

• What's the type of l?

• What's the type of l's first element?

l : shape list����

shape

Polymorphic Data Types

• This option type can work with any kind of 
data
– In fact, this option type is built-in to OCaml

type 'a option =
None

| Some of 'a

let add_with_default a = function
None -> a + 42

| Some n -> a + n

add_with_default 3 None (* 45 *)
add_with_default 3 (Some 4) (* 7 *)
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Recursive Data Types

• Do you get the feeling we can build up lists this 
way?

– Note:  Don’t have nice [1; 2; 3] syntax for this kind of 
list

type 'a list =
Nil

| Cons of 'a * 'a list

let rec length l = function
Nil -> 0

| Cons (_, t) -> 1 + (length t)

length (Cons (10, Cons (20, Cons (30, Nil))))

Creating a Module
module Shapes =

struct
type shape =

Rect of float * float (* width * length *)
| Circle of float (* radius *)

let area = function
Rect (w, l) -> w *. l

| Circle r -> r *. r *. 3.14

let unit_circle = Circle 1.0
end;;

unit_circle;; (* not defined *)
Shapes.unit_circle;;
Shapes.area (Shapes.Rect (3.0, 4.0));;
open Shapes;; (* import all names into current scope *)
unit_circle;; (* now defined *)
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Module Signatures

module type FOO =
sig

val add : int -> int -> int
end;;

module Foo : FOO =
struct

let add x y = x + y
let mult x y = x * y

end;;

Foo.add 3 4;; (* OK *)
Foo.mult 3 4;; (* not accessible *)

Entry in signature Supply function types

Give type to module

Abstract Types in Signatures

• Now definition of shape is hidden

module type SHAPES =
sig

type shape
val area : shape -> float
val unit_circle : shape
val make_circle : float -> shape
val make_rect : float -> float -> shape

end;;

module Shapes : SHAPES =
struct

...
let make_circle r = Circle r
let make_rect x y = Rect (x, y)

end
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Imperative OCaml

• There are three basic operations on 
memory:
– ref : 'a -> 'a ref

• Allocate an updatable reference
– ! : 'a ref -> 'a

• Read the value stored in reference
– := : 'a ref -> 'a -> unit

• Write to a reference
let x = ref 3 (* x : int ref *)
let y = !x
x := 4

Semicolon Revisited; Side 
Effects

• Now that we can update memory, we have a 
real use for ; and () : unit
– e1; e2 means evaluate e1, throw away the result, and 

then evaluate e2, and return the value of e2
– () means “no interesting result here”
– It’s only interesting to throw away values or use () if 

computation does something besides return a result

• A side effect is a visible state change
– Modifying memory
– Printing to output
– Writing to disk
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Exceptions
exception My_exception of int

let f n =
if n > 0 then

raise (My_exception n)
else

raise (Failure "foo")

let bar n =
try

f n
with My_exception n ->

Printf.printf "Caught %d\n" n
| Failure s ->

Printf.printf "Caught %s\n" s

Threads
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Thread Creation in Java

• To explicitly create a thread:
– Instantiate a Thread object

• An object of class Thread or a subclass of 
Thread

– Invoke the object’s start() method
• This will start executing the Thread’s run()

method concurrently with the current thread 
– Thread terminates when its run() method 

returns

Data Race Example

public class Example extends Thread {
private static int cnt = 0; // shared state
public void run() {

int y = cnt;
cnt = y + 1;

}
public static void main(String args[]) {

Thread t1 = new Example();
Thread t2 = new Example();
t1.start();
t2.start();

}
}
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Locks (Java 1.5)

• Only one thread can hold a lock at once
– Other threads that try to acquire it block (or become 

suspended) until the lock becomes available
• Reentrant lock can be reacquired by same thread

– As many times as desired
– No other thread may acquire a lock until has been 

released same number of times it has been acquired

interface Lock {
void lock();
void unlock();
... /* Some more stuff, also */

}
class ReentrantLock implements Lock { ... }

Avoiding Interference: 
Synchronization

public class Example extends Thread {
private static int cnt = 0;
static Lock lock = new ReentrantLock();
public void run() {

lock.lock();
int y = cnt;
cnt = y + 1;
lock.unlock();
}

}
…

}

Lock, for protecting 
the shared state

Acquires the lock;
Only succeeds if not
held by another
thread

Releases the lock
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Deadlock
• Deadlock occurs when no thread can 

run because all threads are waiting for a 
lock
– No thread running, so no thread can ever 

release a lock to enable another thread to 
run

Thread 1

l.lock();
m.lock();
...
m.unlock();
l.unlock();

Lock l = new ReentrantLock();
Lock m = new ReentrantLock();

Thread 2

m.lock();
l.lock();
...
l.unlock();
m.unlock();

This code can
deadlock…
-- when will it work?
-- when will it 

deadlock?

Synchronized

• This pattern is really common
– Acquire lock, do something, release lock under 

any circumstances after we’re done
• Even if exception was raised etc.

• Java has a language construct for this
– synchronized (obj) { body }

• Every Java object has an implicit associated lock
– Obtains the lock associated with obj
– Executes body
– Release lock when scope is exited

• Even in cases of exception or method return
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Example

– Lock associated with o acquired before body 
executed

• Released even if exception thrown

static Object o = new Object();

void f() throws Exception {
synchronized (o) {

FileInputStream f =
new FileInputStream("file.txt");

// Do something with f
f.close();

}
}

Key Ideas
• Multiple threads can run simultaneously

– Either truly in parallel on a multiprocessor
– Or can be scheduled on a single processor

• A running thread can be pre-empted at any time

• Threads can share data
– In Java, only fields can be shared
– Need to prevent interference

• Rule of thumb 1:  You must hold a lock when accessing 
shared data

• Rule of thumb 2:  You must not release a lock until 
shared data is in a valid state

– Overuse use of synchronization can create 
deadlock

• Rule of thumb:  No deadlock if only one lock
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The Dining Philosophers 
Problem

• Philosophers 
either eat or think

• They must have 
two forks to eat

• Can only use forks 
on either side of 
their plate

• Avoid deadlock 
and starvation!

Producer/Consumer Problem

• Suppose we are communicating with a 
shared variable
– E.g., some kind of a fixed size buffer holding 

messages

• One thread produces input to the buffer
• One thread consumes data from the buffer

• Rules: 
– producer can’t add input to the buffer if it’s full
– consumer can’t take input from the buffer if it’s 

empty
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Conditions (Java 1.5)

• Condition created from a Lock
• await called with lock held

– Releases the lock (on the fork or buffer)
• But not any other locks held by this thread

– Adds this thread to wait set for lock
– Blocks the thread

when philosopher is waiting for a fork or
consumer is waiting for non empty buffer

interface Lock { Condition newCondition(); ... }
interface Condition {

void await();
void signalAll(); ... }

Condition

wait set

...

Conditions (Java 1.5)

• Condition created from a Lock

when philosopher is done eating 
or when buffer is non empty:

• signallAll called with lock held
– Resumes all threads on lock’s wait set
– Those threads must reacquire lock before continuing

• (This is part of the function; you don’t need to do it explicitly)

interface Lock { Condition newCondition(); ... }
interface Condition {

void await();
void signalAll(); ... }

Condition

wait set

...
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Lock lock = new ReentrantLock();
Condition ready = lock.newCondition();
boolean bufferReady = false;
Object buffer;

void produce(Object o) {
lock.lock();
while (bufferReady){

ready.await(); }
buffer = o;
bufferReady = true;
ready.signalAll();
lock.unlock();

}

Object consume() {
lock.lock();
while (!bufferReady){

ready.await(); }
Object o = buffer;
bufferReady = false;
ready.signalAll();
lock.unlock();

}

Producer/Consumer Example

More on the Condition 
Interface

• away(t, u) waits for time t and then gives up
– Result indicates whether woken by signal or 

timeout
• signal() wakes up only one waiting thread

– Tricky to use correctly
• Have all waiters be equal, handle exceptions correctly

– Highly recommended to just use signalAll()

interface Condition {
void await();
boolean await (long time, TimeUnit unit);
void signal();
void signalAll();

... }
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Wait and NotifyAll (Java 1.4)

• Recall that in Java 1.4, use synchronize on 
object to get associated lock

• Objects also have an associated wait set

object o
o’s lock

o’s wait set

Java Generics
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Subtyping

• Both inheritance and interfaces allow 
one class to be used where another is 
specified
– This is really the same idea:  subtyping

• We say that A is a subtype of B if
– A extends B or a subtype of B, or
– A implements B or a subtype of B

class Stack<ElementType> {
class Entry {

ElementType elt; Entry next;
Entry(ElementType i, Entry n) { elt = i; next = n; }

}
Entry theStack;
void push(ElementType i) {

theStack = new Entry(i, theStack);
}
ElementType pop() throws EmptyStackException {
if (theStack == null)

throw new EmptyStackException();
else {

ElementType i = theStack.elt;
theStack = theStack.next;
return i;

}}}

Parametric Polymorphism for 
Stack
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Stack<Element> Client

Stack<Integer> is = new Stack<Integer>();
Integer i;
is.push(new Integer(3));
is.push(new Integer(4));
i = is.pop();

• No downcasts
• Type-checked at compile time
• No need to duplicate Stack code for every usage

– line i = is.pop(); can stay the same even if the type of is isn’t an 
integer in every path through the program

Subtyping and Arrays

• Java has one funny subtyping feature:
– If S is a subtype of T, then
– S[] is a subtype of T[]

• Lets us write methods that take arbitrary 
arrays

public static void reverseArray(Object [] A) {
for(int i=0, j=A.length-1; i<j; i++,j--) {

Object tmp = A[i];
A[i] = A[j];
A[j] = tmp;

}
}
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Problem with Subtyping
Arrays

• Program compiles without warning
• Java must generate run-time check at (1) to prevent 

(2)
– Type written to array must be subtype of array contents

public class A { ... }
public class B extends A { void newMethod(); }
...

void foo(void) {
B[] bs = new B[3];
A[] as;

as = bs; // Since B[] subtype of A[]
as[0] = new A(); // (1)
bs[0].newMethod(); // (2) Fails since not type B

}

Subtyping for Generics

• Is Stack<Integer> a subtype of Stack<Object>?
– We could have the same problem as with arrays
– Thus Java forbids this subtyping

• Now consider the following method:

– Not allowed to call count(x) where x has type 
Stack<Integer>

int count(Collection<Object> c) {

int j = 0;

for (Iterator<Object> i = c.iterator(); i.hasNext(); ) {

Object e = i.next(); j++;

}

return j;

}
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Bounded Wildcards

• We want drawAll to take a Collection of 
anything that is a subtype of shape
– this includes Shape itself

– This is a bounded wildcard
– We can pass Collection<Circle>
– We can safely treat e as a Shape

void drawAll(Collection<? extends Shape> c) {

for (Shape s : c)

s.draw();

}

Upper Bounded Wild Cards

• ? extends Shape actually gives an 
upper bound on the type accepted

• Shape is the upper bound of the 
wildcard Shape

Circle

Rectangle

Square
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Bounded Wildcards (cont’d)

• Should the following be allowed?

– No, because c might be a Collection of 
something that is not compatible with 
Circle

– This code is forbidden at compile time

void foo(Collection<? extends Shape> c) {

c.add(new Circle());

}

Lower Bounded Wildcards

• Dual of the upper bounded wildcards
• ? super Rectangle denotes a type that is a supertype

of Rectangle
– T is included

• ? super Rectangle gives a lower bound on the type 
accepted

Shape

Circle

Rectangle

Square
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Garbage Collection

Memory attributes
• Memory to store data in programming languages has 

several attributes:
– Persistence (or lifetime) – How long the memory 

exists
– Allocation – When the memory is available for use
– Recovery – When the system recovers the memory 

for reuse
• Most programming languages are concerned with some 

subset of the following 4 memory classes:
– Fixed (or static) memory
– Automatic memory
– Programmer allocated memory
– Persistent memory
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Memory classes

• Static memory – Usually a fixed address in 
memory
– Persistence – Lifetime of execution of program
– Allocation – By compiler for entire execution
– Recovery – By system when program terminates

• Automatic memory – Usually on a stack
– Persistence – Lifetime of method using that data
– Allocation – When method is invoked
– Recovery – When method terminates

Memory classes
• Allocated memory – Usually memory on a heap

– Persistence – As long as memory is needed
– Allocation – Explicitly by programmer
– Recovery – Either by programmer or automatically (when 

possible and depends upon language)
• Persistent memory – Usually the file system

– Persistence – Multiple execution of a program (e.g., files or 
databases)

– Allocation – By program or user, often outside of program 
execution

– Recovery – When data no longer needed
– This form of memory usually outside of programming 

language course and part of database area (e.g., CMSC 424)
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Garbage collection goal
• Process to reclaim memory. (Also solve 

Fragmentation problem.)

• Algorithm: You can do garbage collection and memory 
compaction if you know where every pointer is in a 
program. If you move the allocated storage, simply 
change the pointer to it.

• This is true in LISP, OCAML, Java, Prolog 
• Not true in C, C++, Pascal, Ada

Reference Counting

• Old technique (1960)
• Each object has count of number of pointers 

to it from other objects and from the stack
– When count reaches 0, object can be deallocated

• Counts tracked by either compiler or 
manually

• To find pointers, need to know layout of 
objects
– In particular, need to distinguish pointers from ints

• Method works mostly for reclaiming memory; 
doesn’t handle fragmentation problem
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Tradeoffs
• Advantage:  incremental technique

– Generally small, constant amount of work per 
memory write

– With more effort, can even bound running time
• Disadvantages:

– Cascading decrements can be expensive
– Can’t collect cycles, since counts never go to 0
– Also requires extra storage for reference counts

Mark and Sweep GC

• Idea:  Only objects reachable from stack 
could possibly be live
– Every so often, stop the world and do GC:

• Mark all objects on stack as live
• Until no more reachable objects,

– Mark object reachable from live object as live
• Deallocate any non-reachable objects

• This is a tracing garbage collector
• Does not handle fragmentation problem
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Tradeoffs with Mark and 
Sweep

• Pros:
– No problem with cycles
– Memory writes have no cost

• Cons:
– Fragmentation

• Available space broken up into many small pieces
– Thus many mark-and-sweep systems may also have a 

compaction phase (like defragmenting your disk)
– Cost proportional to heap size

• Sweep phase needs to traverse whole heap – it touches 
dead memory to put it back on to the free list

– Not appropriate for real-time applications
• You wouldn’t like your auto’s braking system to stop working for 

a GC while you are trying to stop at a busy intersection

Stop and Copy GC

• Like mark and sweep, but only touches live 
objects
– Divide heap into two equal parts (semispaces)
– Only one semispace active at a time
– At GC time, flip semispaces

• Trace the live data starting from the stack
• Copy live data into other semispace
• Declare everything in current semispace dead; switch to 

other semispace
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Stop and Copy Tradeoffs

• Pros:
– Only touches live data
– No fragmentation; automatically compacts

• Will probably increase locality
• Cons:

– Requires twice the memory space
– Like mark and sweep, need to “stop the 

world”
• Program must stop running to let 

garbage collector move around data in 
the heap

The Generational Principle

Object lifetime increases ⇒

M
or

e 
ob

je
ct

s l
iv

e 
⇒

“Young
objects
die quickly;
old objects
keep living”
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Errors and Exceptions

Signaling Errors

• Style 1:  Return invalid value

// Returns value key maps to, or null if no

// such key in map

Object get(Object key);

– Disadvantages?
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Signaling Errors (cont’d)

• Style 2:  Return an invalid value and status
static int lock_rdev(mdk_rdev_t *rdev) {

...

if (bdev == NULL)

return -ENOMEM;

...

}

// Returns NULL if error and sets global

// variable errno

FILE *fopen(const char *path, const char *mode);

Problems with These 
Approaches

• What if all possible return values are valid?
– E.g., findMax from earlier slide
– What about errors in a constructor?

• What if client forgets to check for error?
– No compiler support

• What if client can’t handle error?
– Needs to be dealt with at a higher level

• Poor modularity- exception handling code 
becomes scattered throughout program

• 1996 Ariane 5 failure classic example of this 
…
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Better approaches: 
Exceptions in Java

• On an error condition, we throw an exception

• At some point up the call chain, the exception 
is caught and the error is handled

• Separates normal from error-handling code

• A form of non-local control-flow
– Like goto, but structured

Exception Hierarchy

Throwable

Error Exception

RuntimeException

Checked

Unchecked
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• Subclasses of RuntimeException and Error
are unchecked
– Need not be listed in method specifications

• Currently used for things like
– NullPointerException
– IndexOutOfBoundsException
– VirtualMachineError

• Is this a good design?

Unchecked Exceptions

Call-by-Value
• In call-by-value (cbv), arguments to functions 

are fully evaluated before the function is 
invoked
– Also in OCaml, in let x = e1 in e2, the expression 

e1 is fully evaluated before e2 is evaluated
• C, C++, and Java also use call-by-value

int r = 0;

int add(int x, int y) { return r + x + y; }

int set_r(void) {
r = 3;
return 1;

}

add(set_r(), 2);
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Call-by-Reference

• Alternative idea:  Implicitly pass a pointer or 
reference to the actual parameter
– If the function writes to it the actual parameter is 

modified

int main() {
int x = 0;
f(x);
printf("%d\n", x);

}

void f(int x) {
x = 3;

}

x 0
x

3

Call-by-Name

• Call-by-name (cbn)
– First described in description of Algol (1960)
– Generalization of Lambda expressions (to be 

discussed later)
– Idea simple: In a function:

Let add x y = x+y
add (a*b) (c*d)

Then each use of x and y in the function definition 
is just a literal substitution of the actual arguments, 
(a*b) and (c*d), respectively

– But implementation: Highly complex, inefficient, 
and provides little improvement over other 
mechanisms, as later slides demonstrate

Example:
add (a*b) (c*d) =

(a*b) + (c*d) � executed function
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Three-Way Comparison
• Consider the following program under the 

three calling conventions
– For each, determine i's value and which a[i] (if 

any) is modifiedint i = 1;

void p(int f, int g) {
g++;
f = 5 * i;

}

int main() {
int a[] = {0, 1, 2};
p(a[i], i);
printf("%d %d %d %d\n",

i, a[0], a[1], a[2]);
}

Example:  Call-by-Value

int i = 1;

void p(int f, int g) {
g++;
f = 5 * i;

}

int main() {
int a[] = {0, 1, 2};
p(a[i], i);
printf("%d %d %d %d\n",

i, a[0], a[1], a[2]);
}

2

1

g

5

1

f

2101

a[2
]

a[1
]

a[0
]

i
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Example:  Call-by-Reference

int i = 1;

void p(int f, int g) {
g++;
f = 5 * i;

}

int main() {
int a[] = {0, 1, 2};
p(a[i], i);
printf("%d %d %d %d\n",

i, a[0], a[1], a[2]);
}

102

2101

a[2
]

a[1
]

a[0
]

i /f/g

102

Example:  Call-by-Name

int i = 1;

void p(int f, int g) {
g++;
f = 5 * i;

}

int main() {
int a[] = {0, 1, 2};
p(a[i], i);
printf("%d %d %d %d\n",

i, a[0], a[1], a[2]);
}

102

2101

a[2
]

a[1
]

a[0
]

i

i++;
a[i] = 5*i;

The expression a[i] isn't
evaluated until needed, in
this case after i has
changed.

2 10
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Call-by-Name and Exam 
Questions

• Even though the example we just showed 
suggests call-by-name and side effects can 
be made to work together, they just don’t 
make sense

• We will not ask you any exam questions 
where you need to explain what call-by-name 
would do in a language with side effects
– Answering these questions usually requires a 

great deal of specification, including deciding 
whether variable bindings evaluate their 
arguments, and the order of evaluation of function 
calls

– They’re just not good questions

Tail Recursion

• Recall that in OCaml, all looping is via 
recursion
– Seems very inefficient
– Needs one stack frame for recursive call

• A function is tail recursive if it is recursive and 
the recursive call is a tail call
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Names and Binding

• Programs use names to refer to things
– E.g., in x = x + 1, x refers to a variable

• A binding is an association between a name and what it 
refers to
– int x; /* x is bound to a stack

location containing an
int */

– int f (int) { ... } /* f is bound to a
function */

– class C { ... } /* C is bound to a class */

– let x = e1 in e2 (* x is bound to e1 *)

Free and Bound Variables
• The bound variables of a scope are those 

names that are declared in it
• If a variable is not bound in a scope, it is free

– The bindings of variables which are free in a scope 
are "inherited" from declarations of those variables in 
outer scopes in static scoping

{ /* 1 */
int j;

{ /* 2 */
float i;

j = (int) i;
}

}

i is bound in
scope 2j is free in

scope 2

j is bound in
scope 1
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Static vs. Dynamic Scope

Static scoping
– Local understanding 

of function behavior

– Know at compile-time 
what each name 
refers to

– A bit trickier to 
implement

Dynamic scoping
– Can be hard to 

understand behavior 
of functions

– Requires finding name 
bindings at runtime

– Easier to implement 
(just keep a global 
table of stacks of 
variable/value 
bi di )

Semantics
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Operational Semantics Rules

• Each basic entity evaluates to the 
corresponding value

n � n

true � true

false � false

[] � []

Operational Semantics Rules 
(cont’d)

• How about built-in functions?

– We’re applying the + function
• (we put parens around it because it’s not in infix notation; 

will skip this from now on)
• Ignore currying for the moment, and pretend we have 

multi-argument functions
– On the right-hand side, we’re computing the 

mathematical sum; the left-hand side is source 
code

– But what about + (+ 3 4) 5 ?
• We need recursion

( + ) n m � n + m



40

Rules with Hypotheses

• To evaluate + E1 E2, we need to evaluate E1, 
then evaluate E2, then add the results
– This is call-by-value

– This is a “natural deduction” style rule
– It says that if the hypotheses above the line hold, 

then the conclusion below the line holds
• i.e., if E1 executes to value n and if E2 executes to value 

m, then + E1 E2 executes to value n+m

+ E1 E2 � n + m

E1 � n E2 � m

Error Cases

• Because we wrote n, m in the hypothesis, we mean that 
they must be integers

• But what if E1 and E2 aren’t integers?
– E.g., what if we write + false true ?
– It can be parsed, but we can’t execute it

• We will have no rule that covers such a case
– Convention:  If there is not rule to cover a case, then the 

expression is erroneous
– A program that evaluates to a stuck expression produces a run 

time error in practice

+ E1 E2 � n + m

E1 � n E2 � m
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Trees of Semantic Rules

• When we apply rules to an expression, 
we actually get a tree
– Corresponds to the recursive evaluation 

procedure
• For example: + (+ 3 4 ) 5

+ ( + 3 4) 5 �

(+ 3 4) � 5 �

3 � 4 �

7

3 4

5

12

Semantics with Environments

• Extend rules to the form A; E � v
– Means in environment A, the program text E evaluates to v

• Notation:
– We write • for the empty environment
– We write A(x) for the value that x maps to in A
– We write A, x:v for the same environment as A, except x is now v

• x might or might not have mapped to anything in A
– We write A, A' for the environment with the bindings of A' added to 

and overriding the bindings of A
– The empty environment can be omitted when things are clear, and in 

adding other bindings to an empty environment we can write just 
those bindings if things are clear
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Lambda Calculus

Lambda Calculus

• A lambda calculus expression is defined as

e ::= x variable
|  �x.e function
|  e e function application

• �x.e is like (fun x -> e) in OCaml

• That’s it! Only higher-order functions
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Three Conveniences

• Syntactic sugar for local declarations
– let x = e1 in e2 is short for (�x.e2) e1

• The scope of � extends as far to the right 
as possible
– �x. �y.x y is �x.(�y.(x y))

• Function application is left-associative
– x y z is (x y) z
– Same rule as OCaml

Operational Semantics

• All we’ve got are functions, so all we can do is 
call them

• To evaluate (�x.e1) e2
– Evaluate e1 with x bound to e2

• This application is called “beta-reduction”
– (�x.e1) e2 � e1[x/e2] (the eating rule)

• e1[x/e2] is e1 where occurrences of x are replaced by e2
• Slightly different than the environments we saw for Ocaml

– Do substitutions to replace formals with actuals, instead of 
carrying around environment that maps formals to actuals

– We allow reductions to occur anywhere in a term
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Static Scoping and Alpha 
Conversion

• Lambda calculus uses static scoping

• Consider the following
– (�x.x (�x.x)) z � ?

• The rightmost “x” refers to the second binding

– This is a function that takes its argument and applies 
it to the identity function

• This function is “the same” as (�x.x (�y.y))
– Renaming bound variables consistently is allowed

• This is called alpha-renaming or alpha conversion (color rule)

– Ex. �x.x = �y.y = �z.z �y.�x.y = �z.�x.z

Beta-Reduction, Again

• Whenever we do a step of beta 
reduction...
– (�x.e1) e2 � e1[x/e2]
– ...alpha-convert variables as necessary

• Examples:
– (�x.x (�x.x)) z = (�x.x (�y.y)) z � z (�y.y)
– (�x.�y.x y) y = (�x.�z.x z) y � �z.y z
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Booleans

The lambda calculus was created by logician Alonzo 
Church in the 1930's to formulate a mathematical 
logical system
true = �x.�y.x
false = �x.�y.y
if a then b else c is defined to be the � expression: a 
b c

• Examples:
– if true then b else c � (�x.�y.x) b c � (�y.b) c � b
– if false then b else c � (�x.�y.y) b c � (�y.y) c � c

Pairs

(a,b) = �x.if x then a else b
fst = �f.f true
snd = �f.f false

• Examples:
– fst (a,b) = (�f.f true) (�x.if x then a else b) �

(�x.if x then a else b) true �
if true then a else b � a

– snd (a,b) = (�f.f false) (�x.if x then a else b) �
(�x.if x then a else b) false �
if false then a else b � b
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Natural Numbers (Church*)

0 = �f.�y.y
1 = �f.�y.f y
2 = �f.�y.f (f y)
3 = �f.�y.f (f (f y))

i.e., n = �f.�y.<apply f n times to y>

succ = �z.�f.�y.f (z f y)
iszero = �g.g (�y.false) true

– Recall that this is equivalent to �g.((g (�y.false))
true)

*(Named after Alonzo Church, developer of lambda calculus)

Natural Numbers (cont’d)

• Examples:
succ 0 =
(�z.�f.�y.f (z f y)) (�f.�y.y) �
�f.�y.f ((�f.�y.y) f y) �
�f.�y.f y = 1

iszero 0 =
(�z.z (�y.false) true) (�f.�y.y) �
(�f.�y.y) (�y.false) true �
(�y.y) true �
true
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Arithmetic defined
• Addition, if M and N are integers (as � expressions):

M + N = �x.�y.(M x)((N x) y)
Equivalently: + = �M.�N.�x.�y.(M x)((N x) y)

• Multiplication: M * N = �x.(M (N x))
• Prove 1+1 = 2.

1+1 = �x.�y.(1 x)((1 x) y) �
�x.�y.((�x.�y.x y) x)(((�x.�y.x y) x) y) �
�x.�y.(�y.x y)(((�x.�y.x y) x) y) �
�x.�y.(�y.x y)((�y.x y) y) �
�x.�y.x ((�y.x y) y) �
�x.�y.x (x y) = 2

• With these definitions, can build a theory of integer 
arithmetic.

The “Paradoxical” Combinator

Y = �f.(�x.f (x x)) (�x.f (x x))
• Then

Y F =
(�f.(�x.f (x x)) (�x.f (x x))) F �
(�x.F (x x)) (�x.F (x x)) �
F ((�x.F (x x)) (�x.F (x x)))
= F (Y F)

• Thus Y F = F (Y F) = F (F (Y F)) = ...
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Example

fact = �f. �n.if n = 0 then 1 else n * (f (n-1))
– The second argument to fact is the integer
– The first argument is the function to call in the 

body
• We’ll use Y to make this recursively call fact

(Y fact) 1 = (fact (Y fact)) 1
� if 1 = 0 then 1 else 1 * ((Y fact) 0)
� 1 * ((Y fact) 0)
� 1 * (fact (Y fact) 0)
� 1 * (if 0 = 0 then 1 else 0 * ((Y fact) (-1))
� 1 * 1 � 1

Simply-Typed Lambda 
Calculus

• e ::= n | x | �x:t.e | e e
– We’ve added integers n as primitives

• Without at least two disinct types (integer and function), 
can’t have any type errors

– Functions now include the type of their argument
• t ::= int | t � t

– int is the type of integers
– t1 � t2 is the type of a function that takes 

arguments of type t1 and returns a result of type t2
– t1 is the domain and t2 is the range
– Notice this is a recursive definition, so that we can 

give types to higher-order functions
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Type Judgments

• We will construct a type system that proves 
judgments of the form

A � e : t

– “In type environment A, expression e has type t”

• If for a program e we can prove that it has 
some type, then the program type checks
– Otherwise the program has a type error, and we’ll 

reject the program as bad

Type Environments

• A type environment is a map from variables 
names to their types
– Just like in our operational semantics for Scheme

• • is the empty type environment

• A, x:t is just like A, except x now has type t

• When we see a variable in the program, we’ll 
look up its type in the environment
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Type Rules

A � n : int

e ::= n | x | �x:t.e | e e

A � x : A(x)

x � A

A � �x:t.e : t � t'

A, x : t � e : t'

A � e e' : t'

A � e : t � t' A � e' : t

Example

A � (�x:int.+ x 3) 4 : int

A = + : int � int � int

A � (�x:int.+ x 3) : int � int A � 4 : int

B � + x 3 : int

B � 3 : int

B � + : i�i�i

B � + x : int � int

B � x : int

B = A, x : int


