
1

CMSC 330: Organization of
Programming Languages

Final Exam Review

Review Choices

• OCaml
– closures, currying, etc

• Threads
– data races, synchronization, classic probs

• Java Generics
• Topics

– garbage collection, exceptions, parameters
• Semantics and Lambda Calculus

2

Environments and Closures

• An environment is a mapping from variable
names to values
– Just like a stack frame

• A closure is a pair (f, e) consisting of function
code f and an environment e

• When you invoke a closure, f is evaluated
using e to look up variable bindings

Example

let add x = (fun y -> x + y)

(add 3) 4 ���� <closure> 4 ���� 3 + 4 ���� 7

3

Curried Functions in OCaml

• OCaml has a really simple syntax for currying

– This is identical to all of the following:

• Thus:
– add has type int -> (int -> int)

– add 3 has type int -> int

• The return of add x evaluated with x = 3

• add 3 is a function that adds 3 to its argument
– (add 3) 4 = 7

• This works for any number of arguments

let add x y = x + y

let add = (fun x -> (fun y -> x + y))
let add = (fun x y -> x + y)
let add x = (fun y -> x+y)

Curried Functions in OCaml
(cont’d)

• Because currying is so common, OCaml
uses the following conventions:
– -> associates to the right

• Thus int -> int -> int is the same as
• int -> (int -> int)

– function application associates to the left
• Thus add 3 4 is the same as
• (add 3) 4

4

Another Example of Currying

• A curried add function with three arguments:

– The same as

• Then...
– add_th has type int -> (int -> (int -> int))

– add_th 4 has type int -> (int -> int)

– add_th 4 5 has type int -> int

– add_th 4 5 6 is 15

let add_th x y z = x + y + z

let add_th x = (fun y -> (fun z -> x+y+z))

Data Types

• Rect and Circle are type constructors- here a
shape is either a Rect or a Circle

• Use pattern matching to deconstruct values, and
do different things depending on constructor

type shape =
Rect of float * float (* width * length *)

| Circle of float (* radius *)

let area s =
match s with

Rect (w, l) -> w *. l
| Circle r -> r *. r *. 3.14

area (Rect (3.0, 4.0))
area (Circle 3.0)

5

Data Types, con't.

type shape =

Rect of float * float (* width * length *)

| Circle of float

let l = [Rect (3.0, 4.0) ; Circle 3.0; Rect (10.0,
22.5)]

• What's the type of l?

• What's the type of l's first element?

l : shape list����

shape

Polymorphic Data Types

• This option type can work with any kind of
data
– In fact, this option type is built-in to OCaml

type 'a option =
None

| Some of 'a

let add_with_default a = function
None -> a + 42

| Some n -> a + n

add_with_default 3 None (* 45 *)
add_with_default 3 (Some 4) (* 7 *)

6

Recursive Data Types

• Do you get the feeling we can build up lists this
way?

– Note: Don’t have nice [1; 2; 3] syntax for this kind of
list

type 'a list =
Nil

| Cons of 'a * 'a list

let rec length l = function
Nil -> 0

| Cons (_, t) -> 1 + (length t)

length (Cons (10, Cons (20, Cons (30, Nil))))

Creating a Module
module Shapes =

struct
type shape =

Rect of float * float (* width * length *)
| Circle of float (* radius *)

let area = function
Rect (w, l) -> w *. l

| Circle r -> r *. r *. 3.14

let unit_circle = Circle 1.0
end;;

unit_circle;; (* not defined *)
Shapes.unit_circle;;
Shapes.area (Shapes.Rect (3.0, 4.0));;
open Shapes;; (* import all names into current scope *)
unit_circle;; (* now defined *)

7

Module Signatures

module type FOO =
sig

val add : int -> int -> int
end;;

module Foo : FOO =
struct

let add x y = x + y
let mult x y = x * y

end;;

Foo.add 3 4;; (* OK *)
Foo.mult 3 4;; (* not accessible *)

Entry in signature Supply function types

Give type to module

Abstract Types in Signatures

• Now definition of shape is hidden

module type SHAPES =
sig

type shape
val area : shape -> float
val unit_circle : shape
val make_circle : float -> shape
val make_rect : float -> float -> shape

end;;

module Shapes : SHAPES =
struct

...
let make_circle r = Circle r
let make_rect x y = Rect (x, y)

end

8

Imperative OCaml

• There are three basic operations on
memory:
– ref : 'a -> 'a ref

• Allocate an updatable reference
– ! : 'a ref -> 'a

• Read the value stored in reference
– := : 'a ref -> 'a -> unit

• Write to a reference
let x = ref 3 (* x : int ref *)
let y = !x
x := 4

Semicolon Revisited; Side
Effects

• Now that we can update memory, we have a
real use for ; and () : unit
– e1; e2 means evaluate e1, throw away the result, and

then evaluate e2, and return the value of e2
– () means “no interesting result here”
– It’s only interesting to throw away values or use () if

computation does something besides return a result

• A side effect is a visible state change
– Modifying memory
– Printing to output
– Writing to disk

9

Exceptions
exception My_exception of int

let f n =
if n > 0 then

raise (My_exception n)
else

raise (Failure "foo")

let bar n =
try

f n
with My_exception n ->

Printf.printf "Caught %d\n" n
| Failure s ->

Printf.printf "Caught %s\n" s

Threads

10

Thread Creation in Java

• To explicitly create a thread:
– Instantiate a Thread object

• An object of class Thread or a subclass of
Thread

– Invoke the object’s start() method
• This will start executing the Thread’s run()

method concurrently with the current thread
– Thread terminates when its run() method

returns

Data Race Example

public class Example extends Thread {
private static int cnt = 0; // shared state
public void run() {

int y = cnt;
cnt = y + 1;

}
public static void main(String args[]) {

Thread t1 = new Example();
Thread t2 = new Example();
t1.start();
t2.start();

}
}

11

Locks (Java 1.5)

• Only one thread can hold a lock at once
– Other threads that try to acquire it block (or become

suspended) until the lock becomes available
• Reentrant lock can be reacquired by same thread

– As many times as desired
– No other thread may acquire a lock until has been

released same number of times it has been acquired

interface Lock {
void lock();
void unlock();
... /* Some more stuff, also */

}
class ReentrantLock implements Lock { ... }

Avoiding Interference:
Synchronization

public class Example extends Thread {
private static int cnt = 0;
static Lock lock = new ReentrantLock();
public void run() {

lock.lock();
int y = cnt;
cnt = y + 1;
lock.unlock();
}

}
…

}

Lock, for protecting
the shared state

Acquires the lock;
Only succeeds if not
held by another
thread

Releases the lock

12

Deadlock
• Deadlock occurs when no thread can

run because all threads are waiting for a
lock
– No thread running, so no thread can ever

release a lock to enable another thread to
run

Thread 1

l.lock();
m.lock();
...
m.unlock();
l.unlock();

Lock l = new ReentrantLock();
Lock m = new ReentrantLock();

Thread 2

m.lock();
l.lock();
...
l.unlock();
m.unlock();

This code can
deadlock…
-- when will it work?
-- when will it

deadlock?

Synchronized

• This pattern is really common
– Acquire lock, do something, release lock under

any circumstances after we’re done
• Even if exception was raised etc.

• Java has a language construct for this
– synchronized (obj) { body }

• Every Java object has an implicit associated lock
– Obtains the lock associated with obj
– Executes body
– Release lock when scope is exited

• Even in cases of exception or method return

13

Example

– Lock associated with o acquired before body
executed

• Released even if exception thrown

static Object o = new Object();

void f() throws Exception {
synchronized (o) {

FileInputStream f =
new FileInputStream("file.txt");

// Do something with f
f.close();

}
}

Key Ideas
• Multiple threads can run simultaneously

– Either truly in parallel on a multiprocessor
– Or can be scheduled on a single processor

• A running thread can be pre-empted at any time

• Threads can share data
– In Java, only fields can be shared
– Need to prevent interference

• Rule of thumb 1: You must hold a lock when accessing
shared data

• Rule of thumb 2: You must not release a lock until
shared data is in a valid state

– Overuse use of synchronization can create
deadlock

• Rule of thumb: No deadlock if only one lock

14

The Dining Philosophers
Problem

• Philosophers
either eat or think

• They must have
two forks to eat

• Can only use forks
on either side of
their plate

• Avoid deadlock
and starvation!

Producer/Consumer Problem

• Suppose we are communicating with a
shared variable
– E.g., some kind of a fixed size buffer holding

messages

• One thread produces input to the buffer
• One thread consumes data from the buffer

• Rules:
– producer can’t add input to the buffer if it’s full
– consumer can’t take input from the buffer if it’s

empty

15

Conditions (Java 1.5)

• Condition created from a Lock
• await called with lock held

– Releases the lock (on the fork or buffer)
• But not any other locks held by this thread

– Adds this thread to wait set for lock
– Blocks the thread

when philosopher is waiting for a fork or
consumer is waiting for non empty buffer

interface Lock { Condition newCondition(); ... }
interface Condition {

void await();
void signalAll(); ... }

Condition

wait set

...

Conditions (Java 1.5)

• Condition created from a Lock

when philosopher is done eating
or when buffer is non empty:

• signallAll called with lock held
– Resumes all threads on lock’s wait set
– Those threads must reacquire lock before continuing

• (This is part of the function; you don’t need to do it explicitly)

interface Lock { Condition newCondition(); ... }
interface Condition {

void await();
void signalAll(); ... }

Condition

wait set

...

16

Lock lock = new ReentrantLock();
Condition ready = lock.newCondition();
boolean bufferReady = false;
Object buffer;

void produce(Object o) {
lock.lock();
while (bufferReady){

ready.await(); }
buffer = o;
bufferReady = true;
ready.signalAll();
lock.unlock();

}

Object consume() {
lock.lock();
while (!bufferReady){

ready.await(); }
Object o = buffer;
bufferReady = false;
ready.signalAll();
lock.unlock();

}

Producer/Consumer Example

More on the Condition
Interface

• away(t, u) waits for time t and then gives up
– Result indicates whether woken by signal or

timeout
• signal() wakes up only one waiting thread

– Tricky to use correctly
• Have all waiters be equal, handle exceptions correctly

– Highly recommended to just use signalAll()

interface Condition {
void await();
boolean await (long time, TimeUnit unit);
void signal();
void signalAll();

... }

17

Wait and NotifyAll (Java 1.4)

• Recall that in Java 1.4, use synchronize on
object to get associated lock

• Objects also have an associated wait set

object o
o’s lock

o’s wait set

Java Generics

18

Subtyping

• Both inheritance and interfaces allow
one class to be used where another is
specified
– This is really the same idea: subtyping

• We say that A is a subtype of B if
– A extends B or a subtype of B, or
– A implements B or a subtype of B

class Stack<ElementType> {
class Entry {

ElementType elt; Entry next;
Entry(ElementType i, Entry n) { elt = i; next = n; }

}
Entry theStack;
void push(ElementType i) {

theStack = new Entry(i, theStack);
}
ElementType pop() throws EmptyStackException {
if (theStack == null)

throw new EmptyStackException();
else {

ElementType i = theStack.elt;
theStack = theStack.next;
return i;

}}}

Parametric Polymorphism for
Stack

19

Stack<Element> Client

Stack<Integer> is = new Stack<Integer>();
Integer i;
is.push(new Integer(3));
is.push(new Integer(4));
i = is.pop();

• No downcasts
• Type-checked at compile time
• No need to duplicate Stack code for every usage

– line i = is.pop(); can stay the same even if the type of is isn’t an
integer in every path through the program

Subtyping and Arrays

• Java has one funny subtyping feature:
– If S is a subtype of T, then
– S[] is a subtype of T[]

• Lets us write methods that take arbitrary
arrays

public static void reverseArray(Object [] A) {
for(int i=0, j=A.length-1; i<j; i++,j--) {

Object tmp = A[i];
A[i] = A[j];
A[j] = tmp;

}
}

20

Problem with Subtyping
Arrays

• Program compiles without warning
• Java must generate run-time check at (1) to prevent

(2)
– Type written to array must be subtype of array contents

public class A { ... }
public class B extends A { void newMethod(); }
...

void foo(void) {
B[] bs = new B[3];
A[] as;

as = bs; // Since B[] subtype of A[]
as[0] = new A(); // (1)
bs[0].newMethod(); // (2) Fails since not type B

}

Subtyping for Generics

• Is Stack<Integer> a subtype of Stack<Object>?
– We could have the same problem as with arrays
– Thus Java forbids this subtyping

• Now consider the following method:

– Not allowed to call count(x) where x has type
Stack<Integer>

int count(Collection<Object> c) {

int j = 0;

for (Iterator<Object> i = c.iterator(); i.hasNext();) {

Object e = i.next(); j++;

}

return j;

}

21

Bounded Wildcards

• We want drawAll to take a Collection of
anything that is a subtype of shape
– this includes Shape itself

– This is a bounded wildcard
– We can pass Collection<Circle>
– We can safely treat e as a Shape

void drawAll(Collection<? extends Shape> c) {

for (Shape s : c)

s.draw();

}

Upper Bounded Wild Cards

• ? extends Shape actually gives an
upper bound on the type accepted

• Shape is the upper bound of the
wildcard Shape

Circle

Rectangle

Square

22

Bounded Wildcards (cont’d)

• Should the following be allowed?

– No, because c might be a Collection of
something that is not compatible with
Circle

– This code is forbidden at compile time

void foo(Collection<? extends Shape> c) {

c.add(new Circle());

}

Lower Bounded Wildcards

• Dual of the upper bounded wildcards
• ? super Rectangle denotes a type that is a supertype

of Rectangle
– T is included

• ? super Rectangle gives a lower bound on the type
accepted

Shape

Circle

Rectangle

Square

23

Garbage Collection

Memory attributes
• Memory to store data in programming languages has

several attributes:
– Persistence (or lifetime) – How long the memory

exists
– Allocation – When the memory is available for use
– Recovery – When the system recovers the memory

for reuse
• Most programming languages are concerned with some

subset of the following 4 memory classes:
– Fixed (or static) memory
– Automatic memory
– Programmer allocated memory
– Persistent memory

24

Memory classes

• Static memory – Usually a fixed address in
memory
– Persistence – Lifetime of execution of program
– Allocation – By compiler for entire execution
– Recovery – By system when program terminates

• Automatic memory – Usually on a stack
– Persistence – Lifetime of method using that data
– Allocation – When method is invoked
– Recovery – When method terminates

Memory classes
• Allocated memory – Usually memory on a heap

– Persistence – As long as memory is needed
– Allocation – Explicitly by programmer
– Recovery – Either by programmer or automatically (when

possible and depends upon language)
• Persistent memory – Usually the file system

– Persistence – Multiple execution of a program (e.g., files or
databases)

– Allocation – By program or user, often outside of program
execution

– Recovery – When data no longer needed
– This form of memory usually outside of programming

language course and part of database area (e.g., CMSC 424)

25

Garbage collection goal
• Process to reclaim memory. (Also solve

Fragmentation problem.)

• Algorithm: You can do garbage collection and memory
compaction if you know where every pointer is in a
program. If you move the allocated storage, simply
change the pointer to it.

• This is true in LISP, OCAML, Java, Prolog
• Not true in C, C++, Pascal, Ada

Reference Counting

• Old technique (1960)
• Each object has count of number of pointers

to it from other objects and from the stack
– When count reaches 0, object can be deallocated

• Counts tracked by either compiler or
manually

• To find pointers, need to know layout of
objects
– In particular, need to distinguish pointers from ints

• Method works mostly for reclaiming memory;
doesn’t handle fragmentation problem

26

Tradeoffs
• Advantage: incremental technique

– Generally small, constant amount of work per
memory write

– With more effort, can even bound running time
• Disadvantages:

– Cascading decrements can be expensive
– Can’t collect cycles, since counts never go to 0
– Also requires extra storage for reference counts

Mark and Sweep GC

• Idea: Only objects reachable from stack
could possibly be live
– Every so often, stop the world and do GC:

• Mark all objects on stack as live
• Until no more reachable objects,

– Mark object reachable from live object as live
• Deallocate any non-reachable objects

• This is a tracing garbage collector
• Does not handle fragmentation problem

27

Tradeoffs with Mark and
Sweep

• Pros:
– No problem with cycles
– Memory writes have no cost

• Cons:
– Fragmentation

• Available space broken up into many small pieces
– Thus many mark-and-sweep systems may also have a

compaction phase (like defragmenting your disk)
– Cost proportional to heap size

• Sweep phase needs to traverse whole heap – it touches
dead memory to put it back on to the free list

– Not appropriate for real-time applications
• You wouldn’t like your auto’s braking system to stop working for

a GC while you are trying to stop at a busy intersection

Stop and Copy GC

• Like mark and sweep, but only touches live
objects
– Divide heap into two equal parts (semispaces)
– Only one semispace active at a time
– At GC time, flip semispaces

• Trace the live data starting from the stack
• Copy live data into other semispace
• Declare everything in current semispace dead; switch to

other semispace

28

Stop and Copy Tradeoffs

• Pros:
– Only touches live data
– No fragmentation; automatically compacts

• Will probably increase locality
• Cons:

– Requires twice the memory space
– Like mark and sweep, need to “stop the

world”
• Program must stop running to let

garbage collector move around data in
the heap

The Generational Principle

Object lifetime increases ⇒

M
or

e
ob

je
ct

s l
iv

e
⇒

“Young
objects
die quickly;
old objects
keep living”

29

Errors and Exceptions

Signaling Errors

• Style 1: Return invalid value

// Returns value key maps to, or null if no

// such key in map

Object get(Object key);

– Disadvantages?

30

Signaling Errors (cont’d)

• Style 2: Return an invalid value and status
static int lock_rdev(mdk_rdev_t *rdev) {

...

if (bdev == NULL)

return -ENOMEM;

...

}

// Returns NULL if error and sets global

// variable errno

FILE *fopen(const char *path, const char *mode);

Problems with These
Approaches

• What if all possible return values are valid?
– E.g., findMax from earlier slide
– What about errors in a constructor?

• What if client forgets to check for error?
– No compiler support

• What if client can’t handle error?
– Needs to be dealt with at a higher level

• Poor modularity- exception handling code
becomes scattered throughout program

• 1996 Ariane 5 failure classic example of this
…

31

Better approaches:
Exceptions in Java

• On an error condition, we throw an exception

• At some point up the call chain, the exception
is caught and the error is handled

• Separates normal from error-handling code

• A form of non-local control-flow
– Like goto, but structured

Exception Hierarchy

Throwable

Error Exception

RuntimeException

Checked

Unchecked

32

• Subclasses of RuntimeException and Error
are unchecked
– Need not be listed in method specifications

• Currently used for things like
– NullPointerException
– IndexOutOfBoundsException
– VirtualMachineError

• Is this a good design?

Unchecked Exceptions

Call-by-Value
• In call-by-value (cbv), arguments to functions

are fully evaluated before the function is
invoked
– Also in OCaml, in let x = e1 in e2, the expression

e1 is fully evaluated before e2 is evaluated
• C, C++, and Java also use call-by-value

int r = 0;

int add(int x, int y) { return r + x + y; }

int set_r(void) {
r = 3;
return 1;

}

add(set_r(), 2);

33

Call-by-Reference

• Alternative idea: Implicitly pass a pointer or
reference to the actual parameter
– If the function writes to it the actual parameter is

modified

int main() {
int x = 0;
f(x);
printf("%d\n", x);

}

void f(int x) {
x = 3;

}

x 0
x

3

Call-by-Name

• Call-by-name (cbn)
– First described in description of Algol (1960)
– Generalization of Lambda expressions (to be

discussed later)
– Idea simple: In a function:

Let add x y = x+y
add (a*b) (c*d)

Then each use of x and y in the function definition
is just a literal substitution of the actual arguments,
(a*b) and (c*d), respectively

– But implementation: Highly complex, inefficient,
and provides little improvement over other
mechanisms, as later slides demonstrate

Example:
add (a*b) (c*d) =

(a*b) + (c*d) � executed function

34

Three-Way Comparison
• Consider the following program under the

three calling conventions
– For each, determine i's value and which a[i] (if

any) is modifiedint i = 1;

void p(int f, int g) {
g++;
f = 5 * i;

}

int main() {
int a[] = {0, 1, 2};
p(a[i], i);
printf("%d %d %d %d\n",

i, a[0], a[1], a[2]);
}

Example: Call-by-Value

int i = 1;

void p(int f, int g) {
g++;
f = 5 * i;

}

int main() {
int a[] = {0, 1, 2};
p(a[i], i);
printf("%d %d %d %d\n",

i, a[0], a[1], a[2]);
}

2

1

g

5

1

f

2101

a[2
]

a[1
]

a[0
]

i

35

Example: Call-by-Reference

int i = 1;

void p(int f, int g) {
g++;
f = 5 * i;

}

int main() {
int a[] = {0, 1, 2};
p(a[i], i);
printf("%d %d %d %d\n",

i, a[0], a[1], a[2]);
}

102

2101

a[2
]

a[1
]

a[0
]

i /f/g

102

Example: Call-by-Name

int i = 1;

void p(int f, int g) {
g++;
f = 5 * i;

}

int main() {
int a[] = {0, 1, 2};
p(a[i], i);
printf("%d %d %d %d\n",

i, a[0], a[1], a[2]);
}

102

2101

a[2
]

a[1
]

a[0
]

i

i++;
a[i] = 5*i;

The expression a[i] isn't
evaluated until needed, in
this case after i has
changed.

2 10

36

Call-by-Name and Exam
Questions

• Even though the example we just showed
suggests call-by-name and side effects can
be made to work together, they just don’t
make sense

• We will not ask you any exam questions
where you need to explain what call-by-name
would do in a language with side effects
– Answering these questions usually requires a

great deal of specification, including deciding
whether variable bindings evaluate their
arguments, and the order of evaluation of function
calls

– They’re just not good questions

Tail Recursion

• Recall that in OCaml, all looping is via
recursion
– Seems very inefficient
– Needs one stack frame for recursive call

• A function is tail recursive if it is recursive and
the recursive call is a tail call

37

Names and Binding

• Programs use names to refer to things
– E.g., in x = x + 1, x refers to a variable

• A binding is an association between a name and what it
refers to
– int x; /* x is bound to a stack

location containing an
int */

– int f (int) { ... } /* f is bound to a
function */

– class C { ... } /* C is bound to a class */

– let x = e1 in e2 (* x is bound to e1 *)

Free and Bound Variables
• The bound variables of a scope are those

names that are declared in it
• If a variable is not bound in a scope, it is free

– The bindings of variables which are free in a scope
are "inherited" from declarations of those variables in
outer scopes in static scoping

{ /* 1 */
int j;

{ /* 2 */
float i;

j = (int) i;
}

}

i is bound in
scope 2j is free in

scope 2

j is bound in
scope 1

38

Static vs. Dynamic Scope

Static scoping
– Local understanding

of function behavior

– Know at compile-time
what each name
refers to

– A bit trickier to
implement

Dynamic scoping
– Can be hard to

understand behavior
of functions

– Requires finding name
bindings at runtime

– Easier to implement
(just keep a global
table of stacks of
variable/value
bi di)

Semantics

39

Operational Semantics Rules

• Each basic entity evaluates to the
corresponding value

n � n

true � true

false � false

[] � []

Operational Semantics Rules
(cont’d)

• How about built-in functions?

– We’re applying the + function
• (we put parens around it because it’s not in infix notation;

will skip this from now on)
• Ignore currying for the moment, and pretend we have

multi-argument functions
– On the right-hand side, we’re computing the

mathematical sum; the left-hand side is source
code

– But what about + (+ 3 4) 5 ?
• We need recursion

(+) n m � n + m

40

Rules with Hypotheses

• To evaluate + E1 E2, we need to evaluate E1,
then evaluate E2, then add the results
– This is call-by-value

– This is a “natural deduction” style rule
– It says that if the hypotheses above the line hold,

then the conclusion below the line holds
• i.e., if E1 executes to value n and if E2 executes to value

m, then + E1 E2 executes to value n+m

+ E1 E2 � n + m

E1 � n E2 � m

Error Cases

• Because we wrote n, m in the hypothesis, we mean that
they must be integers

• But what if E1 and E2 aren’t integers?
– E.g., what if we write + false true ?
– It can be parsed, but we can’t execute it

• We will have no rule that covers such a case
– Convention: If there is not rule to cover a case, then the

expression is erroneous
– A program that evaluates to a stuck expression produces a run

time error in practice

+ E1 E2 � n + m

E1 � n E2 � m

41

Trees of Semantic Rules

• When we apply rules to an expression,
we actually get a tree
– Corresponds to the recursive evaluation

procedure
• For example: + (+ 3 4) 5

+ (+ 3 4) 5 �

(+ 3 4) � 5 �

3 � 4 �

7

3 4

5

12

Semantics with Environments

• Extend rules to the form A; E � v
– Means in environment A, the program text E evaluates to v

• Notation:
– We write • for the empty environment
– We write A(x) for the value that x maps to in A
– We write A, x:v for the same environment as A, except x is now v

• x might or might not have mapped to anything in A
– We write A, A' for the environment with the bindings of A' added to

and overriding the bindings of A
– The empty environment can be omitted when things are clear, and in

adding other bindings to an empty environment we can write just
those bindings if things are clear

42

Lambda Calculus

Lambda Calculus

• A lambda calculus expression is defined as

e ::= x variable
| �x.e function
| e e function application

• �x.e is like (fun x -> e) in OCaml

• That’s it! Only higher-order functions

43

Three Conveniences

• Syntactic sugar for local declarations
– let x = e1 in e2 is short for (�x.e2) e1

• The scope of � extends as far to the right
as possible
– �x. �y.x y is �x.(�y.(x y))

• Function application is left-associative
– x y z is (x y) z
– Same rule as OCaml

Operational Semantics

• All we’ve got are functions, so all we can do is
call them

• To evaluate (�x.e1) e2
– Evaluate e1 with x bound to e2

• This application is called “beta-reduction”
– (�x.e1) e2 � e1[x/e2] (the eating rule)

• e1[x/e2] is e1 where occurrences of x are replaced by e2
• Slightly different than the environments we saw for Ocaml

– Do substitutions to replace formals with actuals, instead of
carrying around environment that maps formals to actuals

– We allow reductions to occur anywhere in a term

44

Static Scoping and Alpha
Conversion

• Lambda calculus uses static scoping

• Consider the following
– (�x.x (�x.x)) z � ?

• The rightmost “x” refers to the second binding

– This is a function that takes its argument and applies
it to the identity function

• This function is “the same” as (�x.x (�y.y))
– Renaming bound variables consistently is allowed

• This is called alpha-renaming or alpha conversion (color rule)

– Ex. �x.x = �y.y = �z.z �y.�x.y = �z.�x.z

Beta-Reduction, Again

• Whenever we do a step of beta
reduction...
– (�x.e1) e2 � e1[x/e2]
– ...alpha-convert variables as necessary

• Examples:
– (�x.x (�x.x)) z = (�x.x (�y.y)) z � z (�y.y)
– (�x.�y.x y) y = (�x.�z.x z) y � �z.y z

45

Booleans

The lambda calculus was created by logician Alonzo
Church in the 1930's to formulate a mathematical
logical system
true = �x.�y.x
false = �x.�y.y
if a then b else c is defined to be the � expression: a
b c

• Examples:
– if true then b else c � (�x.�y.x) b c � (�y.b) c � b
– if false then b else c � (�x.�y.y) b c � (�y.y) c � c

Pairs

(a,b) = �x.if x then a else b
fst = �f.f true
snd = �f.f false

• Examples:
– fst (a,b) = (�f.f true) (�x.if x then a else b) �

(�x.if x then a else b) true �
if true then a else b � a

– snd (a,b) = (�f.f false) (�x.if x then a else b) �
(�x.if x then a else b) false �
if false then a else b � b

46

Natural Numbers (Church*)

0 = �f.�y.y
1 = �f.�y.f y
2 = �f.�y.f (f y)
3 = �f.�y.f (f (f y))

i.e., n = �f.�y.<apply f n times to y>

succ = �z.�f.�y.f (z f y)
iszero = �g.g (�y.false) true

– Recall that this is equivalent to �g.((g (�y.false))
true)

*(Named after Alonzo Church, developer of lambda calculus)

Natural Numbers (cont’d)

• Examples:
succ 0 =
(�z.�f.�y.f (z f y)) (�f.�y.y) �
�f.�y.f ((�f.�y.y) f y) �
�f.�y.f y = 1

iszero 0 =
(�z.z (�y.false) true) (�f.�y.y) �
(�f.�y.y) (�y.false) true �
(�y.y) true �
true

47

Arithmetic defined
• Addition, if M and N are integers (as � expressions):

M + N = �x.�y.(M x)((N x) y)
Equivalently: + = �M.�N.�x.�y.(M x)((N x) y)

• Multiplication: M * N = �x.(M (N x))
• Prove 1+1 = 2.

1+1 = �x.�y.(1 x)((1 x) y) �
�x.�y.((�x.�y.x y) x)(((�x.�y.x y) x) y) �
�x.�y.(�y.x y)(((�x.�y.x y) x) y) �
�x.�y.(�y.x y)((�y.x y) y) �
�x.�y.x ((�y.x y) y) �
�x.�y.x (x y) = 2

• With these definitions, can build a theory of integer
arithmetic.

The “Paradoxical” Combinator

Y = �f.(�x.f (x x)) (�x.f (x x))
• Then

Y F =
(�f.(�x.f (x x)) (�x.f (x x))) F �
(�x.F (x x)) (�x.F (x x)) �
F ((�x.F (x x)) (�x.F (x x)))
= F (Y F)

• Thus Y F = F (Y F) = F (F (Y F)) = ...

48

Example

fact = �f. �n.if n = 0 then 1 else n * (f (n-1))
– The second argument to fact is the integer
– The first argument is the function to call in the

body
• We’ll use Y to make this recursively call fact

(Y fact) 1 = (fact (Y fact)) 1
� if 1 = 0 then 1 else 1 * ((Y fact) 0)
� 1 * ((Y fact) 0)
� 1 * (fact (Y fact) 0)
� 1 * (if 0 = 0 then 1 else 0 * ((Y fact) (-1))
� 1 * 1 � 1

Simply-Typed Lambda
Calculus

• e ::= n | x | �x:t.e | e e
– We’ve added integers n as primitives

• Without at least two disinct types (integer and function),
can’t have any type errors

– Functions now include the type of their argument
• t ::= int | t � t

– int is the type of integers
– t1 � t2 is the type of a function that takes

arguments of type t1 and returns a result of type t2
– t1 is the domain and t2 is the range
– Notice this is a recursive definition, so that we can

give types to higher-order functions

49

Type Judgments

• We will construct a type system that proves
judgments of the form

A � e : t

– “In type environment A, expression e has type t”

• If for a program e we can prove that it has
some type, then the program type checks
– Otherwise the program has a type error, and we’ll

reject the program as bad

Type Environments

• A type environment is a map from variables
names to their types
– Just like in our operational semantics for Scheme

• • is the empty type environment

• A, x:t is just like A, except x now has type t

• When we see a variable in the program, we’ll
look up its type in the environment

50

Type Rules

A � n : int

e ::= n | x | �x:t.e | e e

A � x : A(x)

x � A

A � �x:t.e : t � t'

A, x : t � e : t'

A � e e' : t'

A � e : t � t' A � e' : t

Example

A � (�x:int.+ x 3) 4 : int

A = + : int � int � int

A � (�x:int.+ x 3) : int � int A � 4 : int

B � + x 3 : int

B � 3 : int

B � + : i�i�i

B � + x : int � int

B � x : int

B = A, x : int

