An Experimenter’s Guide to the GUITAR Infrastructure

Jaymie Strecker and Penelope Brooks

October 16, 2008

1 Introduction

GUITAR is the GUI Testing frAmewoRk. Currently, documentation for GUITAR exists in this manual and
in the Software-Testing Benchmarks at http://www.cs.umd.edu/ atif/Benchmarks/. This manual can be
obtained from the Software-Testing Benchmarks page. An extended version is available to members of the
GUITAR group in CVS module GUITAR/docs/manual.

2 Ripping a GUI

2.1 Building JavaGUIRipper
TODO

2.2 Running JavaGUIRipper
To generate a GUI model for the application under test, do:

java -cp JavaClassFiles[:APPCLASSPATH] JavaGUIRipper -s

for standalone mode. Better yet (see the section on workarounds), do:

java -cp JavaClassFiles[:APPCLASSPATH] JavaGUIRipper -g GUIFILE -c MAINCLASS [-a
MAINCLASSARGS] [-u URL] [-w INITIALWAIT] [-e EXCEPTIONFILE] [-i IGNOREFILE]

The classpath of the application under test can be specified either in APPCLASSPATH (preferred; see the
section on workarounds) or as a semicolon-separated, quoted list of file URLs (each starting with “file:”) in
URL. When stripped of the URL formatting, URL ends up the same as APPCLASSPATH. GUIFILE is the GUI
file where the output will go. MAINCLASS is the name of the main class of the application under test, and
MAINCLASSARGS is a semicolon-separated, quoted(?) list of arguments (ARG1;ARG2;...) to pass to the main
class. JavaGUIRipper essentially invokes the application under test like this:

java —-cp APPCLASSPATH MAINCLASS ARG1 ARG2 ...

The last three arguments to JavaGUIRipper are not passed along to the application under test. INITTALWAIT
is the number of milliseconds to wait (e.g., for a splash screen to disappear) before starting to rip. EXCEPTIONFILE
and IGNOREFILE each list exceptions to be made to JavaGUIRipper’s rule that a GUI component is clicked
on during ripping if and only if its label ends in “...” (e.g., a menu item called “Open...”). By convention,
the “...” suffix indicates that the GUI component causes a new window to open, but not all applications
follow this convention. EXCEPTIONFILE lists the label of each additional GUI component that should be
clicked on during ripping even though its label does not end in “...”. IGNOREFILE lists the label of each GUI

http://www.cs.umd.edu/~atif/Benchmarks/

“

component that ends in “...” but, for whatever reason, should not be clicked on during ripping. In both
files, the labels should be separated by linebreaks.

You may want to modify the GUI file for various reasons—for example, to remove windows that are
redundant or events that you do not want to execute during testing (such as Print). To remove a window,
just delete its entry in the GUI file and modify the Invokelist property of any widgets that invoke it. To
remove an event, change the “_R_” in its name to “_N_” and delete its ReplayableAction property in the
GUI file.

2.3 Errors and workarounds

In JavaGUIRipper’s standalone mode, the “Spy” button is unreliable and only available under Windows.
The workaround is to use the non-standalone mode and specify an EXCEPTIONFILE.

If a java.lang.ClassNotFoundException occurs, and the class not found belongs to the application
under test, then the application’s classpath may not have been specified completely in APPCLASSPATH or URL.
Passing the classpath directly to Java (via APPCLASSPATH), rather than indirectly (via URL), is more reliable.

3 Generating an EFG or EIG

To generate an EFG from a GUI file, do:

EFG -g GUIFILE [-e EFGFILE]

java [-Xmx512m] -cp JavaClassFiles:JavaClassFiles/jdom.jar:JavaClassFiles/xercesImpl. jar

For an EIG, instead do:

EIG -g GUIFILE [-e EIGFILE]

java [-Xmx512m] -cp JavaClassFiles:JavaClassFiles/jdom.jar:JavaClassFiles/xercesImpl.jar

The Xmx512m option allocates more memory than normal to the JRE. GUIFILE is the GUI file to be read
in, and EFGFILE (EIGFILE) is the EFG (EIG) file where the output will go. If this option is not specified,
the output is sent to a file in the same directory as GUIFILE (e.g. if GUIFILE is /tmp/ex.GUI the output
goes to /tmp/ex.EFG).

4 Errors and workarounds

The error message “TERMINAL widget has no calling widget” occurs when a Widget element with value
“TERMINAL” for property “Type” is not reached from (i.e., its enclosing Window element is not a value
of) the “Invokelist” property of any other Widget element. Often this occurs because the Widget element’s
“Type” property value should actually be something else, such as “SYSTEM INTERACTION?”. In this case,
edit the GUI file accordingly.

In CVS, scripts Jaymie Expt0SS/scripts/summarize_gui, Jaymie Expt0SS/scripts/summarize_efg,
and Jaymie Expt0SS/scripts/unsummarize_efg can help diagnose and fix errors at this stage. Also in CVS,
the program Jaymie BigExpt/scripts/CheckEventReachability. java (which must be run with java’s “-
ea” option) can identify unreachable events in the event graph.

5 Generating test cases

5.1 Building the test-case generators

TODO

5.2 Running the test-case generators

java [-Xmx512m] -cp JavaClassFiles (StructuralTestCaseGenerator|CompleteTestCaseGeneraton
-g GUIFILE [-e (EFGFILE|EIGFILE)] -n NUMBER -1 LENGTH (-r|-s) [-d TARGETDIR]

StructuralTestCaseGenerator generates test cases whose events all belong to the same window. Test
cases generated by CompleteTestCaseGenerator can exercise more than one window per test case. In both
generators, the -r/-s option controls the order in which test cases are generated (randomly or sequentially,
respectively).

The Xmx512m option allocates more memory than normal to the JRE. GUIFILE and EFGFILE (EIGFILE)
are the locations of the GUI and EFG (EIG) files used to generate test cases. If no EFG or EIG file is
given, one is generated on the fly. If NUMBER is positive, NUMBER test cases of length LENGTH are generated;
if NUMBER is 0, all possible test cases of length LENGTH are generated. The generated test cases are written
to files in TARGETDIR, which defaults to the directory from which the test-case generator was invoked.

5.3 Errors and workarounds

StructuralTestCaseGenerator ignores the NUMBER given; it always generates all test cases. To generate
fewer test cases, interrupt StructuralTestCaseGenerator before it is finished (e.g., with Ctrl-C). This
problem does not occur with CompleteTestCaseGenerator.

6 Instrumenting code to get coverage data

6.1 Statement coverage

This section describes JGuitarInstrumentor, a component of GUITAR that instruments Java classes to
track statement coverage. Other tools to track statement coverage (and additional coverage metrics) that
have been used successfully with GUITAR include Emma (http://emma.sourceforge.net) and JCoverage
(http://www.jcoverage.com/).

6.1.1 Building the instrumentor
From CVS, check out GUITAR/src/JGuitarInstrumentor and GUITAR/src/Util. Use the included makefiles
(in the code directory of each project) to compile them (Util first) to GUITAR/bin/JavaClassFiles/.

6.1.2 Instrumenting an application

Since JGuitarInstrumentor expects the JavaClassFiles directory to be on the top level of your working
directory, you must cd to Guitar/bin/. Do

java -cp JavaClassFiles JGuitarInstrumentor

This displays a GUI (Figure , which lets you pick the Java source files you want to instrument.

http://emma.sourceforge.net
http://www.jcoverage.com/

= GUITAR Instrumentor
Location of Source Files:

Source Folder: II'
Existing Files Files to Instrument

<< Remove

Location to Copy Files to:

Destination Folder: II'

Instrument || Uninstrument || Close |

Figure 1: JGuitarInstrumentor GUI

On Unix, an error is reported in the shell:

’/bin/sh: instr2.cmd: execute permission denied ‘

You need to do

’ chmod u+x instr2.cmd ‘

to make it executable. If there are any resources (e.g. JAR files) that need to be in the classpath for
compiling the application, add them to instr2.cmd. Now do

’ ./instr2.cmd ‘

The JGuitarInstrumentor class is a wrapper around an instrumentor called instr. Documentation
for instr may be found at http://www.glenmecl.com/instr/instr.htm. Although instr can track both
statement and method coverage, JGuitarInstrumentor only looks at statement coverage.

An alternative to using JGuitarInstrumentor is to instrument and compile the the application on the
command line. First, copy the source files and resources (e.g. JAR files) for the application into a new direc-
tory. Now run the instrumentor on the copied source files, following the instructions at http://www.glenmccl.com/instr/instr.h
Finally, compile the instrumented source files, using the application’s makefile if it has one.

If you move an application to a different directory after instrumenting it, be aware that the _prof.prof
class may refer to the application’s files with absolute paths. If this is the case, the simplest remedy is to
copy the uninstrumented application to the desired new application and instrument it there.

6.1.3 Collecting coverage data

By default, when you run the instrumented application, the coverage information isn’t printed. To have
it printed, add the call _prof.prof.write() to the instrumented source code. This isn’t necessary when
running the application through JavaGUIReplayer, since the replayer calls _prof.prof.write() itself.
JavaGUIReplayer looks for the _prof directory in its own parent directory, not in the application’s
directory. Hence, _prof must be copied from the application’s directory to the JavaClassFiles directory.

http://www.glenmccl.com/instr/instr.htm
http://www.glenmccl.com/instr/instr.htm

6.1.4 Errors and Workarounds

When instrumenting large applications, _prof/prof.java may turn out to be too large to compile. The
workaround is modify _prof/prof.java so that entries in the array 1ns (and possibly files) are read from
a separate file.

If _prof.prof.write() may be called more than once per test case (e.g., after each step of the test case),
then, since the call to instr.ProfData alters files, 1ns, and cnt, the values of these variables before the
call should be restored after the call, and the method should be made synchronized. For example:

public static synchronized void write(String fileName)

{
String[] filesCopy = new String[files.length];
int[] 1lnsCopy = new int[lns.length];
System.arraycopy(files, 0, filesCopy, 0, files.length);
System.arraycopy(lns, 0, lnsCopy, O, lns.length);
instr.ProfData p = new instr.ProfData(files, lns, cnt, true);
p.writeQut(fileName, false);
files = filesCopy;
Ins = 1nsCopy;
java.util.Arrays.fill(cnt, 0);

6.2 Dataflow coverage

InsectJ, an instrumentation framework, can be used to instrument Java classes to track dataflow coverage
(in addition to other types of coverage such as branch, method, and class).

6.2.1 Installing the instrumentor

Follow the instructions at http://insectj.sourceforge.net/ to download and install the InsectJ Eclipse plug-in.

6.2.2 Instrumenting an application

The documentation at http://insect]j.sourceforge.net/ provides the technical details of the instrumentation
process. Briefly, the steps are as follows:

1. In a new Eclipse project, write and build one or more monitors (Java classes) that implement the
MonitorObject and DefMonitorInterface and/or UseMonitorInterface interfaces. In each moni-
tor’s processData method, which is called when the instrumented program exits, print the coverage
results to standard output or append them to a file. (Multiple monitor instances will be created when
the program runs—hence the importance of appending to a file rather than overwriting.) See the In-
sectJ documentation for details. Be aware that getName () and getCanonicalName() return null for
anonymous classes.

2. Close the monitors project and restart Eclipse. Because of a bug in InsectJ, you must restart Eclipse
each time you switch projects to reset the list of available monitors shown in the Run. .. dialog in step
7.

http://insectj.sourceforge.net/
http://insectj.sourceforge.net/

3. Create an Eclipse project for the program you want to instrument. To be compatible with InsectJ, the
project must use the Java 5 compiler. Make sure the project builds and runs without the instrumen-
tation.

4. Add InsectJ to the project’s classpath by right-clicking on the project icon and selecting the Add
InsectJ to classpath option.

5. Import the monitors project (as a package of class files or as a JAR) to the current project.

6. Create a directory called instrumented in the top-level directory of the current project, and copy all
of the (uninstrumented) class files into instrumented. This is the easiest way to ensure that classes
you choose not to instrument, as well as interfaces—which can’t be instrumented—end up alongside
the instrumented class files.

7. Open the Run... dialog and click on the Instrumentation tab. Add the DefProbelnserter and
UseProbelnserter to the project. Select the checkboxes for all classes and methods you want to
instrument. The checkboxes can act unpredictably sometimes, so carefully make sure that everything
you intended to check is indeed checked. (Click on the triangles to fully expand the tree view of the
project classes and methods.) Select the options to save the configuration to a file (insectconfig.xml)
and the instrumented classes to a directory (instrumented).

8. Click Run. Note that Insect] instruments classes on-the-fly when they are loaded, so a class file’s
instrumented counterpart is only placed in the instrumented directory if the class is loaded during
program execution. You may need to interact with the program a bit to cause each class to be loaded;
check timestamps in instrumented to ensure that each class file you intend to instrument is indeed
instrumented.

InsectJ is distributed with several sample monitors, including a SimpleDefUseMonitor class. These
monitors may suffice, depending on the task, or at least they may serve as templates for home-grown
monitors.

6.2.3 Collecting coverage data

To run the instrumented program outside of Eclipse, do

’java -cp PROBES/probes.jar -jar RUNTIME/runtime.jar CONFIGFILE PROJECTDIR

PROBES and RUNTIME are the parent directories of InsectJ’s probes. jar and runtime. jar files. CONFIGFILE
is the location of the InsectJ configuration file (e.g. insectconfig.xml). PROJECTDIR is the directory that
contains the instrumented class files (e.g. instrumented).

7 Replaying test cases
7.1 Building JavaGUIReplayer

7.2 Replaying on one machine

TODO JavaGUIReplayer, replay_scripts

7.3 Replaying on the cluster
TODO

7.4 Determining test case outcomes

TODO Oracle(Info)Verifier, OracleInfoParser

7.5 JavaGUIReplayer design
TODO

7.6 JavaGUIReplayer errors and workarounds
TODO

7.7 OracleVerifier, OracleInfoVerifier, and OracleInfoParser errors and workarounds

TODO

8 JavaProfiler

8.1 Building JavaProfiler

From CVS, check out GUITAR/src/User-Profiles. Use the included makefile (in the project’s code direc-
tory) to compile the code to GUITAR/bin/JavaClassFiles.

8.2 Running JavaProfiler

| java -cp User-Profiles[:APPCLASSPATH] Guitar DELAY |

APPCLASSPATH is the classpath of the application being profiled. DELAY is the delay (in milliseconds) used
in ControllerforProfiler.run(). Currently, the main class of the application to be profiled is hard-coded
into Guitar.loadclass (), but it is not difficult to change it or make it a parameter of JavaProfiler.

8.3 JavaProfiler design

Although JavaProfiler is written in Java, the design is primarily procedural. There are just three public
classes:

e theStackforProfile. With no apparent benefit, this class re-implements java.util.Stack.

e Guitar. The main method of this class calls Guitar.loadclass() and Guitar.startRecording() in
sequence. These methods invoke (via reflection) the main class of the application being profiled and
kick off the capture-and-record process. Unfortunately, the main class of the profiled application is
hard-coded to be the main class of GUITAR, but it is easy to make this an argument to JavaProfiler.
Probably duplicates parts of GUITAR.

e ControllerforProfile. The interesting stuff happens here.

1. run(). With length-delay pauses in between, the profiler traverses the GUI components of the
active window. A delay value of 500 (milliseconds) works well. Calls ActiveWindow() and
GetComponentFromWin ().

2. ActiveWindow(). Finds the currently-active GUI window. Probably duplicates parts of GUITAR.

3. GetComponentFromWin(). If the active window hasn’t already been instrumented with event
handlers, instrument it (via reflection). Calls getComponentVectorforWindow() to grab the
list of things to instrument. Adds the event handlers using addDynamicMenulListeners() and
addDynamicCompListeners().

4. getComponentVectorforWindow(). This traverses (depth-first) the components in the active
window. Delegates some of this to TraverseContainer (). Probably duplicates parts of GUITAR.

5. Button_Action Handler(), Text_Action Handler(), and Menu Action Handler(). These are
the available event handlers, triggered by myActionListenerforButton.actionPerformed(),
myFocusListener.focusLost(), and myActionListenerforMenu.actionPerformed(), respec-
tively. Each event handler gets the list of components in the active window (ActiveWindow() and
getComponentVectorforWindow), finds an integer index of the component based on its depth-
first-search ord er (getButtonLoc(), getTextLoc(), and getMenuLoc()), and records the event
in the log file (LogToFile()).

6. getButtonLoc(), getTextLoc(), and getMenuLoc(). Probably duplicates parts of GUITAR.
7. LogToFile(). Probably duplicates parts of GUITAR.

9 Mutation testing

9.1 Generating mutants

One way to generate mutants is with MuJava. To obtain MuJava, go to http://cs.gmu.edu/ offutt/mujava/
and follow the instructions to download and install. To run MuJava, change to the directory where MuJava
is installed (the directory containing mujava.config, mujava. jar, and so on) and do:

’java -cp classes:$CLASSPATH mujava.gui.GenMutantsMain

$CLASSPATH should include the paths specified in the MuJava installation instructions. The source
files to mutate should be in a sub-directory of the MuJava directory called src, and the corresponding class
files should be in classes, also a sub-directory of the MuJava directory.

9.2 Replaying mutants

To run, or replay a test case on, a mutated version of an application, either insert the path for the mutant
class into the classpath before the regular path for the application or substitute the mutant class itself into
the regular application. In the first case (altering the classpath), the mutant class will need to be placed in
a directory structure corresponding to its package structure.

Along with directories class mutants and traditional mutants, MuJava creates for each class the
directory original. This contains source and class files equivalent to, but not identical to, the original files
in src and classes. For example, the formatting is different (pretty-printed), and some extra information
is included (full package names for classes). The mutants are derived from this version of the class.

http://cs.gmu.edu/~offutt/mujava/

9.3 Errors and Workarounds

For some reason, MuJava refuses to operate on any class that extends a class in the javax.swing pack-
age. To get around this, one can construct a package fakeswing (in classes) and make the classes to
mutate (in src and classes) extend fakeswing classes instead. Once mutants are generated, the origi-
nal references to javax.swing need to be restored in the mutated source code, and the source code needs
to be recompiled. See fakeswing in /fs/guitar/MuJava mutants/, recompile mutants in CVS module
Jaymie Expt0SS/scripts, and cpmujava_orig files in CVS module Jaymie BigExpt/scripts/.

10 For more information...

TODO (GUITAR Web site, various publications)

	Introduction
	Ripping a GUI
	Building JavaGUIRipper
	Running JavaGUIRipper
	Errors and workarounds

	Generating an EFG or EIG
	Errors and workarounds
	Generating test cases
	Building the test-case generators
	Running the test-case generators
	Errors and workarounds

	Instrumenting code to get coverage data
	Statement coverage
	Building the instrumentor
	Instrumenting an application
	Collecting coverage data
	Errors and Workarounds

	Dataflow coverage
	Installing the instrumentor
	Instrumenting an application
	Collecting coverage data

	Replaying test cases
	Building JavaGUIReplayer
	Replaying on one machine
	Replaying on the cluster
	Determining test case outcomes
	JavaGUIReplayer design
	JavaGUIReplayer errors and workarounds
	OracleVerifier, OracleInfoVerifier, and OracleInfoParser errors and workarounds

	JavaProfiler
	Building JavaProfiler
	Running JavaProfiler
	JavaProfiler design

	Mutation testing
	Generating mutants
	Replaying mutants
	Errors and Workarounds

	For more information...

