
CMSC330 Spring 2017 Midterm 2  
 

Name (PRINT YOUR NAME ​as it appears on gradescope​ ): 
 

 __________________________________________________________________ 

  

Discussion Time (circle one)    10am    11am    12pm   1pm     2pm    3pm 

Discussion TA (circle one)   Aaron      Alex     Austin        Ayman      Daniel  Eric 

    Greg   Jake JT      Sam     Tal      Tim     Vitung 

 

Instructions 

● Do not start this test until you are told to do so! 
● You have 75 minutes to take this midterm. 
● This exam has a total of 100 points, so allocate 45 seconds for each point. 
● This is a closed book exam.  No notes or other aids are allowed. 
● Answer essay questions concisely in 2-3 sentences. Longer answers are not needed. 
● For partial credit, show all of your work and clearly indicate your answers. 
● Write neatly. Credit cannot be given for illegible answers. 

 
 

  Problem Score 

1 Finite Automata /20 

2 Context Free Grammars /20 

3 Parsing /13 

4 OCaml Programming /10 

5 PL Concepts /15 

6 Operational Semantics /9 

7 Lambda Calculus /13 

  Total /100 

 
  



1. Finite Automata (20 pts) 
 
A. (5 pts) Construct an NFA that accepts the same language as the regular expression .a |dcb *  
 
Possible Answers: 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



B. (5 pts) Reduce the following NFA to a DFA: 
 

 
 
Answer: 

  



C. (5 pts) Write a regular expression that accepts the same language as the NFA in problem B. 
 
 
Answer:​  (ba+)?b 
 
 
 
 
 
 
 
 
 
D. (3 pts) Can you write a regular expression for strings of length 5 or less that are palindromes 
(i.e., are mirror images of themselves)? Justify your answer. 
 
 
Answer:​ Yes, you can write a regular expression for strings of length 5 or less that are 
palindromes. Because of the finiteness of the language, you would be able to make a regex that 
unions all possible palindromes of length 5 or less. You cannot, however, write a regular 
expression for strings of an unbound length. 
 
 
 
 
 
 
 
 
E. (2 pts) True or ​False ​: there exist regular expressions that cannot be expressed as NFAs. 
 
 
Answer:​ False. 
 
 
  



2. Context Free Grammars (20 pts)  
A. (4 pts) Consider the following CFG, where ​a ​ and ​b​ are terminals, ​S​ and ​T​ are nonterminals.  
 

S​ -> ​a​T 
T​ -> ​bb​T​ | ​a 
 

Consider the following strings; circle those that are accepted by the above CFG. 
 
abb bba aa abbbba 
 
Answers:​ aa and abbbba 
 

 

B. (3 pts) Give a regular expression that accepts the same strings as the CFG as part A. 
 
 
Answer:​ a(bb)*a 
 
 
 
 

C ​. Consider the following CFGs (where ​and​, ​true ​, and ​false ​ are terminals, and ​A​ and ​S​ are 
nonterminals): 
 

CFG 1 

S​ -> ​S​ ​and​ ​A​ | ​A 
A​ -> ​true​ | ​false 

CFG 2 

S​ -> ​A​ ​and​ ​S​ | ​A 
A​ -> ​true​ | ​false 

 
a. (2 pts) Which CFG treats ​and​ as a left associative operator? 

 
Answer:​ CFG 1 

 
 

b. (2 pts) Which CFG ​cannot​ be used (as is) with a predictive parser? 
 

Answer:​ CFG 1  



D. Given the CFG: 
 

S​ -> ​S​*​S​ | ​T 
T​ -> ​a​ | ​b 
 

a) (3 pts) Give a leftmost derivation for the string ​a*a*b 
 

 

Answer:​ ​S​ -> ​S​*S -> ​S​*S*S -> ​T​*S*S​ -> a* ​S​*S -> a* ​T​*S -> a*a* ​S​ -> a*a* ​T​ -> a*a*b 
 

 

 

b) (3 pts) Give a different leftmost derivation for the string ​a*a*b 
 
 
Answer:​ ​S​ -> ​S​*S -> ​T​*S -> a* ​S​ -> a* ​S​*S -> a* ​T​*S -> a*a* ​S​ -> a*a* ​T​ -> a*a*b 
Answers for a and b can be reversed. 
 
 
 

c) (3 pts) Rewrite the grammar so it is unambiguous, treating ​* ​ as a left associative operator. 
 
 
Answer:​ S -> S*T | T 

  T -> a | b 
 
 
 
 
 

 
  



3. Parsing (13 pts) 
 
S​ → ​cd​ | ​b​A​ | ​A​a 
A​ → ​d​S​ | ​ε 
 
A. (5 pts) Calculate the first sets of the above grammar. 
 
FIRST(​S​) = { ​c, b, d, a ​ } 
 
FIRST(​A​) = {​ d, ​ε​ } 
  
 
B. (8 pts) Fill in the blanks for parse functions ​parse_S​ and ​parse_A​ for the CFG shown above. 
Both parse functions are of type ​unit -> unit​. You may use the following helpers, described 
in class, which have their type signatures listed next to them:  

● lookahead: unit -> string  

● match_tok: string -> unit 

● raise_error: unit -> unit 

(* Answers in bold *) 

let rec parse_S () =  

    if lookahead () = “c” then 

        (match_tok “c” ; match_tok “d”) 

  

    else if ​(lookahead () = “b”)​ then 
  ​match_tok “b”; 

   ​parse_A (); 
    else if ​(lookahead () = “d” || lookahead () = “a”)​ then 

  ​parse_A (); 
  match_tok “a”; 

    else 

  ​raise_error (); 
 

;; 

 

let rec parse_A () = 

 

    if ​(lookahead () = “d”)​ then  
  ​match_tok “d”; 
  parse_S (); 

    else  

  ​(); (* epsilon *) 
 



 

4. OCaml Programming (10 pts) 
Recall the SmallC interpreter from project 3. Here are some snippets from its code: 
 

type stmt = 

  | NoOp 

  | Seq of stmt * stmt 

  | Declare of data_type * string 

  | Assign of string * expr 

  | If of expr * stmt * stmt 

  | While of expr * stmt 

  | Print of expr 

 

let eval_stmt (e:env) (s:stmt) = match s with 

...  

| While(guard_expr, body) -> begin 

    let guard = eval_expr e guard_expr in 

    match guard with 

    | Val_Bool(true) -> eval_stmt (eval_stmt e body) s 

    | Val_Bool(false) -> e 

    | _ -> raise (TypeError("Can't use non-bool as while guard")) 

  end 

... 

 
Imagine a new ​stmt​ variant to represent a ​for​ loop: 
 
type stmt = … (* as above *) 

| For of stmt * expr * stmt * stmt  

 
The tuple elements represent the initialization, the condition, the increment, and the body, 
respectively. Take for example, the smallC code: 
 

for(i = 0; i < 10; i = i + 1) {printf(i)} 

 
In this case, the fields line up as follows: 

- i = 0​ is the initialization 
- i < 10​ is the condition 
- i = i + 1​ is the increment 
- printf(i)​ is the body 

 
After running (an updated version of) the lexer and parser, the example code above will be 
represented as:  



 

For (Assign (“i”, Int 0),  

     Less (Id “i”, Int 5),  

     Assign (“i”, Plus (Id “i”, Int 1)),  

     Print (Id “i”))  

 
Write the code for ​eval_stmt​ to handle ​for​ loops.​ The semantics must satisfy the following: 

- Before the first iteration, evaluate the initialization statement 
- As long as the condition is true, evaluate the body followed by the increment statement 

- If the condition is non-boolean, raise an exception 
(You might have a look at problem 6.C, below, before writing the code.) 
 
You may assume a full, correct implementation of the whole project is accessible to you, 
including: 

- eval_expr: env -> expr -> value 

- eval_stmt : env -> stmt -> env 

- Excluding ​for​ itself 
 

let eval_stmt (e:env) (s:stmt) = match s with 

... (* all previous statement types are handled *) 

| For (init, cond, incr, body) -> ​(* your code below *) 
 
 
Long Answer:  

    let init_env = eval_stmt e init in 

    let guard = eval_expr init_env cond in 

    match guard with 

      | Val_Bool(true) -> let body_env = eval_stmt init_env body in  

  let iter_env = eval_stmt body_env iter in 

  eval_stmt iter_env For(NoOp, cond, incr, body) 

      | Val_Bool(false) -> init_env 

      | _ -> raise (TypeError("Can't use non-bool as while guard")) 

 

 

Short Answer:  

    eval_stmt(e, Seq(init, While(cond, Seq(body, incr))))  
 
 
 
 
 
 



5. PL concepts (15 pts) 
 
A. (2 pts)  In SmallC, which stage detects if some variable ​x ​ is not declared before its first use? 
Circle the answer. 
 

Lexer Parser Interpreter  
 
 
B. (2 pts) True or​ False ​: An abstract syntax tree is the same as a parse tree. 
 
C. (2 pts) An object is best encoded by one or more of which of the following? Circle the 
answer. 
 
 

function closure module string 
 
 
D. (3 pts) The Java class ​Sequence​ (on the left) is partially encoded as OCaml code on the 

right. What code should go in the gray portion? 
 

class Sequence { 

  int s = 0; 

  void start (int r) { s = r; } 

  int next () { s++; return s; } 

} 

 

Sequence s = new Sequence(); 

s.start(10); 

int t = s.next(); 

int u = s.next(); 

let make () = 

 let s = ref 0 in  

 ((fun r -> ​s := r​), 
  (fun ()-> s := !s + 1; !s)) 

;; 

 

let (start, next) = make ();; 

start 10;; 

let t = next();; 

let u = next();; 

 
Answer in bold 
 
  



E. (6 pts) Rewrite the ​smush​ function to make it ​tail recursive ​ (without changing its type). Here, 
the ^ operator is string concatenation (i.e., ​“hello ” ^ “there” = “hello there”​). You are 
welcome to write helper functions. 
 

let rec smush xs = match xs with 

  [] -> “” 

| h::t -> h^(smush t);; 

 

smush [] = “”;; 

smush [“this ”; “is the ”; “word”] = “this is the word”;; 

 
 

Answer: 
let rec smush xs = match xs with 

[] -> [] 
|[h] -> h 
| h1::(h2::t) -> smush ((h1 ^ h2)::t) 

;; 
 
 
 
 
 
 
 
 
 
 
  



6. Operational Semantics (9 pts) 
 
A. (3 pts) Consider the operational semantics rules from the lecture notes for MicroOCaml, 
using an environment-based presentation. 
 

A(x) = v  
A; x ⇒ v 

A; n ⇒ n 

A; e1 ⇒ v1    A,x:v1; e2 ⇒ v2  
A; let x = e1 in e2 ⇒ v2 

A; e1 ⇒ n1     A; e2 ⇒ n2     n3 is n1+n2  
A; e1 + e2 ⇒ n3 

 
The following is a derivation of the program ​let x = 3 in x+y ​ under an environment that initially 
maps y to 3. Fill in the three missing parts. 
 
•,y:3,x:3; x ⇒ 3       •,y:3,x:3; [        ​y ​         ] ⇒ 3 
[    ​•,y:3.x:3 ​   ]; x+y ⇒ 6___________  
•,y:3; let x = 3 in x+y ⇒ [          ​6 ​          ] 
 
Answers in bold 
 
B. (3 pts) The following rule is part of the operational semantics for SmallC: 
 
A; e ​⇒​ true  

A; s1 ​⇒​ A’​_______  

A; if e s1 s2 ​⇒​ A’ 
 
Explain this rule, in words. Your explanation should be something of the variety ​if under 
environment A expression e evaluates to … then … ​etc. 
 
Answer:  

If under environment A expression: 
● e evaluates to true, and 
● s1 evaluates to A’ 

Then under environment A ​if e s1 s2 ​evaluates to A’ 
 

 
 
 
 
 
 
 



C. (3 pts) One of the operational semantics rules for while loops in SmallC is the following 
 
A; e ​⇒​ true  

A; s ​⇒​ A1 
A1; while e s ​⇒​ A2  

A; while e s ​⇒​ A2 
 
Choose the rule below that is the equivalent one for ​for​ loops. Here we write ​for s1 e s2 s 
as corresponding to the SmallC syntax ​for(s1; e; s2){s}​. The ​skip​ statement is equivalent 
to a no-op. 
 
 
 

(A) (B) 

A; s1 ​⇒​ A1 
A1; e ​⇒​ true 
A2; s ​⇒​ A3 
A3; s2 ​⇒​ A3 
A; for s1 e s2 s ​⇒​ A3 
 

 

(C) 

A; s1 ​⇒​ A1 
A1; e ​⇒​ true 
A1; s ​⇒​ A2 
A2; s2 ​⇒​ A3 
A3; for skip e s2 s ​⇒​ A4 
A; for s1 e s2 s ​⇒​ A4 
 

(D) 

A; s1 ​⇒​ A1 
A1; e ​⇒​ true 
A1; s2 ​⇒​ A2 
A2; s ​⇒​ A3 
A3; for skip e s2 s ​⇒​ A4 
A; for s1 e s2 s ​⇒​ A4 

A; s1 ​⇒​ A1 
A1; e ​⇒​ true 
A2; for skip e s2 s ​⇒​ A3 
A3; s2 ​⇒​ A4 
A; for s1 e s2 s ​⇒​ A4 

 

 
 
7. Lambda Calculus (13 pts) 
 
A. (1 pt) ​True ​ or False: The lambda calculus can encode all computable functions. 
 
 
 
B. (2 pts) Circle all occurrences of free variables in the following λ-term. 
 

x ​ (λx.x (λy.x y) ​y ​) 
Free variables bolded 



C. (2 pts) Determine whether the following λ-terms are α-equivalent (1 point each). 
 

(λx.λy.y x) x      and      (λz.λy.z y) x      yes  /  ​no 
 

λx.x λy.y z x and λv.v λy.y x v       yes  /  ​no 
 
D. (2 pts) Perform one step of β-reduction on the following λ-term. (Perform alpha-conversion if               
necessary.) 
 

(λx.λ​y​.x ​y​) (y λy.y) 
 
(λx.λz.x z) (y λ ​y ​.​y ​) α-conversion (y -> z) 
 
(λ ​x ​.λz.​x ​ z) ​(y λa.a) α-conversion (y -> a) 
 
(λz.(y λa.a) z) β-reduction (x -> (y λ ​a ​.​a ​)) 

 
E. (5 pts) A programming language uses an evaluation strategy to determine when to evaluate               
the argument(s) of a function call. Reduce the following lambda expression using a call-by-value              
(aka ​eager​) strategy and a call-by-name (aka ​lazy​) strategy.  
 
Call-by-Value  
(λx.λy.x y z) (λc.c) ((λ​a ​.​a ​) ​b ​) 
 
(λ ​x ​.λy.​x ​ y z) ​(λc.c)​ b β-reduction (a -> b)  
 
(λ ​y ​.(λc.c) ​y ​ z) ​b β-reduction (x -> (λc.c))  

* First two reductions can be swapped 
((λ ​c ​.​c ​) ​b​ z) β-reduction (y -> b)  
 
b z β-reduction (c -> b)  
 
Call-by-name 
(λ​x​.λy.​x​ y z) ​(λc.c)​ ((λa.a) b) 
 
(λ ​y ​.(λc.c) ​y ​ z) ​((λa.a) b) β-reduction (x -> (λc.c)) 
 
(λ ​c ​.​c ​) ​((λa.a) b)​ z β-reduction (y -> ((λa.a) b)) 
 
((λ ​a ​.​a ​) ​b​) z β-reduction (c -> ((λa.a) b)) 
 
b z β-reduction (a -> b) 
 


