
CMSC330 Spring 2017 Final Exam Solution

Name (PRINT YOUR NAME ​as it appears on gradescope​):

 __
Discussion Time (circle one) 10am 11am 12pm 1pm 2pm 3pm

Discussion TA (circle one) Aaron Alex Austin Ayman Daniel Eric

 Greg Jake JT Sam Tal BT Vitung

Instructions
● The exam has 19​ pages (front and back); make sure you have them all.
● Do not start this test until you are told to do so!
● You have 120 minutes to take this exam.
● This exam has a total of 130 points, so allocate 55 seconds for each point.
● This is a closed book exam. No notes or other aids are allowed.
● Answer essay questions concisely in 2-3 sentences. Longer answers are not needed.
● For partial credit, show all of your work and clearly indicate your answers.
● Write neatly. Credit cannot be given for illegible answers.

Problem Score

1 PL Concepts /10

2 Lambda Calculus /8

3 OCaml /30

4 Ruby /14

5 Prolog /22

6 Regexps, FAs, CFGs /22

7 Parsing /8

8 Operational Semantics /6

9 Security /10

 TOTAL /130

1

(This page intentionally left blank)

2

1. Programming Language Concepts (10 points)

A. (6 points) Circle True or False for each statement.

T​ ​ / F Ruby uses implicit declarations
T / ​F Ruby code blocks are equivalent (have the same power as) OCaml closures
T​ ​ / F Backtracking is necessary for Prolog programs to provide multiple answers
T / ​ ​F A function call in OCaml can overflow the stack if it uses tail recursion
T / ​F Multiple implementations of an abstract data type (ADT) can safely interoperate
T​ / F ADTs are only possible in languages with static typing

B. (2 points) Predicate ​max​ takes 3 integer arguments and succeeds if the third argument is the maximum
of the first two.

max(X,Y,Z) :- X =< Y, !, Y = Z.

max(X,Y,X).

The cut in above code is a (circle the right answer) Green cut ​Red cut

C. (1 point) Which memory management technique may have difficulty freeing cyclic structures?

a) Mark & Sweep Garbage Collection
b) Stop & Copy Garbage Collection
c) Reference Counting
d) Malloc & Free

D. (1 point) A type error in your code has gone unnoticed during testing because the line containing the
error was never executed. The language most likely uses (circle one)

Static Typing Dynamic Typing

3

2. Lambda Calculus (8 pts)

A. (1 pt) The lambda expression ​λf.λy.f y p​ is alpha-equivalent to which one of the following
lambda expressions (circle the correct one)?

a) λg.λy.g (y p)

b) λf.(λy.f (y p))

c) (λf.λy.f y) p

d) (λf.λx.(f x) p)

B. (1 pt) Fully reduce the following lambda calculus term

(λa.λc.c) z --> ​λ​c.c

C. (3 pts) Fully reduce the following lambda calculus term

((λa.λc.λb.a c b) c) z

λ​b. c z b

D. (3 pts) In the standard encoding, ​true​ is encoded as ​λx.λy.x​, while ​false​ is encoded as
λx.λy.y​, and ​if a then b else c​ is encoded as ​a b c​. So, for example, ​if true then true
else false​ is encoded as (​λx.λy.x) ​(​λx.λy.x) ​(​λx.λy.y).

Give the lambda calculus encoding of the ​not​ function such that ​not true​ reduces to ​false​; i.e., ​not
(​λx.λy.x)​ would reduce to ​(λx.λy.y)​ (and ​not false​ reduces to ​true​).

λ​a. a false true

Or, more specifically: ​λ​a. a (​λx.λy.y)​ (​λx.λy.x)

Equivalent alternative: (​λ​a.​λ​b.​λ​c. a c b)

4

3. OCaml (30 pts)
A. (8 pts) Consider the following function

let rec f l =

 match l with

 [x] -> x

 | h::t ->

 let m = f t in

 if h > m then h else m

1) (2 pts) What is the type of ​f​? 1

‘a list -> ’a

The next three questions ask you to consider the result of execution. For these, and for others below,
if execution proceeds normally, indicate the final result. If it raises an exception or it loops infinitely,
indicate that. If there is a type error, indicate that.

2) (2 pts) What is the result of executing ​f [1;2;"3"]​ ?

Type error

3) (2 pts) What is the result of executing ​f [3;2;7]​ ?
7

4) (2 pts) What is the result of executing ​f []​ ?
Match_failure exception

1 ​Hint: the comparison function > is polymorphic.

5

B. (7 pts) The following type definitions encode a finite automaton. They resemble the definitions from 2

your project 4, but use OCaml records, rather than tuples.

type​ state = int
type​ transition = { ​curr​: state; ​sym​: char; ​next​: state }

type​ fa = { ​initial​: state; ​final​: state list; ​delta​: transition list }

Here are two example finite automata (i.e., ​mach0​ and ​mach1​ both have type ​fa​):

let mach0 =

 { ​initial​ = 0;
 ​final​ = [1];
 ​delta​ = [
 { curr = 0; sym = 'a'; next = 0 };

 { curr = 0; sym = 'b'; next = 1 }

]

 }

let mach1 =

 { ​initial​ = 0;
 ​final​ = [0;1];
 ​delta​ = [
 { curr = 0; sym = 'a'; next = 0 };

 { curr = 0; sym = 'b'; next = 1 };

 { curr = 1; sym = 'a'; next = 2 };

 { curr = 1; sym = 'b'; next = 1 };

 { curr = 2; sym = 'a'; next = 2 };

 { curr = 2; sym = 'b'; next = 2 }

]

 }

Consider the following function:

let foo m =

 let rec aux ss =

 match ss with

 [] -> false

 | s::ss0 -> s = m.initial || aux ss0 in

 aux m.final

1) (2 pts) What is the type of ​foo​?
fa -> bool

2) (2 pts) What is the result of evaluating ​foo mach0​?
false

2 ​These automata are meant to be deterministic, but that actually doesn’t matter for this problem. (The ​fa​ type
definition prevents automata from having epsilon transitions, but there’s nothing stopping you from making an ​fa
transitioning from one state to multiple other states on the same input character.)

6

3) (2 pts) What is the result of evaluating ​foo mach1​?
true

4) (1 pt) What does ​foo​’s result say about the strings the automaton will accept?
One of them is the empty string

C. (7 pts) Consider the following function:

let bar m =

 let aux x l = if List.mem x l then l else x::l in

 List.fold_left (fun ss t ->

 let ss' = aux t.curr ss in

 let ss'' = aux t.next ss' in

 ss'') (aux m.initial m.final) m.delta

Here, the function ​List.mem​ has type ​‘a -> ‘a list -> bool​; executing ​List.mem x l​ returns
true​ if ​x​ appears anywhere in list ​l​, and returns ​false​ otherwise. ​List.fold_left​ is the ​fold
function we have used in class, having type ​(‘a -> ‘b -> ‘a) -> ‘a -> ‘b list -> ‘a​.

1) (2 pts) What is the type of the ​bar​ function?
fa -> state list

2) (2 pts) What is the result of evaluating ​bar mach0​?
[0;1]

3) (2 pts) What is the result of evaluating ​bar mach1​?
[2;0;1]

4) (1 pt) What information about the given automaton is ​bar​ computing?
All of the states of the automaton

7

D. (8 pts) Write the function ​is_dead_state​, having type ​fa -> state -> bool​, where
is_dead_state m s​ returns ​true​ if ​s​ is a dead state in ​m​ (and ​false​ otherwise). A dead state is one
in which all transitions from the state go back to itself, and the state is not a final state. As such
is_dead_state mach1 2 = false​ but i​s_dead_state mach1 3 = true​.

let is_dead m s =

if List.mem s m.final then false

else

let rec aux trans =

match trans with

[]->true

|h::t->if s = h.curr && s <> h.next then false

 else aux t

in aux m.delta

Or (there are many more)

let is_dead m s =

 if List.mem s m.final then false

 else

 List.fold_left

 (fun isdead t -> isdead && (if t.curr = s then t.next = s else true))

 true m.delta

For your reference, here are the type definitions again:

type​ state = int
type​ transition = { ​curr​: state; ​sym​: char; ​next​: state }

type​ fa = { ​initial​: state; ​final​: state list; ​delta​: transition list }

8

4. Ruby (14 pts)
We want to transfer your midterm grades from gradescope to grades server. We have a course roster file
roster.csv​. The following code reads in the file, creating a​ ​Student​ ​object for each non-comment
line it sees, and storing that object in the​ ​students​ ​hash.

class Student

 attr_accessor :last, :first, :uid, :dirid, :score

end

students = {}

File.open("roster.csv", "r") do |f|

 f.each_line { |line|

 rec = getdata(line) ​ # you will implement this
 if not rec.empty? then

 s = Student.new

 s.last = rec[0]

 s.first = rec[1]

 s.uid = rec[2]

 s.dirid = rec[3]

 s.score = 0

 students[s.dirid] = s

 end

 }

end

The​ ​roster.csv​ ​file is formatted as comma-separated-values (CSV) as shown here:

#Lastname,Firstname,UID,DirectoryID

SquarePants,SpongeBob,123456789,spants

Cheeks,Sandy,114123398,scheeks

Laguna,Jack Kahuna,123456778,jlag34

…

We also have a​ ​gradescope.csv​ ​file, which has a different format. It mentions a student’s ​first and last
name​, ​directory ID​, and ​score​:

#Name(first last),DirectoryID,Score

SpongeBob SquarePants,spants,88

Sandy Cheeks,scheeks,93

Jack Laguna,jlag34,77

…

9

A. (4 pts) Implement the​ ​getdata(line)​ ​method called from the code above. It should return an array
containing the relevant student values for the given ​line​. If it sees a line starting with​ ​#​ i​t should return
the empty list. You do not need to worry about malformed input.

def getdata(line)

 if line.start_with?("#") then

 []

 else

 line.chomp.split(",")

 end

Alternative (use regular expression):

if /^#/ =~ line then

 []

else

line.split(‘,’)

end

end

B. ​(4 pts) The following is code that reads in the ​gradescope.csv​ file (whose format is given above).
Fill in the missing code, which should take the read-in ​rec​ and use it to update the ​score​ field of the
relevant​ ​Student​ ​object in the​ ​students​ ​hash.

File.open("gradescope.csv", "r") do |f|

 f.each_line { |line|

 rec = get_gs_data(line) ​# reads the line from the file; not shown
 if not rec.empty? then

 # rec[0] is firstlast, rec[1] is dirid, rec[2] is score

 ​# fill in code below​ to update student objects with a score

dirid = rec[1]

if students[dirid] then

 students[dirid].score = rec[2]

end

 end

 }

10

end

C. ​(4 pts) Finally, the grades server requires the data in the following format:

#DirID,Score

spants,88

scheeks,93

jlag34,77

Use a code block​ to iterate over the​ ​students​ h​ash to produce output in the above format (you don’t
have to print the comment ​#DirID,Score​).

students.each {|k,v|

 printf "%s,%s\n",v.dirid,v.score

}

D. (2 pts) Sometimes students enter their gradescope UserId improperly: instead of using their Directory
ID, they use their UID. Which of the following choices best describes what will happen when running the
code above, if they do this?

a) It will work fine -- the output will be the same in both cases
b) It will work, but instead of outputting the directory ID and the score, it will output the UID and

the score
c) It will fail to associate the score with the proper user, and thus output a score of 0
d) It will fail with an exception

Either c or d could be correct, depending on what their code does; a or b definitely are not. (Give
credit for either c or d; don’t bother looking at their code.)

11

5. Prolog (22 pts)
A. (14 pts) Consider the following predicates:

plays(flagTwirlers, flags).

plays(plankton, keyboard).

plays(squidward, clarinet).

plays(patrick, mayo).

plays(patrick, drums).

plays(spongebob, drums).

plays(spongebob, spatula).

twoPlayers(X) :- plays(Y, X), plays(Z, X), Y \= Z.

talented(X) :- plays(X, Y), plays(X, Z), Y \= Z.

band1([], []).

band1([H | T], [X | Y]) :-

 talented(H), !, plays(H, X), band1(T, Y).

band2([], []).

band2([H | T], [X | Y]) :-

 plays(H, X), band2(T, Y), \+ member(H, T).

For each query, state whether the query is ​true​ or list all of the substitution(s) that make the query true.
If the query is ​false​ or if there are no substitutions, write ​false​. For full credit (2 pts each), queries
with multiple substitutions must have their substitutions listed in the correct order.

a) ​?- plays(patrick,X).
X = mayo;
X= drums.
b) ​?- twoPlayers(X).
X=drums;
X=drums.
c) ​?- talented(squidward).
false.
d) ​?- band1([patrick, flagTwirlers], X).
false.
e) ​?- band1(X, [drums, mayo]).
X=[patrick,patrick]
f) ​?- band2(X, [drums, drums]).
X=[patrick,spongebob];
X=[spongebob,patrick].
g) ​?- band2([spongebob, plankton, flagTwirlers], Y).
Y=[drums,keyboard,flags];
Y=[spatula,keyboard,flags].

12

B. (6 pts) Write the Prolog predicate ​solo(Player,Band)​ which is ​true​ when ​Player​ appears
exactly once​ in ​Band​. Backtracking may produce multiple answers. You may use standard library
predicates.

?- solo(squidward,[squidward,patrick,patrick]).

true.

?- solo(patrick,[squidward,patrick,patrick]).

false.

?- solo(X,[squidward,patrick,flagTwirlers]).

X = squidward;

X = patrick;

X = flagTwirlers.

count(X,[],0).

count(X,[H|T],N) :- X = H, count(X,T,N2), N is N2+1.

count(X,[H|T],N) :- X \= H, count(X,T,N).

solo(P,B) :- member(P,B),count(P,B,1).

(or)

solo(X,[X|T]) :- \+ member(X,T).

solo(X,[Y|T]) :- solo(X,T), X \= Y.
(or)

solo(P,B) :- member(P,B), select(P,B,NB), \+ member(P,NB).

(or)

solo(P,B) :- append(X,[P|A],B), \+ member(P,X), \+ member(P,A).

C. (2 pts) Consider the following two implementations of the list membership predicate ​member(X,L).

(a)
member(X,[X|L]) :- !.

member(X,[Y|L]) :- member(X,L).

(b)
member(X,[X|L]).

member(X,[Y|L]) :- member(X,L).

Give a query that will produce a different answer for implementation (a) than for implementation (b).

Form of answer is
member(_,[...]) ​for any list … that has more than one element

13

6. Regexps, FAs, CFGs (22 pts)

A. (2 pts) Give a regular expression for the set of all binary sequences whose first and last bits are
different. For example, 1110 has different first and last bits while 1011 does not.

(0(0|1)*1) | (1(0|1)*0)

B. (4 pts) Draw an NFA for the regular expression a*(b|cd)*.

C. (4 pts) Show that the following context-free grammar is ambiguous by giving two leftmost
derivations of a string in the language of the grammar.

S​ → a​S​ | a​S​b​S​ | c

S->aS->aaSbS->aacbS->aacbc

S->aSbS->aaSbS->aacbS->aacbc

14

D. (8 pts) Consider the following NFA over the alphabet {a,b}.

a. (3 pts) Give a regular expression for the set of strings accepted by the NFA.

(a|b)*a

b. (5 pts) Convert the NFA into an equivalent DFA.

E. (4 pts) The following context-free grammar for partial regular expressions over the alphabet {a,b}
has left-recursive productions. Rewrite the grammar so that ​no productions are left-recursive
and ​concatenation has lower precedence than the Kleene star​.

R​ → ​RR​ | ​R​*​ ​| ​A
A ​→ a | b

15

R -> TR | T
T -> AP
P -> *P | epsilon
A -> a | b

7. Parsing (8 pts)

Consider the following code, which implements a recursive descent parser in OCaml in the same style as
example code we provided for your project 5.

exception ParseError of string

let tok_list = ref [];;

let lookahead () =

 match !tok_list with

[] -> raise (ParseError "no tokens")

 | (h::t) -> h

let match_tok a =

 match !tok_list with

(* checks lookahead; advances on match *)

| (h::t) when a = h -> tok_list := t

| _ -> raise (ParseError "bad match")

let rec parse_S () =

 let t = lookahead () in

 match t with

 | 'a' ->

 match_tok 'a';

 parse_S ();

 match_tok 'a'

 | 'b' ->

 match_tok 'b';

 parse_S ();

 match_tok 'b'

 | '+' -> match_tok '+'

 | _ -> raise (ParseError "parse error")

;;

A. (4 pts) Write the CFG that expresses the strings accepted by this parser.

16

S -> aSa | bSb | +

B. (4 pts) Give two valid strings that belong to this language
a+a
b+b

8. Operational Semantics (6 pts)
A. (2 pts) The operational semantics judgment ​A;​ ​e ⇒ v​ states that ​“under environment ​A​, expression
e ​evaluates to value ​v​.”​ Write an operational semantics rule that states ​“under environment ​A​,
expression ​if e1 e2 e3​ evaluates to ​v​ if under ​A​ expression ​e1​ evaluates to ​0​, and under ​A​ expression
e3​ evaluates to ​v​.”

A; e1 ⇒ 0

A; e3 ⇒ v

A; if e1 e2 e3 ⇒ v

B. (4 pts) Plankton’s computer wife Karen has been having some medical issues lately. Being that you’re
a professional SmallC semantics doctor, he asks you to take a look at her corrupted version of the SmallC
operational semantics and see if you can make a diagnosis.

Recall that an environment ​A​ is a map from variables to integers. The SmallC judgment ​A;​ ​s ⇒ A’
states that under environment ​A​, statement ​s​ executes and produces a new environment ​A’​. (The
environment ​A’​ might differ from ​A​ in the case that there are assignments in ​s​.) The SmallC judgment
A;​ ​e ⇒ n​ states that under environment ​A​ expression ​e​ evaluates to some number ​n​.

You figure out that each of the following rules has one mistake. Circle the mistake in each rule and label
it with a short (no more than a few words) explanation of what’s wrong.

Sequence Integer Assignment

 A; s​1​ ⇒ A​1
__ ​A; s​2​ ⇒ A​2​___
A; s​1​;s​2​ ⇒ A​2

A(​x​) = ​n​ ​(for some ​n​)
____ ​A; e ⇒ ​n’​_______
A; ​x​ = e ⇒ A[​x ​↦ e]

For the first: A; s2 ⇒ A2 should be A1; s2 ⇒ A2
For the second: the conclusion A; x = e ⇒ A[x ↦ e] should be A; x = e ⇒ A[x ↦ n’]

17

9. Security (10 pts)
Suppose Spongebob constructed a web service to let people know which friends are active on his
machine. The web server receives the request as a parameter ​user​, which is given to the following Ruby
method:

def is_active(user)

 ​user.gsub!(/[;&|!#]) # blacklist: sufficient to check for or sanitize [;&|]
 ​(or, better:)
 user.gsub!(/\W/,' ') # whitelist only alpha characters

 found = system ("ps aux | cut -c1-#{user.length} | grep #{user} > /dev/null")

 if found then

 puts "#{user} is active"

 else

 puts "#{user} is inactive"

 end

end

The ​system()​ call invokes a shell command. This command checks the OS process table to see if the
given user has an active process by calling ​ps​ to get all active processes, calling ​cut​ to truncate the
output to just the first ​N​ columns where ​N​ is the length of ​user​, and calling ​grep​ to look in this output
for the given ​user​.

A. (1 pt) SpongeBob is considering the “network user” attack model, and realizes his code might be
vulnerable to an attack. What kind of attack is it (circle one)?

Command injection XSS SQL injection Buffer overflow

B. (3 pts) Give a value of ​user​ (i.e., a particular string) that will exploit the vulnerability in

is_active​ to compromise the ​integrity​ of SpongeBob’s system.

 “foo; echo aha > foo”

Basically: Anything following a semicolon that modifies the system in some way\

18

C. (3 pts) Modify the ​is_active​ method above with a fix to the vulnerability. Be as precise as
possible, but you may write pseudocode for Ruby methods you can’t remember.

D. (1 pt) Suppose SpongeBob decides to password-protect his service to reduce the chances of harm.
For this purpose he sets up a database with a ​Users​ table that has a row for each user containing
the user’s ​name​ and ​password​. Web clients provide this data via a web form which transmits it
to SpongeBob’s Ruby code running on the server. This code turns it into a query to the ​Users
table. Considering the “network user” attack model, what attack might SpongeBob’s code be
vulnerable to?

Command injection XSS SQL injection Buffer overflow

E. (2 pts) What was the most challenging bug for you to find and fix in project 7?

Just has to be a bug that you actually had to fix in the project. E.g., buffer overflow would
be 0!

19

