
 1

CMSC330 Fall 2016 Midterm #1
2:00pm/3:30pm

Name:

Discussion Time: 10am 11am 12pm 1pm 2pm 3pm
TA Name (Circle): Alex Austin Ayman Brian Damien Daniel K.
 Daniel P. Greg Tammy Tim Vitung Will K.
Instructions

• Do not start this test until you are told to do so!
• You have 75 minutes to take this midterm.
• This exam has a total of 100 points, so allocate 45 seconds for each point.
• This is a closed book exam. No notes or other aids are allowed.
• Answer essay questions concisely in 2-3 sentences. Longer answers are not needed.
• For partial credit, show all of your work and clearly indicate your answers.
• Write neatly. Credit cannot be given for illegible answers.

 Problem Score

1 Programming Language Concepts /13

2 Regular Expressions /10

3 Ruby execution /10

4 Ruby Programming /15

5 OCaml Typing /16

6 OCaml Execution /18

7 OCaml Programming /18

 Total /100

 2

1. Programming Language Concepts (13 pts)

A. (4pts) What will be the value of y in the following block of OCaml code, first evaluated
with static scoping, and then re-evaluated with dynamic scoping:

let x = 10;;
let f =
 let square y = x * x in
 let x = 20 in
 square x;;
let y = f;;

Static:

Dynamic:

B. (2pts) Name an advantage and a disadvantage of using an interpreted language: (One

sentence answer for each of advantage and disadvantage)

C. (1pt) One of the most important features of functional programming languages is
a) Immutable data structures
b) Statements with side effects
c) Iterative control structures
d) Implicit type definition

D. (1pt) Which is a true statement about lists in Ruby and OCaml?

a) Ruby lists are heterogenous; OCaml lists are homogenous.
b) Ruby lists are homogenous; OCaml lists are heterogenous.
c) Ruby lists and OCaml lists are heterogenous.
d) Ruby lists and OCaml lists are homogenous.

E. (1pt) Which of the following OCaml features is only possible because of closures:

a) Tail Recursion
b) Type Inference
c) Partial Application
d) Pattern Matching

F. (1pt) A typing system which allows the type of a variable to change within a function is
considered to have __________ typing.

G. (1pt) A language which only lets the programmer use a variable after they have declared
it is considered to have _________ declaration

H. (1pt) The `==` operator in Ruby and the `=` operator in OCaml are equivalent
a) True
b) False

I. (1pt) The terms “closure” and “function pointer” have the same meaning

a) True
b) False

 3

2. Regular Expressions (10 pts)

A. (3 pts) Write a Ruby regular expression for a password that must have at least 1 letter
and at least 1 digit.

B. (2 pts) Give an example that adheres to the following regex:

/^[a-zA-Z0-9_\-.]+@[a-zA-Z0-9_\-.]+\.[a-zA-Z]{2,5}$/

C. (2 pts) Write the output of the following code:

 “HIST100 (about the past)” =~ /[A-Z]{4}(\d{3}) (.+)/
 puts $1
 puts $2

D. (3 pts) Write the output of the following code: (Recall that foo.inspect gives the
representation of foo as it would appear in source code, e.g. [1,2,3].inspect is
"[1,2,3]".)

s = “Computers need electricity.”
a = s.scan(/[a-z]+/)
puts a.inspect

 4

3. Ruby Execution (10 pts)
Write the output of the following Ruby programs. If the program does not execute due to an error, write
NO OUTPUT instead. Recall that foo.inspect gives the representation of foo as it would appear in
source code, e.g. [1,2,3].inspect is "[1,2,3]".

A. (4 pts)
def myFun(x)
 yield x
end

myFun(3) { |v|
 str = v % 2 ? "foo" : "bar"
 puts "#{v} #{str}"
}
Output:

B. (3 pts)
x = [5, 10]
x[3] = 20
y = x
y << ["a", "b"]
puts x.inspect

Output:

C. (3 pts)
foo = {1 => ["apple"], 2 => "kiwi", 3 => "yam"}
bar = foo.keys.sort { |a,b|
 foo[b].length <=> foo[a].length
}
puts bar.inspect
Output:

 5

4. Ruby Programming (15 pts)
You will be implementing a Ruby class named WordCounter which will read English text from a
file and allow you to query the number of times a given word appears. For the purposes of this
question, a word is a sequence of alphabetic characters. In our input files, words will be
separated by whitespace and the following other characters: . , " : ;

You must implement the following methods. You may of course implement any other helper
methods you wish. (5 points each):

initialize(filename): Reads the text from the file, extracts the words from the text, and
stores them in an appropriate data structure. You may find it useful to use the
IO.foreach method, which takes a filename and a code block, and passes each
line in the file to the code block in turn, automatically closing the file when it
reaches the end. Example usage:

IO.foreach("myfile.txt") { |line| puts line }

count(word): Returns the number of occurrences of word in the file. For the purposes of
this question, words which differ by capitalization are considered different words,
e.g. “Cat” and “cat” would be considered separate words.

each: Takes a code block and passes each word-and-count pair to it in turn. The order in
which word-and-count pairs are passed to the block does not matter. You may
assume that a code block will always be passed.

Example:

had.txt:
James had had "had," but John had had "had had."

example usage:
wc = WordCounter.new("had.txt")
puts wc.count("had")
wc.each do |word, count|
 puts "#{word}: #{count}"
end

output:
7
James: 1
had: 7
but: 1
John: 1

 6

class WordCounter

end

 7

5. OCaml Typing (16 pts)
Write Ocaml expression or definition of the following types without using type annotation:

A. (2 pts) (int * float) list

B. (3 pts) int -> string -> (int * string) list

C. (3 pts) 'a -> ('a -> bool) -> string

2. What is the type of the following expression?
A. (2 pts) ([1;2], “foo”)

B. (3pts) let f x y = x::(y x 2)

C. (3 pts) let rec f x = match x with
 |[] -> []
 |h::t -> match h with
 |(a,b) -> if (a = b) then a::(f t) else b::(f t);;

 8

6. OCaml Execution (18 pts)

To the right of each code snippet, write what the variable res contains after executing the given
code. Note that each code snippet contains syntactically and semantically valid OCaml code.

A. (3 pts)
let rec f x y = if y = 0 then x else f y (x mod y);;
let res = f 9 6;;

Output:

B. (3 pts)
let a = ref "big";;
let b = ref "data";;
a := "buzz";;

let res = ((!a), (!b))

Output:

C. (4 pts)
let proc f x y = if f x y > 0 then x else y;;
let res = proc (fun a b -> a * b) (-2) 4

Output:

D. (4 pts)
let rec map f = function
 | [] -> []
 | x :: xs -> let z = f x in z :: map f xs
;;

let res =
 let f x y = x := !x + (y * y); !x in
 map (f (ref 0)) [1;2;3;4];;

Output:

 9

E. (4 pts) (Hint: pervasive max of type val max : 'a -> 'a -> 'a returns the greater
of the two arguments.)

type int_tree =
 | Leaf
 | Node of int * int_tree * int_tree
;;
let rec bar = function
 | Leaf -> -1
 | Node(x, l, r) -> 1 + max (bar l) (bar r)
;;
let res =
 let t = (Node(1, Node(2, Leaf, Node(3, Leaf, Leaf)), Leaf)) in
 bar t

Output:

7. OCaml programming (18 pts)

A. (6 pts) Using fold and/or map, write a function multi_map of type (‘a -> ‘a) ->

(‘a * int) list -> ‘a list. This new higher order function applies the input
function to each element of the input list however many times are specified by the
second element of the tuple. Output order must be the same as the input order. If a
negative int is encountered, do not apply the function to that element.

Example input:
multi_map (fun x -> x * x) [(5, 1); (7, -1); (2, 3); (10, 2)]
> [25, 7, 256, 10000]

let rec map f l = match l with
 [] -> []
 | h::t -> let r = f h in r :: map f t
;;

let rec fold f a l = match l with
 [] -> a
 |h::t -> fold f (f a h) t
;;
Helper functions are allowed!

 10

B. (6 pts) Using fold and/or map, write a function relative of type int list -> int
list. This function decreases each element in the input list by the list’s smallest integer.

Example input:
Relative [100; 80; 90]
> [20; 0; 10]

C. (6 pts) Using fold and/or map, write a function max_repeat of type ‘a list -> int.
This function finds the maximum number of times an element of the input list is repeated
in a row. If the list is empty, the result should be 0.

Hint: The pervasive max might make your implementation easier.

val max : 'a -> 'a -> 'a
Return the greater of the two arguments.

Example input:
max_repeat [1; 2; 2; 2; 0; 3; 3; 3; 3]
> 4

