

CMSC330 Fall 2015 Midterm #1

12:30pm/2:00pm/5:00pm

Name:

Discussion Time: 10am 11am 12pm 1pm 2pm 3pm
TA Name (Circle): Adam Maria Chris Chris Michael Candice
 Amelia Amelia Samuel Josh Max

Instructions
· Do not start this test until you are told to do so!
· You have 75 minutes to take this midterm.
· This exam has a total of 100 points, so allocate 45 seconds for each point.
· This is a closed book exam. No notes or other aids are allowed.
· Answer short-answer questions concisely in 2-3 sentences. Longer answers are not needed.
· For partial credit, show all of your work and clearly indicate your answers.
· Write neatly. Credit cannot be given for illegible answers.

 Problem Score

1 PL Concepts /13

2 Ruby Regular Expressions /10

3 Ruby Execution /18

4 Ruby Programming /14

5 OCaml Typing /15

6 OCaml Execution /15

7 OCaml Programming /15

 Total /100

1

1. Programming Language Concepts (13 pts)
a) (3 pts) What is the difference between dynamic typing and type inference?

Dynamic typing means type checking that occurs at run-time. Type inference is done at
compile time, to infer types.

b) (3 pts) What is the key difference between a function pointer and a closure?

Possible answers:

• A function pointer is just a pointer to code, whereas a closure also includes an
environment.

• A function pointer cannot be safely returned from another function if it refers to
that function’s variables; a closure can be.

c) (2 pts) True or False: Static typing is compatible with implicit declarations.

d) (3 pts) Multiple choice: What do we mean when we refer to first-class functions?

a. These are functions that are implemented using objects; i.e., they have a class
b. First-class functions have the same status as other data, i.e., they can be created

in and returned from (other) functions, and stored in data structures
c. These are functions that encode an object
d. These are things like Ruby code blocks

e) (2 pts) Suppose we have a variable x of type int ref. Circle those statements below that
are true (you may circle either, neither, or both):

1) x is immutable
2) the storage that x points to is immutable

2

2. Ruby Regular Expressions (10 pts)

a. (3 pts) Give an English description of the strings matched by Ruby regexp C?[msc]*330

An optional C; followed by 0 or more m’s, s’s, and c’s; followed by 330.

b. (4 pts) Circle which of the following strings matches the Ruby regexp [aeiou][0-9]+$

“who13” "o123o" "a2" "cmsc330"

c. (3 pts) Give a Ruby regexp that denotes the language of strings with any number of a’s
and an odd number of b’s

 a*b(a*ba*ba*)*

3

3. Ruby Execution (18 pts)
To the write of each Ruby code snippet below, indicate what happens when you run the code. If
there is a run-time error write FAIL; otherwise, write what is printed out. Assume that the nil
object prints as “(nil)” (and not the empty string).

a) (4 pts) Answer: CS\nMath\n
h = { 1 => “CS”, 2 => “Math” }
h.keys.each{ |x| puts “#{h[x]}” }

b) (3 pts) Answer: FAIL (array index using string)
a = []
a[1] = 0
puts a[“hello”]

c) (3 pts) Answer: (nil)\n(nil)\n(nil)\n2\n
a = []
a[3] = 2
puts a

d) (4 pts) Answer: 1.234
ws = “1.23 4 hello fred”
x, y, z = ws.split(/\s/)
puts x+y

e) (4 pts) Answer: 2
class Thing
 @@things = 0
 def initialize(name)
 @name = name
 @@things += 1
 end
 def self.get_things
 return @@things
 end
end
Thing.new("thing20");
Thing.new("thing6")
puts Thing.get_things

4

4. Ruby Programming (14 pts)
On the next page is the initial Ruby implementation of a class Set, which implements a
collection of distinct elements. This implementation contains a constructor (initialize) and
method add. Extend the implementation with any 2 of the following 3 functions (7 pts each)

○ member?(x) returns true if x is in the set, false otherwise
○ elems returns a copy of the contents of the set as an array (order doesn’t matter)
○ union(x) returns a new set that contains all the elements in the receiving set

and the elements in x

For full credit, do not change the existing methods or add methods beyond those required of
you. If you can’t figure it out without such changes, you can make them for partial credit.

Here is an IRB session with the class.

>> s1 = Set.new
=> #<Set:0x007fd0f38f5608 @s={}>

>> s1.add(1).add(1)
=> #<Set:0x007fd0f38f5608 @s={1=>true}>

>> s1.member?(1)
=> true

>> s2 = Set.new
=> #<Set:0x007fd0f38ffbf8 @s={}>

>> s2.add(1).add(2).add(2).elems
=> [1, 2]

>> s3 = Set.new
=> #<Set:0x007fd0f390f788 @s={}>

>> s3.add(3).add(4).add(2)
=> #<Set:0x007fd0f390f788 @s={3=>true, 4=>true, 2=>true}>

>> s4 = s1.union(s3)
=> #<Set:0x007fd0f503b100 @s={1=>true, 3=>true, 4=>true, 2=>true}>

>> s4.elems
=> [1, 3, 4, 2]

5

Answer to problem 4:

 class Set

 def initialize
 @s = { }
 end

 def add(x)
 @s[x] = true
 return self
 end

 # put your member?, elems, and union methods below

 def member?(x)
 return (@s[x] != nil)
 end

 def union(m)
 t = Set.new
 @s.keys.each { |element|
 t.add element
 }
 m.elems.each { |element|
 t.add element
 }
 t
 end

 def elems
 @s.keys
 end

 end

6

5. OCaml Typing (15 pts)

a) (3 pts) What is the type of the following OCaml expression?

(6, [1;2;3;4;5;6])

int * int list

b) (4 pts) What is the type of foo in the following OCaml definition?

 let rec foo x y =
 match x with
 [] -> []
 | h::t -> if h = y then x else y::(foo t y)
 ;;

‘a list -> ‘a -> ‘a list

c) (4 pts) Write an OCaml expression or definition of type (int * string) list

[(1,”hello”)]

d) (4 pts) Write an OCaml expression or definition of type (int -> int) -> int -> int

Possible answers:

• fun f -> fun x -> let z = f 1 in x+z
• let foo f x = (f 1)+x

7

6. OCaml Execution (15 pts)
To the right of each code snippet, write what the variable res will contain after executing the
code. Write FAIL if an exception is thrown.

a) (3 pts) Answer: 1

 let f (a,b) = a;;
 let res = f (1,2);;

b) (4 pts) Answer: [12;10;17;20]

 let rec map f l = match l with [] -> [] | h::t -> (f h)::map f t
 let clip x =
 if x < 10 then 10 else
 if x > 20 then 20 else x
 ;;
 let cliplist l = map clip l;;
 let res = cliplist [12;0;17;80];;

c) (4 pts) Answer: 102

 let g x y = fun b -> if x = b then b+x else b+y;;
 let res = g 48 100 2;;

d) (4 pts) Answer: FAIL (match case missing)

 let rec trans f w =
 match w with
 ([x],[y],[z]) -> (f x, f y, f z);;
 trans (fun x -> x+1) ([1],[2],[3;4]);;

8

7. OCaml programming (15 pts)
Below is some code provided in project 2b: the type int_tree of a binary search tree of
integers, and the function int_insert that returns a new tree with an element added.

type int_tree =
 IntLeaf
 | IntNode of int * int_tree * int_tree

let rec int_insert x t =
 match t with
 IntLeaf -> IntNode(x,IntLeaf,IntLeaf)
 | IntNode (y,l,r) when x > y -> IntNode (y,l,int_insert x r)
 | IntNode (y,l,r) when x = y -> t
 | IntNode (y,l,r) -> IntNode(y,int_insert x l,r)

On the next page, Implement any three of the following four functions. (If you do all four, all
will be graded, and the result scaled to be out of 15 points.)

1) print_preorder t, with type int_tree -> unit, prints out the contents of the tree t in
preorder (i.e., the node, then the left tree’s contents, then the right tree’s contents). You can use
the print_int function for printing integers.

2) min_node t, with type int_tree -> int, returns the minimum element of the tree, or
throws exception Invalid_argument “min_node” if the tree is empty. Should run in time
O(height of the tree).

3) is_emptytree t, with type int_tree -> bool, returns true of the tree is empty, and
false otherwise.

4) sum t, with type int_tree -> int, returns the sum of all the elements that appear in t.

Here are some example uses:

let tr = int_insert 7 (int_insert 2 (int_insert 5 IntLeaf));;
print_preorder tr;; (* prints 527 *)
let x = min_node tr;; (* x contains 2 *)
let y = is_emptytree tr;; (* y contains false *)
let w = is_emptytree IntLeaf; (* w contains true *)
let z = sum tr;; (* z contains 14 *)

9

Answer to problem 7 here

let rec print_preorder t =
 match t with
 IntLeaf -> ()
 | IntNode (y,l,r) -> print_int y; print_preorder l; print_preorder r
;;

let rec min_node t =
 match t with
 IntLeaf -> invalid_arg "min_node"
 | IntNode (y,IntLeaf,_) -> y
 | IntNode (y,l,_) -> min_node l;;

let rec is_emptytree tr =
 match tr with IntLeaf -> true | _ -> false;;

let rec size t =
 match t with
 IntLeaf -> 0
 | IntNode (y,l,r) -> 1 + size l + size r
;;

