Quantum algorithms

Andrew Childs
University of Maryland

UMIACS

University of Maryland

hi Institute for Advanced

COMPUTER SCIENCE Computer Studies

UNIVERSITY OF MARYLAND

JOINT CENTER FOR
QUANTUM INFORMATION
AND COMPUTER SCIENCE

Overview

0. Introduction
|.Algebraic problems

2. Quantum walk

3. Hamiltonian simulation
4. Quantum linear algebra
5. Optimization

6. Machine learning

0. Introduction

The origin of quantum speedup

Quantum computers allow for interference between computational paths

N L, T L T

To perform a computation, we should arrange that
* paths to the solution interfere constructively
* paths to non-solutions interfere destructively

Quantum mechanics gives an efficient representation of high-dimensional interference

Quantum computing # exponential parallelism

Can we just explore all potential solutions in parallel and pick out
the correct one?

No! The linearity of quantum mechanics prohibits this.

Specifically, unstructured search over [V items requires (v N) queries.
To get significant speedup, quantum computers need to exploit structure.

Key question: What kinds of problems have the right structure for quantum
computers to exploit?

Simon’s problem

Given a black-box function f: {0,1}" — R

0 0...01 x
Promise: There is some s € {0,1}" such that I I o I
flx) = f(y) ifandonlyifx = yorz =9y ® s

S S1 Sn—1Sn Tr oD s

Problem: Find s

Classically, we can query random inputs until we find a collision. By the birthday
problem, this takes about /2" steps. This is essentially optimal.

But quantumly, there is a |-query algorithm that learns a random x orthogonal to s.
This can be repeated O(n) times to determine s with constant probability.

The collision problem
Given a black-box function f: {0,1}" — R N = 2"

Promise: fis either |-to-l or 2-to-|

ST B A

Problem: Determine which holds

Can be solved with O(N'/3) queries

* query K items
* search through remaining items for a duplicate
e cost O(K + +/N/K) is minimized with K = ©(N1/3)

This is optimal! No exponential speedup.

The prospect of quantum speedup

The collision problem does not have enough structure to allow a fast quantum
algorithm

Simon’s problem is a special case with enough additional structure to give a fast
quantum algorithm (but not a fast classical algorithm) — exponential speedup

Major questions: VWWhat problems have fast quantum algorithms?

What structures enable exponential speedup!?

Another important question: VWhen can we get polynomial quantum speedup, and
how much is possible?

|.Algebraic problems

Hidden symmetry

Simon’s problem exemplifies a more general class of problems with hidden symmetry

Hidden subgroup problem: Given a known group G and a black-box function
f: G — R.Promised that f is constant on cosets of some (unknown) subgroup
H < G and distinct on different cosets. Goal: find (a generating set for) H.

D) = i Yoea) = i T 0110}

“Standard method’:

Discarding second register gives a coset state |gH) = \/7 D nhepy |gh) fora
uniformly random (unknown) g

Abelian HSP applications

Finite abelian groups:

* Discrete log

* Decomposing abelian groups
* Counting points on curves

Infinite abelian groups:

* Factoring

* Pell’s equation (z° — dy* = 1)

* Unit group of a number field

* Principal ideal problem, class groups
* Ray class groups, Hilbert class fields

Nonabelian HSP: Examples and applications

When (G is a nonabelian group, polynomially many queries suffice.

Efficient algorithms known for specific HSPs: normal subgroups, metacyclic groups,
Heisenberg/extraspecial groups, etc.

HSPs with exciting potential applications:
* Symmetric group: graph isomorphism, code equivalence
* Dihedral group: lattice problems

A standard method algorithm for the symmetric group HSP would require highly
entangled measurements

“Kuperberg sieve” solves the dihedral HSP in subexponential time
* No quantum speedup for lattice problems
* Subexponential quantum algorithm for elliptic curve isogenies

2. Quantum walk

From random to quantum walk

Quantum analog of a random walk on a graph.

ldea: Replace probabilities by quantum amplitudes.
Interference can produce radically different behavior!

classical

e et . quantum

Continuous-time quantum walk

o 2 /0
Graph G: i ek
13 \8

adjacency matrix

Random walk on G

State: Probability p,(t) of being
at vertex v at time ¢
d

D ics: —p = Lp
ynamics dtp D

—_ o O =

1

_ o O

0

—_— O = = O

—_ O = O

0

/ 2 —1
—~1 3
—1 0

—1

0
\ 0 -1

Laplacian

Quantum walk on ¢

dt

d

-1 0 0
0 -1 -1
2 =1 0
-1 3 -1
0 -1 2

State: Amplitude a.(t) to be at
vertex v at time ¢

d

Dynamlcs 1—a = Lad

1—a = Aa

dt

Exponential speedup

Quantum walk from |in) stays in the
3 : column subspace (uniform superpositions
over vertices at fixed distance from in).

This walk rapidly reaches a state with
significant overlap on |out).

1n out

Using polynomially many queries, a
—— S classical algorithm cannot distinguish the
graph from an infinite binary tree rooted
at 1n.

Problem: Given the label of in and an
adjacency-list black box for the graph,
find the label of out.

Discrete-time quantum walk

A walk with discrete time steps is a little harder to define.

On a path: |z) — jﬁ(\x — 1)+ |z +1))2 e e Not unitary!

Solution: Introduce another register (“coin”) that remembers the previous position

(reduces the potential for interference, but only slightly)

For a stochastic transition matrix P, P,

* Reflect about span{|y,) :v e V'} m

where [1),,) = Z \/Puv|v,u>

uevVv

* Swap the edge direction: S = Z u, v) (v, u
u,veV

Quantum walk search

Problem: Given a graph G = (V, E) with a subset M C V of marked vertices. Using
an oracle that tells whether a vertex is marked, determine whether M is empty.

Take a random walk until we reach a marked vertex.
Time to hit a marked vertex is O(1/d¢), where

6 = spectral gap of walk €= |M|/|V]
1 -6

Consider the Szegedization of the absorbing walk that remains
at a marked vertex

Perform phase estimation on 1)) ngM V)
This state is invariant if [M| = 0 and lives in eigenspaces with

phase Q(Vde) if | M| # 0,s0 O(1/v/ d¢) steps of the walk

suffice to determine whether | M| = 0.

Quantum walk search: examples

Unstructured search: G = complete graph on N vertices 0 =0(1) e=1/N
O(N) O(VN)
Element distinctness:
Given f: [N| — R, are there distinct x,y € [N]|with f(x) = f(y)? [N = {l.....N}
QUN)
Consider walk on Hamming graph H(N, K)

vertices = [N]", edges between K-tuples that differ in one coordinate

store function values associated with the K inputs
0 =Q(1/K) e=Q((K/N)?)
complexity K 4 N/\@, optimized with K = N2/3

This provides a powerful, general tool for search problems

3. Hamiltonian simulation

Simulating Hamiltonian dynamics

“... nature isn’t classical, dammit,
and if you want to make a
simulation of nature, you'd better
make it quantum mechanical, and
by golly it’s a wonderful problem,
because it doesn’t look so easy.”

Richard Feynman (1981)
Simulating physics with computers

Quantum simulation problem: Given a
description of the Hamiltonian H, an
evolution time ¢, and an initial state |¢(0)),
produce the final state |¢/(t)) (to within
some error tolerance ¢)

A classical computer cannot even represent
the state efficiently.

A quantum computer cannot produce a
complete description of the state.

But given succinct descriptions of

* the initial state (suitable for a quantum
computer to prepare it efficiently) and

* a final measurement (say, measurements
of the individual qubits in some basis),

a quantum computer can efficiently answer

questions that (apparently) a classical one

cannot. Simulation is BQP-complete!

omputational quantum physics

e (NI C =
Bt 1“ MEa1o K

+4

quantum chemistry condensed matter physics/ nuclear/particle
e.g., hitrogen fixation) properties of materials physics

Implementing quantum algorithms

linear/
exponential evaluating differential
speedup by Boolean equations, adiabatic
quantum walk formulas convex optimization

optimization

Product formulas

To get a better approximation, use higher-order

L
Suppose we want to simulate f = Z H,y formulas.

(=1
E.g., second order:

Combine individual simulations with the Lie (6_iAt/2T6_iBt6_iAt/2r)r — g HATB)t

product formula. E.g., with two terms: + O3 /r?)
- —1At/r _—iBt/r\" _ _—i(A+B)t . . .
Lim (e €) =e Systematic expansions to arbitrary order are

(e—z’At/re—z’Bt/r)"“ _ 6—i(A+B)t 4+ O(tz/r) known
Using the 2kth order expansion, the number of

To ensure error at most ¢, take exponentials required for an approximation
r — O((HHHt)Q/e) with error at most € is at most

. LHHHt 1/2k
Gives simulation of d-sparse Hamiltonians 52kL2\\H\\t(:)

with complexity poly(d)

Post- Irotter algorithms |

Linear-time simulation

“No Fast-Fowarding Theorem”: simulation for time ¢ has complexity €2(%)

Applying phase estimation to a Szegedization of H gives an O(t) simulation

High-precision simulation

Directly implement the truncated Taylor series of exp(—iHt), cost O(¢ 1olgoﬁ)(gt(/t€/)e))
LCU Lemma:implement U =} . 38;V; with complexity O(}_. |3;)

This is the optimal dependence on ¢

Post- [rotter algorithms ||

Optimal tradeoff

Quantum signal processing (QSP) implements polynomials ofa H
given “block-encoded” Hamiltonian (or more general matrix) S

Gives d-sparse Hamiltonian simulation with cost O(dt + log(1/¢))
QSP and “quantum singular value transformation” provide
versatile tools for other tasks
Lattice Hamiltonians
Can do even better if the Hamiltonian has spatially local interactions

All above methods use ©2(n°) gates to simulate n spins with local interactions
for constant time

Combining forward and backward evolution and applying Lieb-Robinson bounds,
can improve this to O(n), which is optimal

Also other algorithms using multiproduct formulas, interaction picture, randomization, other norms, ...

Product formulas strike back

Numerical simulations suggest that product formulas can perform much better than
straightforward bounds show

Can give tighter bounds using integral representations of the error, e.g.,

t T1
e—the—zAt B e—z(A—I—B)t — /d’]‘l / d7o 6—7/(14—|—B)(t—7'1)67,(7'2—7'1)B[147 B]G—ZTgBe—fLﬁA
0 0

Provides bounds that can take advantage of small commutators between terms

In particular, shows that product formulas nearly reproduce the complexity of
for lattice Hamiltonians

Can give even better bounds with information about the initial state

4. Quantum linear algebra

Quantum linear systems algorithm

Given an N x N system of linear equations Ax = b, find x = A~ 'b

Classical (or quantum!) algorithms need time €2(/V) just to write down x
What if we change the model?

* A is sparse; given a black box that specifies the *Can efficiently prepare a quantum state |b)
nonzero entries in any given row or column *Goal is to prepare a state |z) A_l‘b>

We can do this in time poly(log N, 1/¢, k) where x := ||A| - [|[A™}|
Algorithm estimates the eigenvalues of A (in superposition) and replaces them by
their inverse (using postselection)

Subsequent improvements do the same with complexity poly(log(1/¢)) using
variable-time amplitude amplification and LCU

Differential equations

We can apply a similar framework to other linear-algebraic tasks. For example:

Given a system of linear differential equations Em = Ax + b

with the ability to prepare |b) and |z(0)), and a sparse matrix oracle for A,
prepare |z(1")) for some desired final time T’

Approach: apply a finite difference approximation to give a linear system; solve it
with the QLSA

Generalizations give improved performance and also handle time-dependent
coefficients, partial differential equations, some nonlinear differential equations, ...

Applications!?

Linear equations and differential equations are ubiquitous. Surely we can use this for
something!?

Proposals: electromagnetic scattering, machine learning, finance, ...

The input/output requirements impose serious constraints. So far there is no
compelling end-to-end application with rigorous evidence for speedup. Can we find

one!?

5. Optimization

Discrete optimization

Grover’s algorithm = quadratic speedup for minimization

Graph algorithms

* shortest paths

* minimum spanning trees

* maximum flows/matchings

Speeding up exponential-time algorithms for NP-hard problems (SAT, subset sum,
lattice problems, TSP, set cover, ...)

Some of these algorithms introduce interesting new tools:
* quantum backtracking using quantum walk
* quantum methods for dynamic programming

Continuous optimization

Linear/semidefinite programming
* polynomial speedups based on Gibbs sampling
* faster algorithms in a stronger input model

Gradient-based algorithms
* Fast algorithm for computing gradients
* Minimization using gradient descent

* Quantum query speedup for convex optimization with membership and evaluation
oracles

* For high-dimensional non-smooth convex optimization with a gradient oracle,
cannot achieve a quantum speedup as a function of the allowed error

Adiabatic optimization and QAOA \ -

Strategy: encode a constraint problem with a diagonal Hamiltonian. Start in known\
ground state of a simple, non-diagonal Hamiltonian. Slowly interpolate to the H(1)
problem Hamiltonian to produce its ground state.

Complexity depends on the minimum spectral gap, but this is hard to estimate.

Often this is done with a Hamiltonian that has all negative off-diagonal entries
(“stoquastic”). Then we can in principle apply quantum Monte Carlo (a classical
algorithm), but its efficiency is also unclear.

Related strategy: quantum approximate optimization algorithm (QAQOA).Alternate
between diagonal & off-diagonal evolutions with optimized parameters.

6. Machine learning

Quantum machine learning

A challenge: much of the impressive success of classical machine learning is empirical

Quantum algorithms for some ML tasks have been proposed, e.g., recommendation
systems

Data structures that enable coherent quantum access can be exploited classically

Other proposed algorithms for principal component analysis, clustering, etc.
Potential for quantum speedup is unclear.

Another direction: computational learning theory

Learn a concept given the ability to interact with it quantumly
* query access to a concept c: {0,1}" — {0, 1}
* quantum examples > . /p,|x, c(x))

Conclusion

Outlook

Finding quantum algorithms is hard!

e Quantum mechanics is honintuitive
* Classical algorithms are powerful
* We have limited quantum techniques

But we have come a long way in the 30 years since Shor’s algorithm

* New exponential speedups
* New techniques
* Much better understanding of quantum query complexity

Large-scale quantum computers could dramatically change our understanding of
quantum algorithms

Further reading

Quantum Algorithm Zoo:
Lecture notes:
Montanaro survey:

QIP tutorials:

* Andras Gilyen (2020):

* Andrew Childs (2021, longer version of this talk):
* Robin Kothari (2024):

Topical surveys:

* quantum walk search (Santha):

* quantum walk (Reitzner, Nagaj, Buzek):

* algebraic problems (Childs, van Dam):

* optimization (de Wolf):

* computational learning theory (Arunachalam, de Wolf):

https://arxiv.org/abs/1511.04206
http://www.koushare.com/video/videodetail/4073
https://youtu.be/M0e5gkf7QSQ
https://youtu.be/4jJswyS9ieg
http://quantumalgorithmzoo.org
http://cs.umd.edu/~amchilds/qa/
https://arxiv.org/abs/0808.0059
https://arxiv.org/abs/1207.7283
https://arxiv.org/abs/0812.0380
https://youtu.be/1-2LIopvNIk
https://arxiv.org/abs/1701.06806

