Quantum algorithms for hidden nonlinear structures

Andrew Childs
Waterloo

Leonard Schulman
Caltech

Umesh Vazirani
Berkeley
Shor’s algorithm finds hidden linear structures

[Shor 94]: Efficient quantum algorithms for factoring integers and calculating discrete logarithms.
Shor’s algorithm finds hidden linear structures

[Shor 94]: Efficient quantum algorithms for factoring integers and calculating discrete logarithms.

Factoring \rightarrow Period finding over \mathbb{Z}

(hidden linear structure in one dimension)
Shor’s algorithm finds hidden linear structures

[Shor 94]: Efficient quantum algorithms for factoring integers and calculating discrete logarithms.

Factoring \rightarrow Period finding over \mathbb{Z}
(hidden linear structure in one dimension)

Discrete log \rightarrow Finding a hidden line in $\mathbb{Z}_p \times \mathbb{Z}_p$
(hidden linear structure in two dimensions)
Shor’s algorithm finds hidden linear structures

[Shor 94]: Efficient quantum algorithms for factoring integers and calculating discrete logarithms.

Factoring \rightarrow Period finding over \mathbb{Z}
(hidden linear structure in one dimension)

Discrete log \rightarrow Finding a hidden line in $\mathbb{Z}_p \times \mathbb{Z}_p$
(hidden linear structure in two dimensions)

Key idea: The Fourier transform of a linear structure exhibits sharp constructive interference that reveals the answer.
Shor’s algorithm finds hidden linear structures

[Shor 94]: Efficient quantum algorithms for factoring integers and calculating discrete logarithms.

Factoring \rightarrow Period finding over \mathbb{Z}
(hidden linear structure in one dimension)

Discrete log \rightarrow Finding a hidden line in $\mathbb{Z}_p \times \mathbb{Z}_p$
(hidden linear structure in two dimensions)

Key idea: The Fourier transform of a linear structure exhibits sharp constructive interference that reveals the answer.

Are there other ways to create sharp constructive interference over a high-dimensional space?
Beyond Shor: The hidden subgroup problem

One way to generalize: Find hidden linear structures (i.e., subgroups and their cosets) in more general (possibly non-abelian) groups.
Beyond Shor: The hidden subgroup problem

One way to generalize: Find hidden linear structures (i.e., subgroups and their cosets) in more general (possibly non-abelian) groups.

Tool for exploiting interference: Non-abelian Fourier analysis
Beyond Shor: The hidden subgroup problem

One way to generalize: Find hidden linear structures (i.e., subgroups and their cosets) in more general (possibly non-abelian) groups.

Tool for exploiting interference: Non-abelian Fourier analysis

Potential applications are exciting:

- Symmetric group: Graph automorphism, graph isomorphism
- Dihedral group: Finding short lattice vectors [Regev 03]
Beyond Shor: The hidden subgroup problem

One way to generalize: Find hidden linear structures (i.e., subgroups and their cosets) in more general (possibly non-abelian) groups.

Tool for exploiting interference: Non-abelian Fourier analysis

Potential applications are exciting:

- Symmetric group Graph automorphism, graph isomorphism
- Dihedral group Finding short lattice vectors [Regev 03]

... but these cases appear hard.
\[(F_q)^d\]

\[d \text{ fixed} \]
\[q \to \infty \]

courtesy of the NAIC Arecibo Observatory, a facility of the NSF
Quantum computers can find hidden nonlinear structures

Shifted subset problems

Two examples:

- Hidden radius problem (partial solution, by *Fourier sampling*).
- Hidden flat of centers problem (complete solution for d odd, by *quantum walk*).

Both have:

- Polynomial-time quantum algorithms.
- A black-box formulation with exponential classical query complexity.

Hidden polynomial problem

- Naturally formulated as a black-box problem with exponential classical query complexity.
- Quantum query complexity is polynomial.
Hidden radius problem

Quantum formulation: Suppose we can sample a quantum state that is uniform over points on a sphere of radius r, with the center chosen uniformly at random.
Hidden radius problem

Quantum formulation: Suppose we can sample a quantum state that is uniform over points on a sphere of radius r, with the center chosen uniformly at random.

(There is a black-box version of this problem in which a quantum computer can produce these states, but a classical computer requires exponentially many queries (in $\log q$) to determine any bit of r.)
Hidden radius problem

Quantum formulation: Suppose we can sample a quantum state that is uniform over points on a sphere of radius r, with the center chosen uniformly at random.

(There is a black-box version of this problem in which a quantum computer can produce these states, but a classical computer requires exponentially many queries (in $\log q$) to determine any bit of r.)

Theorem. There is quantum algorithm that determines $\chi(r)$ in time $\text{poly}(\log q)$, provided $d = O(1)$ is odd.
The Fourier transform of a sphere

From symmetry considerations, we should perform a d-dimensional Fourier transform. What does the resulting state look like?
The Fourier transform of a sphere

From symmetry considerations, we should perform a \(d \)-dimensional Fourier transform. What does the resulting state look like?

\[\sum_{x \in \mathbb{F}_q} \omega^\text{tr}(k \cdot x) \]
The Fourier transform of a sphere

From symmetry considerations, we should perform a d-dimensional Fourier transform. What does the resulting state look like?

$$
\sum_{x \in \mathbb{F}_q, x \cdot x = 1} \omega_p^{\text{tr}(k \cdot x)} = e^{i\phi} \sqrt{q^{d-2}} K_{\chi^d} \left(\frac{k \cdot k}{4} \right)
$$

where $K_{\eta}(a) := \sum_{x \in \mathbb{F}_q} \eta(x) \omega_p^{\text{tr}(ax + x^{-1})}$ is the η-twisted Kloosterman sum.
The Fourier transform of a sphere

From symmetry considerations, we should perform a d-dimensional Fourier transform. What does the resulting state look like?

$$\sum_{x \in \mathbb{F}_q} \omega_p^{\text{tr}(k \cdot x)} = e^{i \phi} \sqrt{q^{d-2}} K \chi^d \left(\frac{k \cdot k}{4} \right)$$

where $K_{\eta}(a) := \sum_{x \in \mathbb{F}_q} \eta(x) \omega_p^{\text{tr}(ax + x^{-1})}$ η-twisted Kloosterman sum

Such sums have many interesting properties.

Theorem [Weil 48]. $|K_{\eta}(a)| \leq 2 \sqrt{q}$
The Fourier transform of a sphere

From symmetry considerations, we should perform a d-dimensional Fourier transform. What does the resulting state look like?

$$\sum_{x \in \mathbb{F}_q} \omega_p^{\text{tr}(k \cdot x)} = e^{i \phi} \sqrt{q^{d-2}} K_{\chi^d} \left(\frac{k \cdot k}{4} \right)$$

where $K_{\eta}(a) := \sum_{x \in \mathbb{F}_q} \eta(x) \omega_p^{\text{tr}(ax + x^{-1})}$ η-twisted Kloosterman sum

Such sums have many interesting properties.

Theorem [Weil 48]. $|K_{\eta}(a)| \leq 2\sqrt{q}$

Even d: Regular Kloosterman sum ($\eta = 1$). Hard to compute?
The Fourier transform of a sphere

From symmetry considerations, we should perform a d-dimensional Fourier transform. What does the resulting state look like?

$$
\sum_{x \in \mathbb{F}_q \atop x \cdot x = 1} \omega_p^{tr(k \cdot x)} = e^{i \phi} \sqrt{q^{d-2}} K_{\chi^d} \left(\frac{k \cdot k}{4} \right)
$$

where $K_{\eta}(a) := \sum_{x \in \mathbb{F}_q} \eta(x) \omega_p^{tr(ax + x^{-1})}$ - η-twisted Kloosterman sum

Such sums have many interesting properties.

Theorem [Weil 48]. $|K_{\eta}(a)| \leq 2\sqrt{q}$

Even d: Regular Kloosterman sum ($\eta = 1$). Hard to compute?

Odd d: Salié sum ($\eta = \chi$).

$$
K_{\chi}(a) = e^{i \phi} \sqrt{q} \begin{cases}
1 & a = 0 \\
2 \cos \frac{4\pi \text{tr}(\sqrt{a})}{p} & \chi(a) = +1 \\
0 & \chi(a) = -1
\end{cases}
$$
Hidden flat of centers problem

Quantum formulation: Suppose we can sample a quantum state that is a uniform superposition over points on a sphere of radius 1, with the center chosen uniformly at random from an unknown flat.
Hidden flat of centers problem

Quantum formulation: Suppose we can sample a quantum state that is a uniform superposition over points on a sphere of radius 1, with the center chosen uniformly at random from an unknown flat.

(There is a black-box version of this problem in which a quantum computer can produce these states, but a classical computer requires exponentially many queries (in $\log q$) to determine the flat.)
Hidden flat of centers problem

Quantum formulation: Suppose we can sample a quantum state that is a uniform superposition over points on a sphere of radius 1, with the center chosen uniformly at random from an unknown flat.

(There is a black-box version of this problem in which a quantum computer can produce these states, but a classical computer requires exponentially many queries (in $\log q$) to determine the flat.)

Theorem. There is quantum algorithm that finds the hidden flat in time $\text{poly}(\log q)$, provided $d = O(1)$ is odd.
Quantum walk on the Winnie Li graph

Vertices: Points $x \in \mathbb{F}_q^d$

Edges: $x \sim y$ if and only if $(x - y) \cdot (x - y) = 1$ (y on unit sphere centered at x)
Quantum walk on the Winnie Li graph

Vertices: Points \(x \in \mathbb{F}_q^d \)

Edges: \(x \sim y \) iff \((x - y) \cdot (x - y) = 1 \) \((y \text{ on unit sphere centered at } x) \)

Continuous-time quantum walk: Unitary operator \(e^{-iAt} \)

adjacency matrix
Quantum walk on the Winnie Li graph

Vertices: Points $x \in \mathbb{F}_q^d$

Edges: $x \sim y$ iff $(x - y) \cdot (x - y) = 1$

(y on unit sphere centered at x)

Continuous-time quantum walk: Unitary operator e^{-iAt}

Eigenvalues are χ^d-twisted Kloosterman sums. Can be computed efficiently for d odd, giving an implementation of the quantum walk.
Quantum walk on the Winnie Li graph

Vertices: Points $x \in \mathbb{F}_q^d$

Edges: $x \sim y$ iff $(x - y) \cdot (x - y) = 1$ (y on unit sphere centered at x)

Continuous-time quantum walk: Unitary operator e^{-iAt}

Eigenvalues are χ^d-twisted Kloosterman sums. Can be computed efficiently for d odd, giving an implementation of the quantum walk.

Quantum walk (for an appropriately chosen, short time) moves substantial amplitude (fraction $1/\text{poly}(\log q)$) from a sphere to its center.
Quantum walk on the Winnie Li graph

Vertices: Points $x \in \mathbb{F}_q^d$

Edges: $x \sim y$ iff $(x - y) \cdot (x - y) = 1$ (y on unit sphere centered at x)

Continuous-time quantum walk: Unitary operator e^{-iAt}

Eigenvalues are χ^d-twisted Kloosterman sums. Can be computed efficiently for d odd, giving an implementation of the quantum walk.

Quantum walk (for an appropriately chosen, short time) moves substantial amplitude (fraction $1/\text{poly}(\log q)$) from a sphere to its center.
Quantum walk on the Winnie Li graph

Vertices: Points $x \in \mathbb{F}^d_q$

Edges: $x \sim y$ iff $(x - y) \cdot (x - y) = 1$ (y on unit sphere centered at x)

Continuous-time quantum walk: Unitary operator e^{-iAt}

Eigenvalues are χ^d-twisted Kloosterman sums. Can be computed efficiently for d odd, giving an implementation of the quantum walk.

Quantum walk (for an appropriately chosen, short time) moves substantial amplitude (fraction $1/\text{poly} (\log q)$) from a sphere to its center.
Quantum walk on the Winnie Li graph

Vertices: Points $x \in \mathbb{F}_q^d$

Edges: $x \sim y$ iff $(x - y) \cdot (x - y) = 1$ (y on unit sphere centered at x)

Continuous-time quantum walk: Unitary operator e^{-iAt}

Eigenvalues are χ^d-twisted Kloosterman sums. Can be computed efficiently for d odd, giving an implementation of the quantum walk.

Quantum walk (for an appropriately chosen, short time) moves substantial amplitude (fraction $1/\text{poly} (\log q)$) from a sphere to its center.
Quantum walk on the Winnie Li graph

Vertices: Points $x \in \mathbb{F}_q^d$

Edges: $x \sim y$ iff $(x - y) \cdot (x - y) = 1$ (y on unit sphere centered at x)

Continuous-time quantum walk: Unitary operator e^{-iAt} adjacency matrix

Eigenvalues are χ^d-twisted Kloosterman sums. Can be computed efficiently for d odd, giving an implementation of the quantum walk.

Quantum walk (for an appropriately chosen, short time) moves substantial amplitude (fraction $1/poly(\log q)$) from a sphere to its center.
Reconstructing a noisy flat

Given: Samples of points in \mathbb{F}_q^d that are either
- Uniformly random in a d'-dimensional flat (probability $\frac{1}{\text{poly}(\log q)}$)
- Nearly uniformly random in \mathbb{F}_q^d (probability $\leq \frac{c}{q^d}$ for any point outside flat)
Reconstructing a noisy flat

Given: Samples of points in \mathbb{F}_q^d that are either
- Uniformly random in a d'-dimensional flat (probability $\frac{1}{\text{poly}(\log q)}$)
- Nearly uniformly random in \mathbb{F}_q^d (probability $\leq c/q^d$ for any point outside flat)

Claim: Suppose we sample just enough points that with high probability, we see at least $4d'$ points from the hidden flat. Then the probability that there are $4d'$ or more points from any distinct d'-dimensional flat is exponentially small (in $\log q$).
Reconstructing a noisy flat

Given: Samples of points in \mathbb{F}_q^d that are either
- Uniformly random in a d'-dimensional flat (probability $\frac{1}{\text{poly}(\log q)}$)
- Nearly uniformly random in \mathbb{F}_q^d (probability $\leq c/q^d$ for any point outside flat)

Claim: Suppose we sample just enough points that with high probability, we see at least $4d'$ points from the hidden flat. Then the probability that there are $4d'$ or more points from any distinct d'-dimensional flat is exponentially small (in $\log q$).

Thus we can find the hidden flat by sampling polynomially many points and exhaustively checking all sufficiently large (constant-size) subsets.
Reconstructing a noisy flat

Given: Samples of points in \mathbb{F}_q^d that are either
- Uniformly random in a d'-dimensional flat (probability $\frac{1}{\text{poly}(\log q)}$)
- Nearly uniformly random in \mathbb{F}_q^d (probability $\leq c/q^d$ for any point outside flat)

Claim: Suppose we sample just enough points that with high probability, we see at least $4d'$ points from the hidden flat. Then the probability that there are $4d'$ or more points from any distinct d'-dimensional flat is exponentially small (in $\log q$).

Thus we can find the hidden flat by sampling polynomially many points and exhaustively checking all sufficiently large (constant-size) subsets.

Note: It is crucial here that $d = O(1)$.
Exponential speedups by quantum walk

[C., Cleve, Deotto, Farhi, Gutmann, Spielman 03]:

Constructive interference takes us to a *distant* vertex
Exponential speedups by quantum walk

[C., Cleve, Deotto, Farhi, Gutmann, Spielman 03]:

Constructive interference takes us to a distant vertex

Hidden flat of centers algorithm:

Constructive interference takes us to a nearby vertex
Exponential speedups by quantum walk

[C., Cleve, Deotto, Farhi, Gutmann, Spielman 03]:

Constructive interference takes us to a distant vertex

Hidden flat of centers algorithm:

Constructive interference takes us to a nearby vertex
The hidden polynomial problem

Problem: Given a black-box function that is constant on the level sets of \(f \in \mathbb{F}_q[x_1, \ldots, x_d] \) (of constant total degree), and distinct on different level sets, determine \(f \) (projectively).
The hidden polynomial problem

Problem: Given a black-box function that is constant on the level sets of $f \in \mathbb{F}_q[x_1, \ldots, x_d]$ (of constant total degree), and distinct on different level sets, determine f (projectively).

Linear f: $x - y$
The hidden polynomial problem

Problem: Given a black-box function that is constant on the level sets of \(f \in \mathbb{F}_q[x_1, \ldots, x_d] \) (of constant total degree), and distinct on different level sets, determine \(f \) (projectively).

Linear \(f \):

\[
\begin{align*}
\text{Level set:} & \quad x - y \\
\text{Level set:} & \quad x - 2y \\
& \quad \ldots
\end{align*}
\]
The hidden polynomial problem

Problem: Given a black-box function that is constant on the level sets of $f \in \mathbb{F}_q[x_1, \ldots, x_d]$ (of constant total degree), and distinct on different level sets, determine f (projectively).

Linear f:

$x - y$, $x - 2y$, \ldots

Quadratic f:

$x^2 + y^2$, $x^2 + xy + 3y^2$, \ldots
The hidden polynomial problem

Problem: Given a black-box function that is constant on the level sets of \(f \in \mathbb{F}_q[x_1, \ldots, x_d] \) (of constant total degree), and distinct on different level sets, determine \(f \) (projectively).

Linear \(f \):
\[
\begin{aligned}
\text{Linear } f: & \quad x - y, \quad x - 2y, \quad \ldots \\
\end{aligned}
\]

Quadratic \(f \):
\[
\begin{aligned}
\text{Quadratic } f: & \quad x^2 + y^2, \quad x^2 + xy + 3y^2, \quad \ldots \\
\end{aligned}
\]

Classical query complexity is exponential in \(\log q \) (because it’s hard to even find a collision).
Quantum query complexity of the HPP

Theorem. The quantum query complexity of the hidden polynomial problem is \(\text{poly}(\log q) \) for almost all polynomials.
Quantum query complexity of the HPP

Theorem. The quantum query complexity of the hidden polynomial problem is $\text{poly}(\log q)$ for almost all polynomials.

Proof idea:
- By standard techniques, reduce to a problem of distinguishing quantum states
- States are distinguishable if the level sets of the polynomials have small intersection
- Typical size of a level set: $c q^{d-1}$ [Schwartz-Zippel]
- Typical size of the intersection of two level sets: $c' q^{d-2}$ [Weil]
- Almost all polynomials are absolutely irreducible
Open problems
Open problems

• Efficient quantum algorithms for approximating exponential sums
 - Gauss sums: [van Dam, Seroussi 02]
 - Small characteristic: Apply quantum point-counting algorithm of [Kedlaya 06] (as suggested by Shparlinski)
 - Kloosterman sums with prime characteristic?
 - General sums?
Open problems

- Efficient quantum algorithms for approximating exponential sums
 - Gauss sums: [van Dam, Seroussi 02]
 - Small characteristic: Apply quantum point-counting algorithm of [Kedlaya 06] (as suggested by Shparlinski)
 - Kloosterman sums with prime characteristic?
 - General sums?

- Efficient quantum algorithms for hidden polynomial problems
 - [Decker, Draisma, Wocjan 07]: Efficient quantum algorithm for
 \[f(x_1, \ldots, x_{d-1}, x_d) = g(x_1, \ldots, x_{d-1}) - x_d \]
 (using PGM approach of [Bacon, C., van Dam 05])
 - Hidden rotation of a fixed-eccentricity ellipse?
 - General hidden polynomials?
Open problems

• Efficient quantum algorithms for approximating exponential sums
 - Gauss sums: [van Dam, Seroussi 02]
 - Small characteristic: Apply quantum point-counting algorithm of [Kedlaya 06] (as suggested by Shparlinski)
 - Kloosterman sums with prime characteristic?
 - General sums?

• Efficient quantum algorithms for hidden polynomial problems
 - [Decker, Draisma, Wocjan 07]: Efficient quantum algorithm for
 \[f(x_1, \ldots, x_{d-1}, x_d) = g(x_1, \ldots, x_{d-1}) - x_d \]
 (using PGM approach of [Bacon, C., van Dam 05])
 - Hidden rotation of a fixed-eccentricity ellipse?
 - General hidden polynomials?

• Applications?