From optical measurement to efficient quantum algorithms for the hidden subgroup problem and beyond

Overall outline:
1. Hidden subgroup problem, optimal measurement for the dihedral HSP
2. General approach to optimal measurements for HSPs in semidirect product groups
3. Examples: dihedral, metacyclic, Heisenberg
4. Generalized abelian hidden shift problem

Part 1
Outline:
* The HSP
* Applications
 * Known algorithms
 * Standard approach
 * Fourier sampling
 * HSP as stable distinguishability
 * Dihedral group
 * Dihedral cost states: the subset sum problem
 * Pretty good measurement
 * Obtaining of PGM
 * Success probability of PGM
 * Invariance of PGM
 * Prolegomena of subset sum

The hidden subgroup problem

Problem: Fix a group G (known) and a subgroup $H \triangleleft G$ (unknown).
Given a black box function $f: G \to \mathbb{C}$ that is

1. constant on left cosets of $H \in G$
2. distinct on different left cosets of $H \in G$

Find (a generating set for) H.

An efficient algorithm has run time $\text{poly}(\log |G|)$.

Example: Simon's problem $G = \mathbb{Z}_2^n$. Fix a hidden bitstring $s \in G$.
Given an oracle $f = \varphi^{s}$ a 1-to-1 function satisfying $f(x \oplus s) = f(x)$. So $H = \{0, s\}$.$\subseteq \mathbb{Z}_2^n$

Even this very simple case is hard for classical computers: can prove that finding s requires exponentially many queries to f.

But there is an efficient quantum algorithm:

(Need a quantum black box for f: $|x\rangle \mapsto |x, f(x)\rangle$ (答案)
$|x\rangle |y\rangle \mapsto |x, y \oplus f(x)\rangle$ (量子)
Applications

- G abelian
 This can be used to solve factoring, discrete log, Pell’s equation, etc.
 Can always be solved efficiently

- G dihedral
 This can be used to solve the poly(d) unique shortest vector problem [Regan 02]
 It can be reduced to a certain average case subset sum problem [Regan 02]
 There is an efficient quantum algorithm that produces data (essentially) which no-theoretically determines the answer [Ettinger - Hoyer 02]
 That is, a quantum algorithm with run time $2^{O(\sqrt{N})}$ [Kuperberg 03]

- G symmetric
 This can be used to solve graph isomorphism
 No nontrivial algorithms

Standard approach

$$\frac{1}{\mid G \mid} \sum_{g \in G} |g\rangle \mapsto \frac{1}{\mid G \mid} \sum_{g \in G} |g\rangle \cdot f(g) \rangle \text{ discard 2nd register}$$

then we get a coset state,

$$|gH\rangle := \frac{1}{\mid H \mid} \sum_{h \in H} |gh\rangle \quad \text{with } g \in G \text{ uniformly random (unknown)}$$

equivalently, we have a hidden subgroup state,

$$\rho_H = \frac{1}{\mid G \mid} \sum_{g \in G} |gH\rangle \langle gH|$$

Note that this is not the only way to query f. But it is natural, and all known algorithms use this approach.

Fourier sampling

The symmetry of these states tells us a lot about how to deal with them.

$$\rho_H = \frac{1}{\mid G \mid} \sum_{g \in G} \sum_{h \in H} |gh\rangle \langle gh|$$

$$= \frac{1}{\mid G \mid} \sum_{g \in G} \sum_{h \in H} R(h^{-1})|g\rangle \langle g| R(h)$$

where R is the right regular representation of

$$R(g_1)g_2 \rangle = |g_2 g_1^{-1}\rangle$$

$$= \frac{1}{\mid G \mid} \sum_{h \in H} R(h)$$

$$= \frac{1}{\mid G \mid} \sum_{h \in H} R(h)$$

Now the regular representation is block diagonalized by the Fourier transform

$$\hat{F} G = \sum_{g \in G} \sum_{g' \in G} \sum_{m=1}^{\mid G \mid} \frac{1}{\mid G \mid} \langle g' | \sigma(g)m \rangle \langle \sigma(g)m | g \rangle$$
Let \(\Phi_{\hat{H}} \) be the set of all states labeled by \(\sigma \in \hat{G} \). Can measure this WLOG: (make Fourier shifts.) In general, not enough info here.

- State is block diagonal, with blocks labeled by irreps \(\sigma \in \hat{G} \).
- Row state is maximally mixed. Discard it.
- Column state is basis dependent. How to measure?

HSP or state distinguishability

We have a state distinguishability problem: given \(\Phi_{\hat{H}} \) for some unknown \(\hat{H} \), determine \(\hat{H} \).

More generally, we can make \(k = \text{poly}(\log |\hat{G}|) \) states \(\Phi_{\hat{H}}^{(k)} \) (equivalently, \(k \) copies) \((g_1 \hat{H}, g_2 \hat{H}, \ldots, g_k \hat{H}) \) with each \(g_i \in \hat{G} \) independent, uniformly random.

Good news

In principle, this is enough information to poly \(\log |\hat{G}| \) asset states to determine \(\hat{H} \), for any \(\hat{G} \) [Effinger-Heuer-Knill].

Bad news

Some groups require entangled measurements on \(\Omega(\log |\hat{G}|) \) asset states to determine \(\hat{H} \). [Moore-Russell-Schulman, Hallgren-Rötteler-Su]

How can we identify measurements with nice properties that are likely to identify the states?

Idea: Try to understand the optimal measurement.

Dihedral group

- Generic element: \((a, b) \in \mathbb{Z}_N \times \mathbb{Z}_2 \), \(G = \mathbb{Z}_N \rtimes \mathbb{Z}_2 \)
- \((a,b)(c,d) = (a+(-1)^b c, b+d)\)

Fact [Effinger-Heuer]: To solve the HSP in the dihedral group, it is sufficient to be able to identify a hidden reflection, \(\hat{H} = \{ (0,0), (a,1) \} \). (Prove later)

note: \((a,1)^2 = (a-a, 1+1) = (0,0) \)
Dihedral coset states and the subset sum problem

For any subgroup \(\{ (0,0), (a,1) \} \), the elements \(\{ (a', 0) : a' \in \mathbb{Z}_n \} \) form a complete set of coset reps.

Coset state: \(\{ (a', 0) H_a \} = \frac{1}{\sqrt{2}} (|a', 0 \rangle + |a + a', 1 \rangle) \), \(a' \in \mathbb{Z}_n \) uniformly random.

FT in 1st register over \(\mathbb{Z}_n \): \(\frac{1}{\sqrt{n}} \sum_{x \in \mathbb{Z}_n} \omega^{ax} |x \rangle \langle 0 | (10 \rangle + \omega^{ax} |11 \rangle) (|0 \rangle + \omega^{-ax} |1 \rangle) \)

now the mixed state is \(\frac{1}{\sqrt{n}} \sum_{x \in \mathbb{Z}_n} \omega^{ax} |x \rangle \langle x | (10 \rangle + \omega^{ax} |11 \rangle) (|0 \rangle + \omega^{-ax} |1 \rangle) \)

which is block diagonal! (here \(x \) is basically the recipe name + row label)

so WLOG we can measure \(x \), discarding a global phase, we have

\(\frac{1}{\sqrt{n}} (10 \rangle + \omega^{ax} |11 \rangle) \) (note \(a' \) disappears, cf. abelian HSP)

Goal: using \(k \) qubits like this, find \(a' \)

\(k \) copies:

\(\frac{1}{\sqrt{n}} (10 \rangle + \omega^{ax} |11 \rangle) \otimes \cdots \otimes \frac{1}{\sqrt{n}} (10 \rangle + \omega^{ax} |11 \rangle) \)

\(\frac{1}{\sqrt{2^n}} \sum_{b \in \mathbb{Z}_n^k} \omega^{ab} |b \rangle \)

Now we would like to let \(w = b' x \) and do the sum over \(w \) instead of \(b \).

Problem: given \(x \in \mathbb{Z}_n^k \) and \(w \in \mathbb{Z}_n \), what \(b' = \omega \) have \(b' x = w \)?

This is the subset sum problem. (a classic NP-hard problem, but we have random \(x \) s, not worst case. more on this later)

Solutions:

\(S_w := \frac{1}{\sqrt{2^n}} \sum_{b \in \mathbb{Z}_n^k} \omega^{ab} |b \rangle \) \(\eta_w := |S_w \rangle \)

and also define \(|S_w \rangle := \frac{1}{\sqrt{\eta_w}} \sum_{b \in \mathbb{Z}_n^k} \omega^{ab} |b \rangle \) (or 0 if \(\eta_w = 0 \))

Then the \(k \)-copy state is

\(\frac{1}{\sqrt{2^n}} \sum_{w \in \mathbb{Z}_n} \omega^{aw} \sqrt{\eta_w} |S_w \rangle \)

Here we see that if we could replace \(|S_w \rangle \) by \(|w \rangle \), and if the \(\eta_w \)'s were close to uniform, then a FT would reveal \(a \). This is exactly what the optimal measurement does!

Pretty good measurement.

We will find the optimal measurement by looking at a particular explicit POVM and showing it is optimal.

States \(p_j \), POVM in prior probabilities \(p_j \).

Define \(\Sigma = \sum p_j p_j^* \). Then let \(E_j := \frac{1}{\sqrt{p_j}} p_j p_j^* \). Clearly, \(\Sigma E_j = 1 \).

This is the maximum and at the same time (for HSWA decoding). Sometimes it is optimal.
Theorem. [Heilmann, Yuen - Kennedy - Lax] For an ensemble of states \(\rho_j \) with prob. \(p_j \), and a POVM \(\mathcal{E}_j \), define \(R = \sum p_j \rho_j \mathcal{E}_j \). Then the POVM maximizes the probability of successfully identifying the state \(\sum p_j \text{tr}(\rho_j \mathcal{E}_j) \) iff

1. \(R = R^\dagger \)
2. \(R \geq \rho_j \rho_j^\dagger \forall j \)

Note: the problem of finding the (or any) optimal POVM is a semidefinite program!

Optimality of the PGM for the DHSP (uniform ensemble):

States: \(\rho_a = \frac{1}{2N} \sum_{w \in \mathbb{Z}_n} \omega^{a(w, v)} \sqrt{\eta_w^0 \eta_w^0} |S_w^0 \rangle \langle S_w^0| \quad \forall x \in \mathbb{Z}_n^N, a \in \mathbb{C}_n \)

\[
\sum = \frac{1}{2N} \sum_{w \in \mathbb{Z}_n} \sum_{x \in \mathbb{Z}_n} \omega^{a(w, v)} \sqrt{\eta_w^0 \eta_w^0} |S_w^0 \rangle \langle S_w^0| \\
= \frac{1}{2N} \sum_{w \in \mathbb{Z}_n} \eta_w^0 |S_w^0 \rangle \langle S_w^0|
\]

so the PGM is: \(E_a = \frac{1}{\sqrt{N}} \rho_a \frac{1}{\sqrt{N}} = \frac{1}{N} \sum_{w \in \mathbb{Z}_n} \omega^{a(w, v)} |S_w^0 \rangle \langle S_w^0| \)

(Note: The \(\rho_a \)'s are non-orthogonal pure states: \(\rho_a = |\psi_a \rangle \langle \psi_a| \) with \(|\psi_a \rangle = \frac{1}{\sqrt{N}} \sum \omega^{a(w, v)} \eta_v^0 |S_w^0 \rangle \).

But \(\langle E_a | E_b \rangle = \frac{1}{N} \sum \omega^{a(w, v) + b(w, v)} |S_w^0 \rangle \langle S_w^0| = \frac{1}{N} \sum \omega^{a+b(w, v)} = \delta_{a, b} \) in general.

So the PGM is an orthogonal measurement.

Now \(R = \frac{1}{N} \sum_{a \in \mathbb{Z}_n} \rho_a E_a = \frac{1}{N^2} \sum_{a \in \mathbb{Z}_n} \sum_{b \in \mathbb{Z}_n} \omega^{a+b(w, v)} \sqrt{\eta_a^0 \eta_b^0} |S_w^0 \rangle \langle S_w^0| \\
= \frac{1}{N^2} \sum_{w \in \mathbb{Z}_n} \sqrt{\eta_w^0 \eta_w^0} |S_w^0 \rangle \langle S_w^0| = R^\dagger \)

and check \(R \geq \frac{1}{N} \rho_a \forall a \in \mathbb{Z}_n \): clearly \(R \geq 0 \), and

\[
\langle \rho_a | R | \rho_a \rangle = \frac{1}{N^2} \sum_{w \in \mathbb{Z}_n} \sum_{b \in \mathbb{Z}_n} \omega^{a-b(w, v)} \sqrt{\eta_a^0 \eta_b^0} \\
\geq \frac{1}{N} \sum_{w \in \mathbb{Z}_n} \sqrt{\eta_w^0 \eta_w^0} = \frac{1}{N}
\]

now using (by Cauchy - Schwarz): \(\sum a_j \cdot \Sigma b_j \geq (\Sigma a_j b_j)^2 \), we have

\[
\frac{1}{N^2} \sum_{w \in \mathbb{Z}_n} \sum_{v \in \mathbb{Z}_n} \omega^w \sqrt{\eta_w^0 \eta_v^0} \geq \left(\frac{1}{N^2} \sum_{w \in \mathbb{Z}_n} \sqrt{\eta_w^0 \eta_w^0} \right)^2 = 1
\]

which proves \(R \geq \frac{1}{N} \rho_a \).
Success probability of the dihedral PGM:

\[\Pr(\text{success}) = \frac{1}{N} \mathbb{E}_\varphi \left(\prod_{i=1}^{N} \left(\sum_{x \in \mathbb{Z}_N^d} \eta_x \right)^2 \right) \]

This is for fixed \(x \), averaging over (uniformly random) \(x \in \mathbb{Z}_N^d \), we have

\[\Pr(\text{success}) = \frac{1}{2^N N!} \sum_{x \in \mathbb{Z}_N^d} \left(\sum_{x \in \mathbb{Z}_N^d} \frac{1}{N} \right)^2 \]

This will be big when the \(\eta_x \)'s are spread out.

Consider subset sum problem: let \(k = \sqrt{\log N} \), \(\nu = \text{"density"} \)

\(\nu = 1 \): few numbers, most subsets hard, a distinct sum
\(\nu > 1 \): many numbers, most sums are achieved a comparable \# of times.
\(\eta_x \)'s uniform \(\Rightarrow \) \(\Pr(\text{success}) \) close to 1.

Later we will see how to prove this.

Implementing the dihedral PGM

We want to project onto a basis \(|E_o\rangle = \frac{1}{N} \sum_{w} |w, x\rangle \)

i.e., we want to do \(|E_o\rangle \mapsto |0\rangle \) followed by a standard measurement.

This can be done as follows:

\[|E_o\rangle \overset{\text{FT}}{\mapsto} \frac{1}{\sqrt{N}} \sum_{w} \omega^w |w\rangle \]

The key step here is the inverse of the quantum sampling from solutions to subset sum:

\(|w\rangle \mapsto |S\rangle \) (an isometry): replace \(|w\rangle \) by uniform superposition of solutions to subset sum \(\langle x, w \rangle \)

Hardness of subset sum

As previously mentioned, subset sum is NP-hard. But random instances at fixed \(\nu \) are easier.

Low density: for \(k < \sqrt{\log N} \), \(\exists \) an efficient algorithm [Lagerkvist, Odlyzko, 85]. But this is too good for BHP: it has \(\nu = 0(1) \).

High density: for \(k > 2\sqrt{\log N} \), \(\exists \) a poly \((k)\) algorithm [Feldman, Prezdelnik, 05] this is exactly where Kuperberg's algorithm works; closely related, but even this is not good enough for optimal measurements; can only find 1 solution, rather than quantum sampling.
Outline:
- Semidirect product groups; known algorithms
- Reduction to cyclic subgroups
- Cacti states and the matrix sum problem
- Pretty good measurement (which is optimal)
- PGM success probability; general lower and upper bounds
- Implementation by quantum sampling; approximate q-sampling is good enough

Semidirect product groups

\[G = A \rtimes B \quad \text{(where \(A \leq G \), \(B \) acts on \(A \) (perm.)}) \]

set of elements: \(A \times B \), write \((a, b) \in A \times B \), \(a \in A \), \(b \in B \)

\[\Phi : B \rightarrow A + A \quad \text{a homomorphism} \]

\[(a, b)(a', b') = (a + \Phi(b)a', b + b') \]

\[(a, b)^{-1} = (\Phi(-b)(-a), -b) \]

Specialize to \(B = \mathbb{Z}_p \), \(p \) prime. Then \(\Phi(1) \) defines \(\Phi : \mathbb{Z}_p \rightarrow A \). Here \(\Phi : A \rightarrow A \) is an automorphism of \(A \).

Denote \(\Phi^b = \Phi(b) \). Here \(\Phi : A \rightarrow A \) is an isomorphism of \(A \).

Cyclic subgroups \(\langle (a, 1) \rangle \):

\[(a, 1)^2 = (a, 1)(a, 1) = (a + \Phi(a), 2) \]

\[(a, 1)^3 = (a, 1)(a + \Phi(a), 2) = (a + \Phi(a) + \Phi^2(a), 3) \]

\[\vdots \]

\[(a, 1)^b = (\Phi^b(a), b \mod p) \quad b \in \mathbb{N} \]

where \(\Phi^b(a) = \sum_{i=0}^{b} \Phi^i(a) \) \((\Phi^b : A \rightarrow A) \)

Known algorithms

\[\mathbb{Z}_2 \rtimes \mathbb{Z}_2 = (\mathbb{Z}_2 \times \mathbb{Z}_2^*) \times \mathbb{Z}_2 \quad \text{[Rötteler, Beth 95]} \]

\[\mathbb{Z}_2^p \rtimes \mathbb{Z}_2 \quad \text{(p-ary)} \]

\[\mathbb{Z}_p \rtimes \mathbb{Z}_p \quad p \equiv 3 \pmod{4}, \text{prime} \quad \text{[Moor et al. 04]} \]

\[\mathbb{Z}_p \rtimes \mathbb{Z}_p \quad p \equiv 3 \pmod{4}, \text{prime} \quad \text{[Ivleva, Le Gall 04]} \]

Reduction to cyclic subgroups

Lemma: To find an efficient algorithm for the HSP over \(A \rtimes \mathbb{Z}_p \), it suffices to find an efficient algorithm for the HSP over \(A_2 \rtimes \mathbb{Z}_p \) for any \(A \) with the promise that \(A_2 \rtimes \mathbb{Z}_p \) is cyclic for some \(\Phi(2), 1 \leq p \).

Proof: Like Effiee - Hoque for dihedral, with one additional possible complication.

Let \(G_r = A \rtimes \mathbb{Z}_2 \)

\[H_r = H \cap G_r = A \times \mathbb{Z}_2 \]

Since \(f \) restricted to \(G_r \) induces \(H_r \), and \(G_r \) is abelian, we can efficiently factor \(f^b \).

Now: \(H_r \leq G ? \) (If so, we'll factor it out.)

Let \(g = (a, b) \in G \)

\[h = (h_0, 0) \in H \]

Then \(g h g^{-1} = (a, b)(h_0, 0)(a, b)^{-1} = (a + \Phi^b(h, 0), b)(a, b)^{-1} = (\Phi^b(h), 0) \]

\[\Rightarrow g h g^{-1} \text{ or } \Phi^b \]
We claim that this shows $H, G \neq G \Rightarrow H = H$.

If $H \neq H$, then there is some $(a_1, b) \in A$, and by the previous calculation, we have $(a_1, b) = (a, b) \in A$. Let $G_2 = A / A_1$, so $G_2 = A / A$.

So we check whether $H \neq G_2$. (This can be done efficiently, since G_2 is solvable.)

- If $H \neq G_2$, we're done.
- If not, $H = G_2$, and we're done.

Let $G_2 = G / H_2 \cong A_2 / \mathbb{Z}_p$. Then $A_2 = A / A_1$.

If $G_2 = H_2$, then H_2 is trivial.

Otherwise, $G_2 = \langle H_2 \rangle$: we must have some $(a_1, b) \in H_2$, and for any additional (a', b'),

$$(a_1, b)(a', b')^{-1} = (a', b')^{-1} = (a' - b', 0) \in A_1,$$

so (a_1, b) is necessary.

Therefore,

$$H_2 = \langle (a_1, 0) \rangle / \langle (a_1, 0) \rangle = \langle (a_1, 0) \rangle \text{ for some } a \in A_2 \text{ (clearly order } p).$$

If we check identity, then H_2 is non-trivial, then this also handles the case where H_2 is trivial (just check). \[\square \]

Coset states

We're considering $G = A \times \mathbb{Z}_p$.

$H = \langle (a_1, 0) \rangle$ of order p.

We can label left cosets by $(b, 0)$ where $b \in A$: there are p of them, and they are distinct.

Coset state: $| (b, 0) \rangle H = \frac{1}{p} \sum_{b \in \mathbb{Z}_p} \langle b | (b, 0) \rangle \langle \Phi \rangle (a, b) \rangle = \frac{1}{p} \sum_{b \in \mathbb{Z}_p} (b, 0) \rangle \langle \Phi \rangle (a, b) \rangle$

now FT the 1st register over A: \[\frac{1}{p} \sum_{b \in \mathbb{Z}_p} \sum_{x \in A} \chi_x (b + \Phi (a)) \langle x, b \rangle. \]

Just as we argued for dihedral case, the state is block diagonal in x, so we can measure it phase $X_x (a)$ disappears $= \exp (2 \pi i x y)$.

$$= \frac{1}{p} \sum_{b \in \mathbb{Z}_p} \chi_x (\Phi (a)) \langle b \rangle \langle b \rangle$$

Next one can show $\forall \Phi: \langle a \rangle \rightarrow A$ such that $\chi_x (\Phi (a)) = \chi_x (b) \langle a \rangle$.

For $A = \mathbb{Z}_p$, $\Phi (a) = x a$ for $a \in \mathbb{Z}_p$, $\Phi (a) = \exp (2 \pi i x a)$. For $A = \mathbb{Z}_p$, $\Phi (a) = x a$ for $a \in \mathbb{Z}_p$, $\Phi (a) = \exp (2 \pi i x a)$.

so we have $\frac{1}{p} \sum_{b \in \mathbb{Z}_p} \chi_x (\Phi (a)) \langle b \rangle \langle b \rangle$ and for k copies, $\frac{1}{p^k} \sum_{b \in \mathbb{Z}_p^k} \chi_x (\Phi (a)) \langle b \rangle \langle b \rangle$.

Matrix sum problem

$$S^x = \{ b \in \mathbb{Z}_p : \Phi (a) = x \}$$

Next the state is $\frac{1}{p} \sum_{a \in A} \chi_x (a) \langle \Phi \rangle (a) \langle b \rangle$.

Then the state is $\frac{1}{p} \sum_{a \in A} \chi_x (a) \langle \Phi \rangle (a) \langle b \rangle$.

As before, $\mathbf{1}^k \langle S \rangle$.

$S^x = \{ b \in \mathbb{Z}_p : \Phi (a) = x \}$
The PGM calculations go through just as before. PGM is optimal, and is the projection into the states $|EF_a\rangle = \frac{1}{\sqrt{|A|}} \sum_{x \in A} \chi_w(x) |x\rangle$.

Success probability

Again, by the same calculations as for the standard group,

$$Pr(\text{success}) = tr\left(\rho_k \rho_n^k \right) = \frac{1}{\rho^k |A|^k} \left(\sum_{w \in \mathcal{E}} \sqrt{q(w)^k} \right)^2.$$

and averaging over the uniformly random $x \in A^k$,

$$Pr(\text{success}) = \frac{1}{\rho^k |A|^k} \sum_{x \in A^k} \left(\sum_{w \in \mathcal{E}} \sqrt{q(w)} \right)^2 = \frac{1}{|A|^k} \sum_{w \in \mathcal{E}} \left(\sum_{x \in A^k} \sqrt{q(w)} \right)^2.$$

Lemma 1. $Pr(\text{success}) \leq \frac{\rho^k}{|A|^k}$.

(iii) if $Pr(\eta^k \geq \alpha) \geq \beta$, then $Pr(\text{success}) \geq \beta \frac{\rho^k}{|A|^k}$.

Note: $E_{x \in A^k, w \in \mathcal{E}} \eta^k = \frac{1}{|A|^k} \sum_{x \in A^k} \sum_{w \in \mathcal{E}} \eta^k w^k = \frac{1}{|A|^k} \sum_{x \in A^k} \rho^k = \frac{\rho^k}{|A|^k}$, so $k = \log \rho |A|^k$ is the expected critical value.

Proof: (i) $Pr(\text{success}) \leq \frac{1}{\rho^k |A|^k} \sum_{x \in A^k} \left(\sum_{w \in \mathcal{E}} q(w) \right)^2 = \frac{1}{\rho^k |A|^k} \sum_{x \in A^k} \rho^k = \frac{\rho^k}{|A|^k}$.

(ii) using $\sum_{j=1}^N \frac{a_j^2}{j} \geq \frac{1}{N} \left(\sum_{j=1}^N a_j \right)^2$,

$$Pr(\text{success}) \geq \frac{1}{\rho^k |A|^k} \left(\sum_{x \in A^k} \sum_{w \in \mathcal{E}} \sqrt{q(w)} \right)^2$$

$$= \frac{|A|^k}{\rho^k |A|^k} \left(\sum_{x \in A^k} \sum_{w \in \mathcal{E}} \sqrt{q(w)} \right)^2$$

$$\geq \frac{1}{\rho^k} \beta \frac{\rho^k}{|A|^k}.$$

Implementation

Just as before, doing $|S^k\rangle \mapsto |w\rangle$ will implement the PGM. (Clear from form of $|EF_a\rangle$)

In fact, it is good enough to do it approximately:

$|w\rangle \mapsto \frac{1}{p} \sum_{x \in A^k} \chi_w(x) |x\rangle$

where $\langle S^k | S^k \rangle = 0$ (can be done if we can recognize bad instances).

Thus we have

$$\frac{1}{p} \sum_{w \in \mathcal{E}} \chi_w (x) |w\rangle$$

and if a constant fraction of instances were good, $\langle S^k | S^k \rangle \geq N \frac{1}{p} \sum_{w \in \mathcal{E}} \chi_w (x) |w\rangle^2$.

Fidelity with ideal state (averaged over x):

$$\frac{1}{pN} \sum_{w \in \mathcal{E}} \chi_w (x) \geq \frac{1}{p} \sum_{w \in \mathcal{E}} \chi_w (x) |w\rangle^2$$

since $\chi_w (x) \geq 1$ for $|x\rangle \in \mathcal{E}$, so fidelity $\geq \text{const.} \times \frac{N}{p}$.
Dihedral group

Consider \(G = A \times \mathbb{Z}_2 \) with \(\phi(a) = -a \). In particular, \(A = \mathbb{Z}_N \) is abelian.

Here \(\overline{\phi}(b)(x) = \sum_{i=0}^{b-1} \phi^i(x) = \begin{cases} 0 & b = 0 \\ b \cdot x & b \neq 0 \end{cases} \)

so \(S^x_w = \{ b \in \mathbb{Z}_2^k : \overline{\phi}(b)(w) = w \} = \{ b \in \mathbb{Z}_2^k : b \cdot x = w \} \).

The subset sum problem can be solved exactly by calculating the integer powers of \(\overline{\phi}(w) \) and using Chinese remainder theorem.

Metacyclic groups

\(G = \mathbb{Z}_N \rtimes \mathbb{Z}_p \) with \(\phi(a) = \mu a \) for some \(\mu \in \mathbb{Z}_N^\times \) with \(\mu \equiv 1 \mod N \)

then \(\overline{\phi}(w)(x) = \sum_{i=0}^{\mu^{-1}} \mu^i x \).

For simplicity, suppose \(\mu^{-1} \in \mathbb{Z}_N^\times \) (this is not necessary); then \(\frac{\mu^{b-1}}{\mu-1} x = w \).

For \(k = 1 \), we have \(S^x_w = \{ b \in \mathbb{Z}_p^k : \frac{\mu^{b-1}}{\mu-1} x = w \} \).

\((\mu^{b-1})x = (\mu-1)w \times \frac{\mu^{b-1}}{\mu-1} \) provided \(x \in \mathbb{Z}_p^k \).

This is a discrete log problem.

Now for uniformly random \(x \in \mathbb{Z}_N \), \(\Pr(x \in \mathbb{Z}_N^\times) = \frac{\phi(N)}{N} = \Omega(1/\log \log N) \)

and for uniformly random \(w \in \mathbb{Z}_N, \) \(\Pr(\phi(x) = \mu x) = \frac{1}{N} \)

so \(\Pr(\mu^b x = w) = p \frac{\phi(N)}{N} \), which is \(\frac{1}{p \cdot \text{poly}(\log N)} \) provided \(N/p = \text{poly}(\log N) \).

(Note this is exactly the condition from Moore et al.)

For \(k = 2 \), consider \(x \in \mathbb{Z}_p^2 \), \(\mu^{\frac{b_1-1}{\mu-1}} x_1 + \frac{b_2-1}{\mu-1} x_2 = w \).

\(\mu^{b_1} x_1 + \mu^{b_2} x_2 = x_1 x_2 + (\mu-1)w \) how to solve?
Stripped down version of the algorithm:

For hidden subgroup \(\langle (a, 1) \rangle \), the coset states are
\[
| (a, 0) \rangle \psi \rangle_{H_0} = \frac{1}{\sqrt{p}} \sum_{b \in \mathbb{Z}_p} | b \rangle \sum_{x \in \mathbb{Z}_p} \omega^{x(a+b)} | x \rangle | b \rangle
\]

Fourier transform 1st register over \(\mathbb{Z}_N \) (\(\omega = e^{2\pi i / N} \)):
\[
\frac{1}{\sqrt{N_\mathbb{Z}}} \sum_{x \in \mathbb{Z}_N} \sum_{b \in \mathbb{Z}_p} \omega^{x(x+b)} | x \rangle | b \rangle
\]

Measure \(x \) and post-select on \(x \in \mathbb{Z}_N^k \) (probability \(\Omega(1/\log \log N) \))

Compute \(\Gamma^{(b)}(1) \):
\[
\frac{1}{\sqrt{p}} \sum_{b \in \mathbb{Z}_p} \omega^{\Gamma^{(b)}(a)} | b \rangle | x \rangle
\]

Note \(\Gamma^{(b)} \) can be computed efficiently since \(\Gamma^{(b)} = (1 + \mu^b) \Gamma^{(a)} \)

Compute \(\mu^b \) from \(\Gamma^{(a)}(1) = 1 + \mu^a \)

-use Shor to erase \(b \) (discrete log)- then erase \(x \)

\[
\frac{1}{\sqrt{p}} \sum_{b \in \mathbb{Z}_p} \omega^{\Gamma^{(b)}(a)} | x \rangle | b \rangle
\]

new a Fourier transform gives a with probability \(\frac{1}{N} \).

Hersenberg group and friends

Hersenberg group:

(i) subgroups of \(\mathrm{GL}_3 (\mathbb{F}_p) \):
\[
\left\{ \begin{pmatrix} 1 & 0 & 0 \\ a & 1 & 0 \\ c & b & 1 \end{pmatrix} : a, b, c \in \mathbb{F}_p \right\}
\]

(ii) group of \(p \times p \) unitary matrices:
\[
\langle X, Z \rangle = \{ X^a Z^b : a, b \in \mathbb{Z}_p \}
\]
\[
X = \sum_{x \in \mathbb{Z}_p} | x \rangle \langle x | \quad Z = \sum_{x \in \mathbb{Z}_p} x^a | x \rangle \langle x | \quad \omega = e^{2\pi i / p}
\]

(iii) semidirect product \(\mathbb{Z}_p^2 \rtimes \mathbb{Z}_p \):
\[
(a, b) (a', b') = (a + a', b + b', c + c')
\]

Thus \(\Gamma^{(a)}(1) = \sum_{i=0}^{p-1} (\begin{pmatrix} i & 1 \\ 0 & 1 \end{pmatrix} \Gamma^{(a)}(1) \begin{pmatrix} i & 1 \\ 0 & 1 \end{pmatrix}^{-1}) = (\begin{pmatrix} i & 1 \\ 0 & 1 \end{pmatrix} \Gamma^{(a)}(1) \begin{pmatrix} i & 1 \\ 0 & 1 \end{pmatrix}^{-1}) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}
\]

\[
\mathrm{MSP} = \sum_{j=1}^{p} (\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \Gamma^{(j)}(1) \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}
\]

with \(k=1 \) probability of having a solution is \(O(1/p) \) \((p \text{ values of } b, \ p^2 \text{ values of } (v)) \)

but with \(k=2 \) probability is \(\approx \frac{1}{2} \). That there are 2 solutions:
\[
\begin{align*}
\omega &= b_x x_1 + b_2 x_2 + \frac{(b_3)}{2} y_2 \\
v &= b_y y_1 + b_2 y_2 + \frac{(b_3)}{2} y_2
\end{align*}
\]

\[
\Rightarrow \begin{align*}
&b_x y_1 + b_2 x_1 - x_1 y_2 = \sqrt{-1} y_1 (y_1 + y_2) \\
&b_y y_2 + b_2 y_1 - x_2 y_2 = \sqrt{-1} y_2 (y_1 + y_2)
\end{align*}
\]
More generally: recall \(\mathbb{F} \in \text{Aut} \mathbb{A} \) with \(\mathbb{F}^n \neq \mathbb{1} \). Consider \(\mathbb{A} = \mathbb{Z}_p^n \).

Now \(\mathbb{A} \in \text{GL}_n \left(\mathbb{F}_p \right) \) defined by \(\mathbb{U} \in \text{GL}_n \left(\mathbb{F}_p \right) \) put a Jordan canonical form:

\[J = \begin{pmatrix}
1 & 1 & \cdots & 1 \\
1 & 1 & \cdots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 1 & \cdots & 1
\end{pmatrix}
\]

and:

\[\bar{a} = \bar{b} \begin{pmatrix}
a_1 \\
a_2 \\
\vdots \\
a_n
\end{pmatrix} = \begin{pmatrix}
b_1 \\
b_2 \\
\vdots \\
b_n
\end{pmatrix}
\]

1. \(\mathbb{F} \in \text{Aut} \mathbb{A} \) with \(\mathbb{F}^n \neq \mathbb{1} \). Consider \(\mathbb{A} = \mathbb{Z}_p^n \).

2. Now \(\mathbb{A} \in \text{GL}_n \left(\mathbb{F}_p \right) \) defined by \(\mathbb{U} \in \text{GL}_n \left(\mathbb{F}_p \right) \) put a Jordan canonical form:

\[J = \begin{pmatrix}
1 & 1 & \cdots & 1 \\
1 & 1 & \cdots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 1 & \cdots & 1
\end{pmatrix}
\]

and:

\[\bar{a} = \bar{b} \begin{pmatrix}
a_1 \\
a_2 \\
\vdots \\
a_n
\end{pmatrix} = \begin{pmatrix}
b_1 \\
b_2 \\
\vdots \\
b_n
\end{pmatrix}
\]

3. \(\mathbb{F} \in \text{Aut} \mathbb{A} \) with \(\mathbb{F}^n \neq \mathbb{1} \). Consider \(\mathbb{A} = \mathbb{Z}_p^n \).

4. Now \(\mathbb{A} \in \text{GL}_n \left(\mathbb{F}_p \right) \) defined by \(\mathbb{U} \in \text{GL}_n \left(\mathbb{F}_p \right) \) put a Jordan canonical form:

\[J = \begin{pmatrix}
1 & 1 & \cdots & 1 \\
1 & 1 & \cdots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 1 & \cdots & 1
\end{pmatrix}
\]

and:

\[\bar{a} = \bar{b} \begin{pmatrix}
a_1 \\
a_2 \\
\vdots \\
a_n
\end{pmatrix} = \begin{pmatrix}
b_1 \\
b_2 \\
\vdots \\
b_n
\end{pmatrix}
\]

5. \(\mathbb{F} \in \text{Aut} \mathbb{A} \) with \(\mathbb{F}^n \neq \mathbb{1} \). Consider \(\mathbb{A} = \mathbb{Z}_p^n \).

6. Now \(\mathbb{A} \in \text{GL}_n \left(\mathbb{F}_p \right) \) defined by \(\mathbb{U} \in \text{GL}_n \left(\mathbb{F}_p \right) \) put a Jordan canonical form:

\[J = \begin{pmatrix}
1 & 1 & \cdots & 1 \\
1 & 1 & \cdots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 1 & \cdots & 1
\end{pmatrix}
\]

and:

\[\bar{a} = \bar{b} \begin{pmatrix}
a_1 \\
a_2 \\
\vdots \\
a_n
\end{pmatrix} = \begin{pmatrix}
b_1 \\
b_2 \\
\vdots \\
b_n
\end{pmatrix}
\]

The success probability, need to show variance of \(\mu \) of solutions is small.

\[E_{x \in K} \mu_x = \frac{1}{p^{n-1}} \sum_{x \in K} \mu_x = \frac{1}{p^{n-1}} \sum_{x \in K} \mu_x = \frac{1}{p^{n-1}} \cdot k = \frac{1}{p^{k-1}}
\]

\[E_{x \in K} (\mu_x)^2 = \frac{1}{p^{n-1}} \sum_{x \in K} (\mu_x)^2 = \frac{1}{p^{n-1}} \sum_{x \in K} (\mu_x)^2 = \frac{1}{p^{n-1}} \cdot \frac{1}{k \cdot c} = \frac{1}{p^{k-1}} \cdot \frac{1}{c} = \frac{1}{p^{k-1}} \cdot \frac{1}{c}
\]

\[E_{x \in K} \mu_x \mu_x = \frac{1}{p^{n-1}} \sum_{x \in K} \mu_x \mu_x = \frac{1}{p^{n-1}} \sum_{x \in K} \mu_x \mu_x = \frac{1}{p^{n-1}} \cdot \frac{1}{k \cdot c} = \frac{1}{p^{k-1}} \cdot \frac{1}{c} = \frac{1}{p^{k-1}} \cdot \frac{1}{c}
\]

\[E_{x \in K} (\mu_x)^2 = \frac{1}{p^{n-1}} \sum_{x \in K} (\mu_x)^2 = \frac{1}{p^{n-1}} \sum_{x \in K} (\mu_x)^2 = \frac{1}{p^{n-1}} \cdot \frac{1}{k \cdot c} = \frac{1}{p^{k-1}} \cdot \frac{1}{c} = \frac{1}{p^{k-1}} \cdot \frac{1}{c}
\]

\[E_{x \in K} \mu_x \mu_x = \frac{1}{p^{n-1}} \sum_{x \in K} \mu_x \mu_x = \frac{1}{p^{n-1}} \sum_{x \in K} \mu_x \mu_x = \frac{1}{p^{n-1}} \cdot \frac{1}{k \cdot c} = \frac{1}{p^{k-1}} \cdot \frac{1}{c} = \frac{1}{p^{k-1}} \cdot \frac{1}{c}
\]

\[E_{x \in K} (\mu_x)^2 = \frac{1}{p^{n-1}} \sum_{x \in K} (\mu_x)^2 = \frac{1}{p^{n-1}} \sum_{x \in K} (\mu_x)^2 = \frac{1}{p^{n-1}} \cdot \frac{1}{k \cdot c} = \frac{1}{p^{k-1}} \cdot \frac{1}{c} = \frac{1}{p^{k-1}} \cdot \frac{1}{c}
\]

\[E_{x \in K} \mu_x \mu_x = \frac{1}{p^{n-1}} \sum_{x \in K} \mu_x \mu_x = \frac{1}{p^{n-1}} \sum_{x \in K} \mu_x \mu_x = \frac{1}{p^{n-1}} \cdot \frac{1}{k \cdot c} = \frac{1}{p^{k-1}} \cdot \frac{1}{c} = \frac{1}{p^{k-1}} \cdot \frac{1}{c}
\]
Stripped down algorithm
\[\frac{1}{P} \sum_{b_1, b_2 \in \mathbb{Z}_2^P} \sigma \left(\omega (a + b) \right) \]
and similarly:
\[\frac{1}{P} \sum_{b_1, b_2 \in \mathbb{Z}_2^P} \sigma \left(\omega (a + b) \right) \]
now unitarily erase \(\frac{1}{\sqrt{2}} (|b_1, b_{21} \rangle + |b_{12}, b_{22} \rangle) \) (2 solutions \(n_r = 2 \))
\[\frac{1}{P} \sum_{b_1, b_2 \in \mathbb{Z}_2^P} \sigma \left(\omega (a + b) \right) \]