
Presented by Hyeong S. Kim

A User-Transparent Recoverable File System
for Distributed Computing Environment

Hyeong S. Kim
Heon Y. Yeom

Seoul National Univ.
Seoul, Korea

Presented by Hyeong S. Kim

Outline

Introduction

Previous works
MPICH-GF

ReFS
Architecture

Implementation

Evaluation

Conclusions and future works

Presented by Hyeong S. Kim

Challenges

The nature of the distributed computing environment
including the Grid

Require that the system endure sudden failures Fault-
Tolerance

Our goal
Construct the practical fault-tolerance system for message-
passing applications on the Grid

Presented by Hyeong S. Kim

Fault-Tolerance – Things to Cover

Program
Context
ProgramProgram
ContextContext

FilesFilesFiles

CommunicationCommunicationCommunication

Program Context

• Concerned to
the address
space of the
process
• Keep the full
image and
context of the
process in a
reliable storage

Checkpointing
mechanism

Files

Concerned to
the files

The files should
be remained
unchanged when
the process
rollbacks to the
previous
checkpoint state

Communication

Concerned to
the messages

Any in-transit
message during
checkpointing is
never lost

Presented by Hyeong S. Kim

MPICH-GF

Based on MPICH-G2 (MPICH for Globus 2)

Equipped with task migration, dynamic process management for
MPI, and message queue management

Integrated with checkpoint library

Recovers the communication channel as well as the process itself

User transparent

Presented by Hyeong S. Kim

Job Submission in MPICH Globus

Job
Manager

Job
Manager

Proc.

Central Manager

gatekeepergatekeeper

fork

fork

Presented by Hyeong S. Kim

Scenario

P1P1 P2P2 P3P3 P4P4 PnPn……

Job
Manager

Job
Manager

Job
Manager

Job
Manager

Job
Manager

Job
Manager

Job
Manager

Job
Manager

Job
Manager

Job
Manager

Reliable Storage

Messages
(in logging scheme)

Files being used

Process images

Checkpoint!!Write the checkpoint file!!Restore to the previous state

Presented by Hyeong S. Kim

ReFS Sketch

Idea
It is not our concern whether a file is modified or not
between the checkpointings

Rather, we focus on the property that the file should be
unchanged after the most recent checkpoint has been done

A kind of Versioning File Systems
Retain earlier version of modified files allowing recovery
from user mistakes or system corruption

An easy integration method with MPICH-GF or other
fault-tolerant systems simplified system calls

No overwrite on existing data block
A concept of Log-Structured File System

Presented by Hyeong S. Kim

Example

1

Move to block 3;

write(A, “sample text”);

Move to block 3;

write(A, “sample text”);

1 2 633’

2 3

4 5 6

7
1(1) 2(2) 3(3)

4(4) 5(5) 6(6)

ino1inode
3(7)

ino1’

File A

4 5

Presented by Hyeong S. Kim

ReFS

VFS
Upper layer of the file system
Common layer among the target file systems

Target file system
Lower layer of the file system such as ext2, ext3, …

Address Translation Layer
Responsible for modifying the address of the block
A layer that prevents the write from overwriting the existing blocks

System Call Layer
refs_handler

Target File System

Address Translation Layer

Virtual File System

File System Layer

Presented by Hyeong S. Kim

Address Translation Layer

Disk

Buffer Cache

address
mode
state

……

Address
Translation
Module

What he does

• Modifies the
address of the
buffer cache

• Updates the
address of the
inode

Inode

Inode #
address
address
address

……

Presented by Hyeong S. Kim

Checkpoint and Restore

Checkpoint
Enumerate the files being used and repeat the following

Copy the related metadata and keep it in a designated dir.

Get the file offset and store it in a safe area

Restore
Reopen the file

Install the fd into the original position

Update the offset of the file

Presented by Hyeong S. Kim

Implementation

Prototype in the Linux kernel 2.6.3

Based on ext2

System call interfaces
refs_handler()

Presented by Hyeong S. Kim

Write Operation

write()

generic_file_write()

For each page

refs_prepare_write()

For each block
refs_get_block()

refs_forge()

Read blocks

refs_commit_write()

For each block
Mark_buffer_dirty()

Presented by Hyeong S. Kim

No Overwrite – in Detail

Block Existent in
Memory

Block Existent
in Inode

Block Non-
existent in

Inode

Block Non-existent
in Memory

refs_prepare_write()

refs_get_block()

refs_forge()

Presented by Hyeong S. Kim

Refs_forge()

Implements address translation module
Forges the address of the block into another empty address

Called block-by-block
We can operate on each block to write

Sequence
1. Allocate a block in disk

2. Modify the inode

3. Map the block as the block number of a new block

Presented by Hyeong S. Kim

Checkpointing and Recovery

Checkpointing
Save the data structure into the designated kernel memory
called “Core” which indicates the checkpointed files

Recovery
Recover the file table of the process using the data in the
Core

Presented by Hyeong S. Kim

Experimental Environment

A Linux Box
In order to get rid of the caching effect we have
repeated the following step for each experiment

Mount the device
Run the application
Unmount the device

Two experiments
Sequential write

A new file is created and sequential write is submitted
according to the given size

Partial overwrite
A write request whose data range is within the size of the target
file generate an overwrite situation

Presented by Hyeong S. Kim

Evaluation

Presented by Hyeong S. Kim

Evaluation

Presented by Hyeong S. Kim

Conclusions and Future Work

We have developed a recoverable file system for
MPICH-GF

User-transparent
Can be integrated with other fault-tolerant systems

We have also developed a simple user-level
mechanism to provide fault-tolerance for MPICH-GF

Included in the current deployment

We are currently developing a user-level file system
that can reduce the burden the kernel has

Deploying a kernel module is not as easy as deploying
applications

