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Abstract
Convex bodies are ubiquitous in computational geometry and optimization theory. The high
combinatorial complexity of multidimensional convex polytopes has motivated the development
of algorithms and data structures for approximate representations. This paper demonstrates an
intriguing connection between convex approximation and the classical concept of Delone sets from
the theory of metric spaces. It shows that with the help of a classical structure from convexity
theory, called a Macbeath region, it is possible to construct an ε-approximation of any convex
body as the union of O(1/ε(d−1)/2) ellipsoids, where the center points of these ellipsoids form a
Delone set in the Hilbert metric associated with the convex body. Furthermore, a hierarchy of
such approximations yields a data structure that answers ε-approximate polytope membership
queries in O(log(1/ε)) time. This matches the best asymptotic results for this problem, by a
data structure that both is simpler and arguably more elegant.
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1 Introduction

We consider the following fundamental query problem. Let K denote a bounded convex
polytope in Rd, presented as the intersection of n halfspaces. The objective is to preprocess
K so that, given any query point q ∈ Rd, it is possible to determine efficiently whether q
lies in K. Throughout, we assume that d is a fixed constant and K is full-dimensional.

Polytope membership is equivalent in the dual setting to answering halfspace emptiness
queries for a set of n points in Rd. In dimensions higher than three, the fastest exact data
structure with near-linear space has a query time of roughly O

(
n1−1/bd/2c) [29], which is

unacceptably high for many applications. Hence, we consider an approximate setting.
Let ε be a positive real parameter, and let diam(K) denote K’s diameter. Given a query

point q ∈ Rd, an ε-approximate polytope membership query returns a positive result if q ∈ K,
a negative result if the distance from q to its closest point in K is greater than ε · diam(K),
and it may return either result otherwise.
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Polytope membership queries, both exact and approximate, arise in many application
areas, such as linear programming and ray-shooting queries [15,28,30,33], nearest neighbor
searching and the computation of extreme points [1, 16, 18], collision detection [21], and
machine learning [14].

Dudley [20] showed that, for any convex body K in Rd, it is possible to construct
an ε-approximating polytope P with O(1/ε(d−1)/2) facets. This bound is asymptotically
tight, and is achieved when K is a Euclidean ball. This construction implies a (triv-
ial) data structure for approximate polytope membership problem with space and query
time O(1/ε(d−1)/2). It follows from the work of Bentley et al. [11] that there is a simple
grid-based solution, that answers queries in constant time using space O(1/εd−1). Arya et
al. [2, 3] present algorithms that achieve a tradeoff between these two extremes, but their
data structure provides no improvement over the storage in [11] when the query time is
polylogarithmic.

A space-optimal solution for the case of polylogarithmic query time was presented in [7].
It achieves query time O(log 1

ε ) with storage O(1/ε(d−1)/2). This paper achieves its efficiency
by abandoning the grid- and quadtree-based approaches in favor of an approach based on
ellipsoids and a classical structure from convexity theory called a Macbeath region [27].

The approach presented in [7] is based on constructing a collection of nested eroded
bodies within K and covering the boundaries of these eroded bodies with ellipsoids that are
based on Macbeath regions. Queries are answered by shooting rays from a central point
in the polytope towards the boundary of K, and tracking an ellipsoid at each level that is
intersected by the ray. While it is asymptotically optimal, the data structure and its analysis
are complicated by various elements that are artifacts of this ray shooting approach.

In this paper, we present a simpler and more intuitive approach with the same asymptotic
complexity as the one in [7]. The key idea is to place the Macbeath regions based on Delone
sets. A Delone set is a concept from the study of metric spaces. It consists of a set of points
that have nice packing and covering properties with respect to the metric balls. Our main
result is that any maximal set of disjoint shrunken Macbeath regions defines a Delone set
with respect to the Hilbert metric induced on a suitable expansion of the convex body. This
observation leads to a simple DAG structure for membership queries. The DAG structure
arises from a hierarchy of Delone sets obtained by layering a sequence of expansions of the
body. Our results uncover a natural connection between the classical concepts of Delone
sets from the theory of metric spaces and Macbeath regions and the Hilbert geometry from
the theory of convexity.

2 Preliminaries

In this section we present a number of basic definitions and results, which will be used
throughout the paper. We consider the real d-dimensional space, Rd, where d is a fixed
constant. Let O denote the origin of Rd. Given a vector v ∈ Rd, let ‖v‖ denote its Euclidean
length, and let 〈·, ·〉 denote the standard inner product. Given two points p, q ∈ Rd, the
Euclidean distance between them is ‖p − q‖. For q ∈ Rd and r > 0, let B(q, r) denote the
Euclidean ball of radius r centered at q, and let B(r) = B(O, r).

Let K be a convex body in Rd, represented as the intersection of m closed halfspaces
Hi = {x ∈ Rd : 〈x, vi〉 ≤ ai}, where ai is a nonnegative real and vi ∈ Rd. The bounding
hyperplane for Hi is orthogonal to vi and lies at distance ai/‖vi‖ from the origin. The
boundary of K will be denoted by ∂K. For 0 < κ ≤ 1, we say that K is in κ-canonical form
if B(κ/2) ⊆ K ⊆ B(1/2). Clearly, such a body has a diameter between κ and 1.
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It is well known that in O(m) time it is possible to compute a non-singular affine trans-
formation T such that T (K) is in (1/d)-canonical form [6,23]. Further, if a convex body P
is within Hausdorff distance ε of T (K), then T−1(P ) is within Hausdorff distance at most
dε of K. (Indeed, this transformation is useful, since the resulting approximation is direc-
tionally sensitive, being more accurate along directions where K is skinnier.) Therefore, for
the sake of approximation with respect to Hausdorff distance, we may assume that K has
been mapped to canonical form, and ε is scaled by a factor of 1/d. Because we assume that
d is a constant, this transformation will only affect the constant factors in our analysis.

A number of our constructions involve perturbing the body K by means of expansion,
but the exact nature of the expansion is flexible in the following sense. Given δ > 0, let
Kδ denote any convex body containing K such that the Hausdorff distance between ∂K

and ∂Kδ is Θ(δ · diam(K)). For example, if K is in canonical form, Kδ could result as the
Minkowski sum of K with another convex body of diameter δ or from a uniform scaling
about the origin by δ. Because reducing the approximation parameter by a constant factor
affects only the constant factors in our complexity bounds, the use of an appropriate Kδ

instead of closely related notions of approximation, like the two just mentioned, will not
affect our asymptotic bounds. Given δ > 0, we perturb each Hi to obtain

Hi,δ = {x ∈ Rd : 〈x,~vi〉 ≤ ai + δ)}.

The associated bounding hyperplane is parallel to that of Hi and translated away from the
origin by a distance of δ/‖vi‖. With that, we define Kδ as the convex polytope

⋂n
i=1 Hi,δ.

To ensure the required bound on the Hausdorff error, we require that c1δ ≤ ‖vi‖ ≤ c2 for all
i, where c1 and c2 are nonnegative reals. The following argument shows that this condition
suffices. If c1δ ≤ ‖vi‖ ≤ c2, then each bounding halfspace of K is translated away from the
origin by a distance of δ/‖vi‖ ≥ δ/c2, which establishes the lower bound on the Hausdorff
distance. Also, each bounding halfspace is translated by a distance of δ/‖vi‖ ≤ 1/c1. Since
K, being in canonical form, is nested between balls of radius κ/2 and 1/2, this translation of
the halfspace is equivalent to a scaling about the origin by a factor of at most 2/c1κ, which
maps each point of K away from the origin by a distance of at most (2/c1κ)/2 = 1/c1κ.
This establishes the upper bound on the Hausdorff distance.

2.1 Macbeath regions
Our algorithms and data structures will involve packings and coverings by ellipsoids, which
will possess the essential properties of Delone sets. These ellipsoids are based on a classical
concept from convexity theory, called Macbeath regions, which were described first by A. M.
Macbeath in a paper on the existence of certain lattice points in a convex body [27]. They
have found uses in diverse areas (see, e.g., Bárány’s survey [9]).

Given a convex body K, a point x ∈ K, and a real parameter λ ≥ 0, the λ-scaled
Macbeath region at x, denoted Mλ

K(x), is defined to be

x+ λ((K − x) ∩ (x−K)).

When λ = 1, it is easy to verify that M1
K(x) is the intersection of K and the reflection of K

around x (see Fig. 1a), and hence it is centrally symmetric about x. Mλ
K(x) is a scaled copy

of M1
K(x) by the factor λ about x. We refer to x and λ as the center and scaling factor of

Mλ
K(x), respectively. To simplify the notation, when K is clear from the context, we often

omit explicit reference in the subscript and use Mλ(x) in place of Mλ
K(x). When λ < 1,

we say Mλ(x) is shrunken. When λ = 1, M1(x) is unscaled and we drop the superscript.
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Recall that if Cλ is a uniform λ-factor scaling of any bounded, full-dimensional set C ⊂ Rd,
then vol(Cλ) = λd · vol(C).
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Figure 1 (a) Macbeath regions and (b) Macbeath ellipsoids.

An important property of Macbeath regions, which we call expansion-containment, is
that if two shrunken Macbeath regions overlap, then an appropriate expansion of one con-
tains the other (see Fig. 2a). The following is a generalization of results of Ewald, Rogers
and Larman [22] and Brönnimann, Chazelle, and Pach [13]. Our generalization allows the
shrinking factor λ to be adjusted, and shows how to adjust the expansion factor β of the
first body to cover an α-scaling of the second body, e.g., the center point only (see Fig. 2b).
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Figure 2 (a)-(b) Expansion-containment per Lemma 1. (c) The Hilbert metric.

I Lemma 1. Let K ⊂ Rd be a convex body and let 0 < λ < 1. If x, y ∈ K such that
Mλ(x)∩Mλ(y) 6= ∅, then for any α ≥ 0 and β = 2+α(1+λ)

1−λ , Mαλ(y) ⊆Mβλ(x) (see Fig. 2).

2.2 Delone sets and the Hilbert metric
An important concept in the context of metric spaces involves coverings and packings by
metric balls [19]. Given a metric f over X, a point x ∈ X, and real r > 0, define the ball
Bf (x, r) = {y ∈ X : f(x, y) ≤ r}. For ε, εp, εc > 0, a set X ⊆ X is an:

ε-packing: If the balls of radius ε/2 centered at every point of X do not intersect.
ε-covering: If every point of X is within distance ε of some point of X.
(εp, εc)-Delone Set: If X is an εp-packing and an εc-covering.

Delone sets have been used in the design of data structures for answering geometric
proximity queries in metric spaces through the use of hierarchies of nets, such as navigating
nets [26], net trees [24], and cover trees [12].
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In order to view a collection of Macbeath regions as a Delone set, it will be useful to
introduce an underlying metric. The Hilbert metric [25] was introduced over a century ago
by David Hilbert as a generalization of the Cayley-Klein model of hyperbolic geometry. A
Hilbert geometry (K, fK) consists of a convex domain K in Rd with the Hilbert distance fK .
For any pair of distinct points x, y ∈ K, the line passing through them meets ∂K at two
points x′ and y′. We label these points so that they appear in the order 〈x′, x, y, y′〉 along
this line (see Fig. 2c). The Hilbert distance fK is defined as

fK(x, y) = 1
2 ln

(
‖x′ − y‖
‖x′ − x‖

‖x− y′‖
‖y − y′‖

)
.

When K is not bounded and either x′ or y′ is at infinity, the corresponding ratio is taken
to be 1. To get some intuition, observe that if x is fixed and y moves along a ray starting
at x towards ∂K, fK(x, y) varies from 0 to ∞.

Hilbert geometries have a number of interesting properties; see the survey by Papadopou-
los and Troyanov [32] and the multimedia contribution by Nielsen and Shao [31]. First, fK
can be shown to be a metric. Second, it is invariant under projective transformations.1
Finally, when K is a unit ball in Rd, the Hilbert distance is equal (up to a constant factor)
to the distance between points in the Cayley-Klein model of hyperbolic geometry.

Given a point x ∈ K and r > 0, let BH(x, r) denote the ball of radius r about x in
the Hilbert metric. The following lemma shows that a shrunken Macbeath region is nested
between two Hilbert balls whose radii differ by a constant factor (depending on the scaling
factor). Thus, up to constant factors in scaling, Macbeath regions and their associated
ellipsoids can act as proxies to metric balls in Hilbert space. This nesting was observed
by Vernicos and Walsh [34] (for the conventional case of λ = 1/5), and we present the
straightforward generalization to other scale factors. For example, with λ = 1/5, we have
BH(x, 0.09) ⊆M1/5(x) ⊆ BH(x, 0.21) for all x ∈ K.

I Lemma 2. Given a convex body K ⊂ Rd, for all x ∈ K and any 0 ≤ λ < 1,

BH
(
x,

1
2 ln (1 + λ)

)
⊆ Mλ(x) ⊆ BH

(
x,

1
2 ln 1 + λ

1− λ

)
.

3 Macbeath regions as Delone sets

Lemma 2 justifies using Macbeath regions as Delone sets. Given a point x ∈ K and
δ > 0, define Mδ(x) to be the (unscaled) Macbeath region with respect to Kδ, that is,
Mδ(x) = MKδ(x). Towards our goal of using Delone sets for approximating convex bodies,
we study the behavior of overlapping Macbeath regions at different scales of approximation
and establish a bound on the size of such Delone sets. In particular, we consider maximal
sets of disjoint shrunken Macbeath regions Mλ

δ (x) defined with respect to Kδ, such that the
centers x lie within K; let Xδ denote such a set of centers. The two scale factors used to
define the Delone set will be denoted by (λp, λc), where we assume 0 < λp < λc < 1 are
constants. Define M ′δ(x) = Mλc

δ (x) and M ′′δ (x) = M
λp
δ (x).

1 This follows from the fact that the argument to the logarithm function is the cross ratio of the points
(x′, x, y, y′), and it is well known that cross ratios are preserved under projective transformations.
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3.1 Varying the scale
A crucial property of metric balls is how they adapt to changing the resolution at which
the domain in question is being modeled. We show that Macbeath regions enjoy a similar
property.

I Lemma 3. Given a convex body K ⊂ Rd and λ, δ, ε ≥ 0, for all x ∈ K,

Mλ
Kδ

(x) ⊆ Mλ
K(1+ε)δ

(x) ⊆ M
(1+ε)λ
Kδ

(x).

Proof : The first inclusion is a simple consequence of the fact that enlarging the body can
only enlarge the Macbeath regions. To see the second inclusion, it will simplify the notation
to translate space by −x so that x now coincides with the origin. Thus, MK(x) = K ∩−K.
Recalling our representation from Section 2, we can express K as the intersection of a set
of halfspaces Hi = {y : 〈y, vi〉 ≤ ai}. (The translation affects the value of ai, but not the
approximation, because x ∈ K, ai ≥ 0.) We can express MK(x) as the intersection of a
set of slabs Σi = Hi ∩ −Hi, where each slab is centered about the origin. MKδ(x) can
be similarly expressed as the intersection of slabs Σi,δ = Hi,δ ∩ −Hi,δ, where the defining
inequality is 〈y, vi〉 ≤ ai + δ. This applies analogously to MK(1+ε)δ(x), where the defining
inequality is 〈y, vi〉 ≤ ai + (1 + ε)δ. Since ai ≥ 0, we have ai + (1 + ε)δ ≤ (1 + ε)(ai + δ),
which implies that Σi,(1+ε)δ ⊆ (1 + ε)Σi,δ. Thus, we have

MK(1+ε)δ(x) =
⋂m

i=1
Σi,(1+ε)δ ⊆

⋂m

i=1
(1 + ε)Σi,δ = M

(1+ε)
Kδ

(x).

The lemma now follows by applying a scaling factor of λ to both sides. ut

As we refine the approximation by using smaller values of δ, it is important to bound the
number of Macbeath regions at higher resolution that overlap any given Macbeath region
at a lower resolution. Our bound is based on a simple packing argument. We will show that
the shrunken Macbeath regions M ′′δ (y) that overlap a fixed shrunken Macbeath region at
a coarser level of approximation M ′sδ(x), with s ≥ 1, lie within a suitable constant-factor
expansion of M ′sδ(x). Let Yδ,s(x) denote the set of points y such that M ′′δ (y) are pairwise
disjoint and overlap M ′sδ(x). Since these shrunken Macbeath regions are pairwise disjoint,
we can bound their number by bounding the ratio of volumes of M ′sδ(x) and M ′′δ (y).

As an immediate corollary of the second inclusion of Lemma 3 we have vol(Mλ
δ (x)) ≥

vol(Mλ
sδ(x))/sd. This allows us to establish an upper bound on the growth rate in the

number of Macbeath regions when refining to smaller scales.

I Lemma 4. Given a convex body K ⊂ Rd and x ∈ K. Then, for constants δ ≥ 0, s ≥ 1
and Yδ,s(x) as defined above, |Yδ,s(x)| = O(1).

Proof : By the first inclusion of Lemma 3,M ′δ(y) ⊆M ′sδ(y), and we haveM ′sδ(x)∩M ′sδ(y) 6=
∅. Next, by applying Lemma 1 (with the roles of x and y swapped) we obtain M ′sδ(x) =
Mλc
sδ (x) ⊆Mβλc

sδ (y), with α = 1 and β = (3 + λc)/(1− λc).
By definition of Xδ the shrunken Macbeath regions M ′′δ (y) are pairwise disjoint, and

so it suffices to bound their volumes with respect to that of M ′sδ(x) to obtain a bound on
|Yδ,s(x)|. Applying the corollary to Lemma 3 and scaling, we obtain

vol(M ′′δ (y)) ≥ 1
sd

vol(M ′′sδ(y)) =
(

λp
βλcs

)d
vol(Mβλc

sδ (y)) ≥
(

λp
βλcs

)d
vol(M ′sδ(x)).

Thus, by a packing argument the number of children is at most
(
βλcs
λp

)d
= O(1). ut
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3.2 Size bound
We bound the cardinality of a maximal set of disjoint shrunken Macbeath regions Mλ

δ (x)
defined with respect to Kδ, such that the centers x lie within K; let Xδ denote such a set of
centers. This is facilitated by associating each center x with a cap of K, where a cap C is
defined as the nonempty intersection of the convex body K with a halfspace (see Fig. 3a).
Letting h denote the hyperplane bounding this halfspace, the base of C is defined as h∩K.
The apex of C is any point in the cap such that the supporting hyperplane of K at this point
is parallel to h. The width of C is the distance between h and this supporting hyperplane.
Of particular interest is a cap of minimum volume that contains x, which may not be unique.
A simple variational argument shows that x is the centroid of the base of this cap [22].

C

h

bas
e

wid
th

wapex K

(a)

K

∈ [∆, 2∆]

(b)

Figure 3 (a) Cap concepts and (b) the economical cap cover.

As each Macbeath region is associated with a cap, we can obtain the desired bound
by bounding the number of associated caps. We achieve this by appealing to the so-called
economical cap covers [10]. The following lemma is a straightforward adaptation of the
width-based economical cap cover per Lemma 3.2 of [6].

I Lemma 5. Let K ⊂ Rd be a convex body in κ-canonical form. Let 0 < λ ≤ 1/5 be any
fixed constant, and let ∆ ≤ κ/12 be a real parameter. Let C be a set of caps, whose widths
lie between ∆ and 2∆, such that the Macbeath regions Mλ

K(x) centered at the centroids x of
the bases of these caps are disjoint. Then |C| = O(1/∆(d−1)/2) (see Fig. 3a(b)).

This leads to the following bound on the number of points in Xδ.

I Lemma 6. Let K ⊂ Rd be a convex body in κ-canonical form, and let Xδ as defined above
for some δ > 0 and 0 < λ ≤ 1/5. Then, |Xδ| = O(1/δ(d−1)/2).

Proof : In order to apply Lemma 5 we will partition the points of Xδ according to the
widths of their minimum-volume caps. For i ≥ 0, define ∆i = c22iδi, where c2 depends
on the nature of the the expansion process that yields Kδ. Define Xδ,i to be the subset of
points x ∈ Xδ such that width of x’s minimum cap with respect to Kδ lies within [∆i, 2∆i].
By choosing c2 properly, the Hausdorff distance between K and Kδ is at least c2δ = ∆0,
and therefore any cap whose base passes through a point of Xδ has width at least ∆0. This
implies that every point of Xδ lies in some subset Xδ,i for i ≥ 0.

If a convex body is in κ-canonical form, it follows from a simple geometric argument that
for any point x in this body whose minimal cap is of width at least ∆, the body contains a
ball of radius c∆ centered at x, for some constant c (depending on κ and d). If ∆i > κ/12,
then B(x, cκ/12) ⊆ Kδ for all x ∈ Xδ,i. It follows that B(x, cκ/12) ⊆ Mδ(x) implying that
vol(Mλ

δ (x)) ≥ λd · vol(B(cκ/12)) which is Ω(1) as c, κ and λ are all constants. By a simple
packing argument |Xi,j | = O(1). There are at most a constant number of levels for which
∆j > κ/12, and so the overall contribution of these subsets is O(1).
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Henceforth, we may assume that ∆j ≤ κ/12. Since λ ≤ 1/5, we apply Lemma 5 to
obtain the bound |Xδ,i| = O(1/∆(d−1)/2

i ). (There is a minor technicality here. If δ becomes
sufficiently large, Kδ may not be in κ-canonical form because its diameter is too large.
Because δ = O(1) and hence diam(Kδ) = O(1), we may scale it back into canonical form at
the expense of increasing the constant factors hidden in the asymptotic bound.) Thus, up
to constant factors, we have

|Xδ| =
∑
i≥0
|Xδ,i| =

∑
i≥0

O

(
1

∆i

) d−1
2

=
∑
i≥0

O

(
1

c22iδ

) d−1
2

= O

((
1
δ

) d−1
2
)
.

ut

4 Macbeath ellipsoids

For the sake of efficient computation, it will be useful to approximate Macbeath regions by
shapes of constant combinatorial complexity. We have opted to use ellipsoids. (Note that
bounding boxes [1] could be used instead, and may be preferred in contexts where polytopes
are preferred.)

Given a Macbeath region, define its associated Macbeath ellipsoid EλK(x) to be the
maximum-volume ellipsoid contained within Mλ

K(x) (see Fig. 1b). Clearly, this ellipsoid
is centered at x and EλK(x) is an λ-factor scaling of E1

K(x) about x. It is well known that
the maximum-volume ellipsoid contained within a convex body is unique, and Chazelle and
Matoušek showed that it can be computed for a convex polytope in time linear in the num-
ber of its bounding halfspaces [17]. By John’s Theorem (applied in the context of centrally
symmetric bodies) it follows that EλK(x) ⊆Mλ

K(x) ⊆ Eλ
√
d

K (x) [8].
Given a point x ∈ K and δ > 0, define Mδ(x) to be the (unscaled) Macbeath region

with respect to Kδ (as defined in Section 2), that is, Mδ(x) = MKδ(x). Let Eδ(x) denote
the maximum volume ellipsoid contained within Mδ(x). As Mδ(x) is symmetric about x,
Eδ(x) is centered at x. For any λ > 0, define Mλ

δ (x) and Eλδ (x) to be the uniform scalings
of Mδ(x) and Eδ(x), respectively, about x by a factor of λ. By John’s Theorem, we have

Eλδ (x) ⊆ Mλ
δ (x) ⊆ Eλ

√
d

δ (x). (1)

K
Kδ

E′′
δ (x)

E′
δ(x)

x

(a) (b)

x

(c)

Figure 4 A Delone set for a convex body. (Not drawn to scale.)

Two particular scale factors will be of interest to us. Define M ′δ(x) = M
1/2
δ (x) and

M ′′δ (x) = Mλ0
δ (x), where λ0 = 1/(4

√
d+ 1). Similarly, define E′δ(x) = E

1/2
δ (x) and E′′δ (x) =

Eλ0
δ (x) (see Fig. 4(a)). Given a fixed δ, let Xδ be any maximal set of points, all lying within

K, such that the ellipsoids E′′δ (x) are pairwise disjoint for all x ∈ Xδ.
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These ellipsoids form a packing of Kδ (see Fig. 4(b)). The following lemma shows that
their suitable expansions cover K while being contained within Kδ (see Fig. 4(c)).

I Lemma 7. Given a convex body K in Rd and a set Xδ as defined above for δ > 0,

K ⊆
⋃
x∈Xδ

E′δ(x) ⊆ Kδ.

Proof : To establish the first inclusion, consider any point y ∈ K. Because Xδ is maximal,
there exists x ∈ Xδ such that E′′δ (x)∩E′′δ (y) is nonempty. By containment, M ′′δ (x)∩M ′′δ (y)
is also nonempty. By Lemma 1 (with α = 0), it follows that y ∈Mλ

δ (x), where

λ = 2λ0

1− λ0
= 2/(4

√
d+ 1)

1− 1/(4
√
d+ 1)

= 2
4
√
d

= 1
2
√
d
.

By applying Eq. (1) (with λ = 1/(2
√
d)), we have M1/(2

√
d)

δ (x) ⊆ E
1/2
δ (x) = E′δ(x), and

therefore y ∈ E′δ(x). Thus, we have shown that an arbitrary point y ∈ K is contained in the
ellipsoid E′δ(x) for some x ∈ Xδ, implying that the union of these ellipsoids covers K. The
second inclusion follows from E′δ(x) ⊆M ′δ(x) ⊆Mδ(x) ⊆ Kδ for any x ∈ Xδ ⊆ K. ut

In conclusion, if we treat the scaling factor λ in Eλ(x) as a proxy for the radius of a
metric ball, we have shown that Xδ is a (2λ0, 1/2)-Delone set for K. By Lemma 2 this
is also true in the Hilbert metric over Kδ up to a constant factor adjustment in the radii.
(Note that the scale of the Hilbert balls does not vary with δ. What varies is the choice of
the expanded body Kδ defining the metric.)

By John’s Theorem, Macbeath regions and Macbeath ellipsoids differ by a constant
scaling factor, both with respect to enclosure and containment. We remark that all the
results of the previous two sections hold equally for Macbeath ellipsoids. We omit the
straightforward, but tedious, details.
I Remark. All results from previous section on scaled Macbeath regions apply to scaled
Macbeath ellipsoids subject to appropriate modifications of the constant factors.

5 Approximate polytope membership (APM)

The Macbeath-based Delone sets developed above yield a simple data structure for answering
ε-APM queries for a convex body K. We assume that K is represented as the intersection of
m halfspaces. We may assume that in O(m) time it has been transformed into κ-canonical
form, for κ = 1/d. Throughout, we will assume that Delone sets are based on the Macbeath
ellipsoids E′′δ (x) for packing and E′δ(x) for coverage (defined in Section 4).

Our data structure is based on a hierarchy of Delone sets of exponentially increasing
accuracy. Define δ0 = ε, and for any integer i ≥ 0, define δi = 2iδ0. Let Xi denote a Delone
set for Kδi . By Lemma 7, we may take Xi to be any maximal set of points within K such
that the packing ellipsoids E′′δ (x) are pairwise disjoint. Let ` = `ε be the smallest integer
such that |X`| = 1. We will show below that ` = O(log 1/ε).

Given the sets 〈X0, . . . , X`〉, we build a rooted, layered DAG structure as follows. The
nodes of level i correspond 1–1 with the points of Xi. The leaves reside at level 0 and the
root at level `. Each node x ∈ Xi is associated with two things. The first is its cell, denoted
cell(x), which is the covering ellipsoid E′δ(x) (the larger hollow ellipsoids shown in Fig. 5).
The second, if i > 0, is a set of children, denoted ch(x), which consists of the points y ∈ Xi−1
such that cell(x) ∩ cell(y) 6= ∅.
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level 0level 1level 2level 3

Kδ0Kδ1Kδ2
Kδ3

Figure 5 Hierarchy of ellipsoids for answering APM queries.

To answer a query q, we start at the root and iteratively visit any one node x ∈ Xi at each
level of the DAG, such that q ∈ cell(x). We know that if q lies withinK, such an x must exist
by the covering properties of Delone sets, and further at least one of x’s children contains
q. If q does not lie within any of the children of the current node, the query algorithm
terminates and reports (without error) that q /∈ K. Otherwise the search eventually reaches
a node x ∈ X0 at the leaf level whose cell contains q. Since cell(x) ⊆ Kδ0 = Kε, this cell
serves as a witness to q’s approximate membership within K.

In order to bound the space and query time, we need to bound the total space used by
the data structure and the time to process each node in the search, which is proportional to
the number of its children. Building upon Lemmas 4 and 6, we have our main result.

I Theorem 8. Given a convex body K and ε > 0, there exists a data structure of space
O(1/ε(d−1)/2) that answers ε-approximate polytope membership queries in time O(log 1/ε).

Since the expansion factors δi grow exponentially from ε to a suitably large constant, it
follows that the height of the tree is logarithmic in 1/ε, which is made formal below.

I Lemma 9. The DAG structure described above has height O(log 1/ε).

Proof : Let c2 be an appropriate constant, and let ` = dlog2(2/c2ε)e = O(log 1/ε). Depend-
ing the nature of the expanded body Kδ, the constant c2 can be chosen so the Hausdorff
distance between K and Kδ` is at least c2δ` = c22`ε ≥ 2. Because K is in κ-canonical form,
it is contained within a unit ball centered at the origin. Therefore, Kδ` contains a ball of
radius two centered at the origin, which implies that the Macbeath ellipsoid E′δ`(O) (which
is scaled by 1/2) contains the unit ball and so contains K. Thus, (assuming that the origin
is added first to the Delone set) level ` of the DAG contains a single node. ut

By Lemma 4, each node has O(1) children and δi = 2iδ0 = 2iε, we obtain the following
space bound by summing |Xi| for 0 ≤ i ≤ `.

I Lemma 10. The storage required by the DAG structure described above is O(1/ε(d−1)/2).

As mentioned above, by combining Lemmas 4 with 6, it follows that the query time is
O(log 1/ε) and by Lemma 10 the total space is O(1/ε(d−1)/2), which establish Theorem 8.

While our focus has been on demonstrating the existence of a simple data structure
derived from Delone sets, we note that it can be constructed by well-established techniques.
While obtaining the best dependencies on ε in the construction time will likely involve fairly
sophisticated methods, as seen in the paper of Arya et al. [5], the following shows that there
is a straightforward construction.
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I Lemma 11. Given a convex body K ⊂ Rd represented as the intersection of m halfspaces
and ε > 0, the above DAG structure for answering ε-APM queries can be computed in time
O(m+ 1/εO(d)), where the constant in the exponent does not depend on ε or d.

Proof : First, we transform K into canonical form, and replace it with an ε
2 -approximation

K ′ of itself. This can be done in O(m + 1/εO(d)), so that K ′ is bounded by O(1/ε(d−1)/2)
halfspaces (see, e.g., [4]). We then build the data structure to solve APM queries to an
accuracy of (ε/2), so that the total error is ε.

Because the number of nodes increases exponentially as we descend to the leaf level, the
most computationally intensive aspect of the remainder of the construction is computing
the set X0, a maximal subset of K whose packing ellipsoids E′′δ0

(x) are pairwise disjoint. To
discretize the construction of X0, we observe that by our remarks at the start of Section 2,
the Hausdorff distance between K and Kδ0 is Ω(δ0) = Ω(ε). It follows that each of the
ellipsoids E′′δ0

(x) contains a ball of radius Ω(λ0ε) = Ω(ε). We restrict the points of X0 to
come from the vertices of a square grid whose side length is half this radius. Since K is in
canonical form, it suffices to generate O(1/εO(d)) grid points. By decreasing the value of
ε slightly (by a constant factor), it is straightforward to show that any Delone set can be
perturbed so that its centers lie on this grid.

Each Macbeath ellipsoid can be computed in time linear in the number of halfspaces
bounding K ′, which is O(1/εO(d)) [17]. The maximal set is computed by brute force, re-
peatedly selecting a point x from the grid, computing E′′δ0

(x), and marking the points of
the grid that it covers until all points interior to K are covered. The overall running time is
dominated by the product of the number of grid points and the O(1/εO(d)) time to compute
each Macbeath ellipsoid. ut
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