Topological Distance Between Nonplanar Transportation Networks

Ahmed Abdelkader¹, Geoff Boeing², Brittany Terese Fasy³, David Millman³

¹University of Maryland, College Park

²Northeastern University

³Montana State University

Fall Workshop on Computational Geometry Queens College, City University of New York Flushing, NY October 26th, 2018

Map Comparison

Two maps of Berlin: 2007 (left) vs. 2013 (right) [Ahmad, Fasy and Wenk, SigSpatial'14]

Problem

How to compare two such maps?

Why Map Comparison?

Ground truth vs. density plot [AFW, SigSpatial'15]

Applications

- Evaluation and comparison of map reconstruction algorithms
- Urban morphology

Why Topology?

Two street intersections [AFW, SigSpatial'14]

Two types of error

- Hausdorff distance: low
- Topology: different

Topology-based Map Comparison

A topological signature at x

- Compute the *local persistent homology* in the neighborhood of x
 - Define offsets by thickening street segments
 - Compute a filtration from overlapping offsets
 - Compute the persistent homology of the filtration
 - .. relative to the boundary of the neighborhood
- Compare the barcodes for different maps

Assumption of Planarity ..

.. can lead to drastic errors in street network analysis [Boeing, Environment & Planning B '18]

Left: High Five Interchange, Dallas, USA Right: Magdeburg Water Bridge, Magdeburg, Germany

Multi-Layered Environments

[van Toll, Cook, van Kreveld and Geraerts, TSAS'18]

Nearly 2D

- For many planning problems, 3D is an overkill
- Extend algorithms and data structures from 2D

Grade-separated Street Networks

Abstract model for street networks

Allowing non-planarity

- Multiple copies of \mathbb{R}^2 (layers) identified at special vertices (portals)
- Segment offsets grow through portals onto connected layers

Model

Offset of a segment \overline{uv} across three layers

Offset of a segment \overline{uv} across three layers

Model

Offset of a segment \overline{uv} across three layers

Model

Offset of a segment \overline{uv} across three layers

Overlap Computation - Two-way

Determine the earliest time when offsets intersect

- ullet Case(1): segments in the same layer, e.g., A & C \Longrightarrow old school
- Case(2): segments in different layers, e.g., A & B \implies via portals ...

Overlap Computation - Two-way: Case(2)

Shortest path through portal graph

- Precompute all-pairs shortest paths on a portal graph
- Connect A and B to portals on respective layers
- Find the shortest path from A to B

Overlap Computation - Three-way

Which layer realizes the overlap?

- Same as segment ⇒ offset is a segment offset (S)
- Different layer \implies offset is a disk centered at some portal (D)

Earliest time when offsets intersect .. but at which layer?

- Case(1): SSS ⇒ segment Voronoi diagram
- Case(2): SSD \implies disk + segment bisector (straight & parabolic arcs)
- Case(3): SDD \implies weighted segment + disk bisector (hyperbola)
- Case(4): DDD ⇒ Apollonius diagram

Overlap Computation - Three-way

Which layer realizes the overlap?

- Same as segment ⇒ offset is a segment offset (S)
- Different layer \implies offset is a disk centered at some portal (D)

Earliest time when offsets intersect .. but at which layer?

- Case(1): SSS ⇒ segment Voronoi diagram
- Case(2): SSD \implies disk + segment bisector (straight & parabolic arcs)
- Case(3): SDD \implies weighted segment + disk bisector (hyperbola)
- Case(4): DDD ⇒ Apollonius diagram

Overlap Computation - Three-way: Case(1) SSS

Case(1.1): earliest overlap at a Voronoi vertex

Overlap Computation - Three-way: Case(1) SSS

Case(1.2): earliest overlap in the interior of a cell

Overlap Computation - Three-way: Case(4) DDD

Case(4.1): earliest overlap at an Apollonius vertex

Overlap Computation - Three-way: Case(4) DDD

Case(4.2): earliest overlap in the interior of a cell

Summary

Topological Distance for Non-planar Street Networks

- Model grade-separated networks as multi-layered graphs
- Define segment offsets and filtrations across layers
- Next steps
 - Implement LPH computation (based on CGAL & Dionysus)
 - Run experiments, e.g., data from OpenStreetMap
 - Formalize the new map distance

Thanks for listening

Questions? akader@cs.umd.edu