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Abstract
Decomposing the volume bounded by a closed surface using simple cells is a key step in

many applications. Although tetrahedral meshing is well-established with several successful
implementations, many research questions remain open for polyhedral meshing, which promises
significant advantages in some contexts. Unfortunately, current approaches to polyhedral meshing
often resort to clipping cells near the boundary, which results in certain defects. In this talk,
we present an analysis of the VoroCrust algorithm, which leverages ideas from α-shapes and
the power crust algorithm to produce conforming Voronoi cells on both sides of the surface.
We derive sufficient conditions for a weighted sampling to produce a topologically-correct and
geometrically-accurate reconstruction, using the ε-sampling paradigm with a standard sparsity
condition. The resulting surface reconstruction consists of weighted Delaunay triangles, except
inside tetrahedra with a negative weighted circumradius where a Steiner vertex is generated
close to the surface.

Generating quality meshes is an important problem in computer graphics and geometric modeling.
There has been a growing interest in polyhedral meshing as it promises significant advantages over
tetrahedral or hex-dominant meshing in some contexts. For exmaple, polyhedral meshing offers
higher degrees of freedom per element and is more efficient in filling a space, because it produces
fewer elements for the same number of vertices. Within the class of polyhedral mesh elements,
Voronoi cells enjoy several geometric properties, e.g., planar facets and positive Jacobians, which
make them particularly suitable for numerical simulations.

A conforming mesh exhibits two desirable properties simultaneously : 1) a decomposition of
the enclosed volume, and 2) a reconstruction of the bounding surface. A common technique for
producing boundary-conforming decomposition from Voronoi cells relies on clipping, i.e., intersecting
and truncating, each cell by the bounding surface [3]. An alternative to clipping is to locally mirror
the Voronoi generators on either side of the surface [2].

VoroCrust can be viewed as a principled mirroring technique. Similar to the power crust [1], the
reconstruction is composed of the facets shared by cells on the inside and outside of the manifold.
However, VoroCrust uses pairs of unweighted generators tightly hugging the surface, which allows
further decomposition of the interior without disrupting the surface reconstruction. VoroCrust can
also be viewed as a special case of the weighted α-shape [4]. A description of the abstract VoroCrust
algorithm we analyze is provided next. Figure 1 illustrates the basic concepts in 2D.
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The Abstract VoroCrust Algorithm

1. Take as input a weighted point sampling P = {(pi, wi)} of a closed 2-manifold M.

2. Use weights to define a ball Bi of radius ri =
√
wi centered at each sample pi.

3. Find intersecting triplets of balls to obtain one corner point on either side of M.

4. Collect the Voronoi generators G as the set of corner points outside all sample balls.

5. Optionally, include in G more generators far-inside M to further decompose its interior.

6. Output the Voronoi diagram of G as the desired decomposition, and the facets separating the
inside and outside generators as the reconstructed surface M̂.

Problem Statement: We seek to characterize the locations and weights of the input samples
in Step (1) to guarantee a topologically-correct and geometrically-accurate reconstruction.

(a) Weighted samples. (b) Intersection pairs. (c) Voronoi cells. (d) Reconstruction facets.

Figure 1: VoroCrust reconstruction, demonstrated on a planar curve. The weight of a point defines
the radius of a ball around it. The reconstruction is the Voronoi facets separating the uncovered
intersection pairs on opposite sides of the manifold.

Summary of Results: An ε-sampling S is δ-weighted if each sample is associated with a
ball of radius ri = δ lfs(pi), with δ ≥ ε. In addition, S is conflict-free if ∀j 6= i, ‖pi − pj‖ ≥
ε ·min(lfs(pi), lfs(pj)). For some constants ε, δ, c, we show that the reconstruction M̂ is geometrically-
close and topologically-correct. Moreover, M̂ → M quadratically as ε → 0. Specifically, for
every p ∈ M with closest point q ∈ M̂, and for every q ∈ M̂ with closest point p ∈ M, we have
‖pq‖ < c · δ2lfs(p). The reconstruction M̂ contains every input sample as a vertex. Rather than
filtering, the algorithm as outlined above naturally resolves slivers by introducing Steiner vertices.
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