Recovering Visibility and Dodging Obstacles
in Pursuit-Evasion Games

Ahmed Abdelkader
Department of Computer Science
University of Maryland
College Park, Maryland 20742
Email: akader@cs.umd.edu

Abstract—Pursuit-evasion games encompass a wide range of
planning problems with a variety of constraints on the motion of
agents. We study the visibility-based variant where a pursuer is
required to keep an evader in sight, while the evader is assumed to
attempt to hide as soon as possible. This is particularly relevant
in the context of video games where non-player characters of
varying skill levels frequently chase after and attack the player.

In this paper, we show that a simple dual formulation of
the problem can be integrated into the traditional model to
derive optimal strategies that tolerate interruptions in visibility
resulting from motion among obstacles. Furthermore, using the
enhanced model we propose a competitive procedure to maintain
the optimal strategies in a dynamic environment where obstacles
can change both shape and location. We prove the correctness
of our algorithms and present results for different maps.

I. INTRODUCTION

Pursuit-evasion games have received considerable attention
in both the AI planning and robotics communities which re-
sulted in a wealth of results. In the visibility-based variant, the
problem of deciding whether the evader possesses an escape
strategy is known to be NP-hard [10]. Analytical solutions to
the problem for limited obstacle geometries have been derived
by appealing to differential game theory [2]. Other variants
of the problem has been studied under complete information
[7], imperfect information [13] and partially-observable spaces
[12]. More realistic models of agents with a limited range of
vision have also been considered [4].

The solution method we are interested in is based on
backward induction. Starting from terminal states, where the
outcome of the game is known, the outcome for earlier states
can be determined recursively by considering the actions
available at each state. It may be viewed as a discrete ana-
logue to integrating a system of differential equations from
a set of initial conditions. This intuitive recursive formulation
easily lends itself to dynamic programming which provides an
efficient solution to a variety of problems.

In the same spirit, backward induction can also be used for
optimization problems like cost-to-go Bellman formulations to
path planning problems, e.g., [17]. To bound the number of
states that need to be explored, sampling approaches are typi-
cally used as in Rapidly-exploring Random Trees (RRTs) [9]
or adaptively refined meshes [16]. More traditionally, uniform
grids continue to be a standard tool to model domains for
planning problems. Recent works on any-angle path planning,

e.g., [3], have made it possible to overcome the unrealistic
trajectories generated by such grid techniques.

Alternatively, precomputation has been considered to stay
close to optimality at the cost of higher storage. Scalable
precomputed search trees (SPST) is one recent example where
RRT type trees are computed to provide uniform coverage of a
domain [8]. Similar approaches utilizing roadmaps have been
reported for the problem of pursuit-evasion [14]. Roadmap
based techniques have been applied to the visibility-based
variant as well, e.g., [6].

In this paper, we develop an enhanced model for visibility-
based pursuit-evasion that allows us to compute optimal
strategies for two interesting scenarios particularly relevant
to video games. In the first scenario, a folerance parameter
is specified to allow interruptions in visibility of bounded
duration. In the second scenario, the map is allowed to change,
i.e., obstacles can change both shape and location. We reuse
the algorithmic framework we presented earlier for computing
a strategy matrix by backward induction [1]. To the best
of our knowledge, these are the first algorithms to compute
optimal pursuit-evasion strategies in these scenarios and only
heuristic-based or suboptimal limited-depth approaches were
known. This enables the design of more intelligent computer
players and also helps with level design to assess the difficulty
of different layouts and choose entry points for respawning.

The rest of the paper is organized as follows. In Section 2,
we define the visibility-based pursuit-evasion game and recall
the solution method we will be using in this study. Section III
introduces the dual formulation, which is key to the remainder
of the paper, and studies the first scenario where we relax the
hard visibility constraints with a tolerance parameter. Then in
Sections IV and V, we continue to demonstrate how similar
techniques can be used to extend this solution method to
dynamic environments where obstacles can change both shape
and location. Finally, we conclude in Section VI.

II. THE VISIBILITY-BASED PURSUIT-EVASION GAME

The pursuit-evasion game studied here can be defined as
follows. We are given two agents: a pursuer (p) and an evader
(e) at known initial positions in an environment with obstacles
that block both motion and visibility. The pursuer is required to
keep the evader in sight, while the evader is assumed to attempt
to break the pursuer’s line of sight in the shortest amount of



time possible. Both players have complete information about
the other’s location and move at bounded speeds. Hence, the
first natural question is to decide for a given environment,
initial positions, and maximum speeds of both players, whether
the evader has an escape strategy.

The solution method we presented earlier [1] uses a grid
map discretization of the environment and assumes both
players take turns to move between cells of this grid, which
bears similarity to cop-robber games on graphs [5]. Per the
description of the game, the game state can be completely
determined by the locations of both players, denoted by the
ordered pair (p, e), and which of the two players moves next.

This method is summarized in Algorithm 1. Given a grid
map of dimensions w X h, computation is performed on a
(w x h) x (w x h) boolean matrix that stores for each pair
of locations whether or not the evader has an escape strategy.
Starting at terminal states, which are pairs (p, e) where e is not
visible to p, the game can be decided for these states (Line 3).
This is implemented by a simple procedure, M.vis(p, e), that
checks whether the line connecting e to p passes through any
of the obstacles. To decide the game for earlier states, standard
backward induction is performed (Line 4) as described in more
details in procedure InductionLoop. Note that we set S[p, e] =
1 iff the pursuer starting at position p cannot keep the evader
starting at position e in sight, with the evader moving first.

Algorithm 1: Decides the game for a given map.

Input : A (w X h) grid map of the environment M.
Output: The strategy matrix S.

1 begin

2 InitVisibility(M, S);

3 InductionLoop(S);

4 return S

The function InductionLoop repeatedly evaluates the escape
condition for each game state, which may only be available
after adjacent states have been determined. Once an escape
strategy is found, there is no need to process the state again.
The escape conditions can be expressed as the recurrence
relation of the form:

Sp,e] = \/ /\ Slp', €.

e’eN(e) p'eN(p)

D

We do not attempt to optimize the implementations here to
keep the presentation as simple as possible. More elaborate op-
timizations along with their theoretical analysis were discussed
in [1]. We use N to denote the neighborhood of locations the
player can reach in a single turn, which implicitly depends
on its speed. Letting IV be the size of the map, i.e., w X h,
and « be the largest size of a neighborhood A/, we recall the
following result established in [1]:

Theorem 1. (Visibility Induction [1]) Algorithm 1 decides the
discretized game for a general environment in O(k?>N3).

Function InitVisibility(M, S)
Input : A grid map M and a strategy matrix S.
Output: The initialized strategy matrix S.
1 begin
2 S <« 0;
3 foreach p € w x h do
4 foreach e € w x h do
5
6
7

if ~M.vis(p,e) then
| Slp,e]l 13
return S

Procedure InductionLoop(.S)

Input : A strategy matrix S.

Data: A secondary (w X h) X (w x h) binary matrix S’.

1 begin

2 S+ 0;

3 iter < 0;

4 while S’ # S do

5 S« S,

6 foreach p € w x h do

7 foreach e € w x h do

8 foreach ¢’ € N(e) do

9 isExit < True;

10 foreach p’ € N (p) do

if S’[p’,¢'] =0 then
‘ isExit < False;

13 if isExit = True then
14 Slp,e] < 1;

15 break;

16 iter < iter + 1;

17 return S;

In the next section, we formulate the dual game and describe
the dual induction loop which is key to the algorithms in
Sections IIT and IV.

III. RECOVERING LOST VISIBILITY

In order to tolerate visibility interruptions, we do not
terminate the game and declare that the pursuer has lost as
soon as line of sight visibility is broken. Instead, we introduce
a parameter d that controls how long we allow the evader to
remain out of the evader’s sight in one streak. The pursuer
would then seek strategies that can recover visibility to the
evader if that is possible to achieve within d —1 steps, and the
evader only wins if it is able to hide for at least d consecutive
steps. The optimal strategy for the evader is still to find
the fastest way to win. As such, the evader does not favor
intermediate visibility interruptions if they do not lead to a
sooner victory.

We introduce the dual game to model the situation after
visibility is lost. In this phase, the evader attempts to remain
out of the pursuer’s sight as long as possible, while the pursuer
attempts to recover visibility to the evader as soon as possible.
Note that in the original game the evader’s objective was



to minimize the visibility time, while in this phase it is to
maximize the occlusion time. Similarly, in the original game,
the pursuer’s objective was to maximize the visibility time,
while in this phase it is to minimize the occlusion time. In a
sense, the agents exchange their roles but the dynamics stay
the same.

For this reason, we refer to this situation as the dual game.
We obtain a corresponding recurrence relation for recovering
visibility as the logical negation of the escape conditions in
Equation 1:

Sp.dd= N\ sl

e’eN(e) p'eN(p)

2

Observe that the dual game is only defined for pairs of
player positions that are not mutually visible. These are exactly
the pairs that defined the terminal states for the original game.
It is clear that in order to allow the game to proceed as long as
visibility can be recovered within d steps, we need to exclude
those pairs from the terminal states. With that, all that is
needed is to run a dual induction on the non-visible pairs
to get the relaxed terminal states. Then, running the original
induction backwards from the restricted set of terminal states
yields the desired strategies.

These steps are summarized in Algorithm 2. After initial-
izing the matrix by marking all pairs that are not mutually
visible, the procedure DuallnductionLoop is invoked. Each
iteration in this procedure bears strong similarity to the original
induction loop. However, the result is that for certain pairs
initialized as terminal, with the evader winning and the pursuer
losing, this decision is simply undone (Line 16).

Algorithm 2: Tolerating interruptions in visibility.

Input : A strategy matrix S, grid map M, tolerance d.
1 begin
InitVisibility(M, S);
DuallnductionLoop(S, M, d);
InductionLoop(.S);

2
3
4
5 return S;

Using the updated terminal states, Algorithm 2 computes
the pursuit-evasion strategies for all pairs of initial positions
to maintain visibility as long as possible, while tolerating
interruptions in visibility within d steps. As we are essentially
reusing the induction loop studied in [1], we get the same
bound on the running time. In addition, the same optimizations
can be applied to speed up the computation.

The correctness of the DuallnductionLoop procedure is
established in the next lemma.

Lemma 2. The DuallnductionLoop correctly computes strate-
gies to recover visibility in less than d steps, if any.

Proof. For the base case, when iter = 0, S[p, e] = 0 iff (p, e)
are mutually visible, as initialized by InitVisibility. Then, when
iter = 14, S[p,e] is assigned 0 (Line 16) iff e does not
have a neighbor e’ such that no neighbor p’ of p satisfies

Procedure DuallnductionLoop(S, M, d)

Input : A strategy matrix S, grid map M, tolerance d.
Data: A secondary (w X h) X (w X h) binary matrix S’.

1 begin

2 iter + O;

3 while iter < d and S’ # S do

4 S« S;

5 foreach p € w x h do

6 foreach e € w x h do

7 hasExit < False;

8 foreach ¢’ € N(e) do

9 isExit < True;

10 foreach p’ € N'(p) do

1 if M.vis(p’,e’) or S'[p',e'] =0
then

12 ‘ isExit < False;

13 if isExit = True then

14 | hasExit < True;

15 if hasExit = False then

16 | S[p, €] + 0;

17 iter < iter + 1;

18 return S;

Mwis(p',e’) or S’[p,e'] = 0. If M.vis(p’,€’) is true, then
p’ has direct visibility to e’. Otherwise, if S'[p’,€’] = 0, then
by the induction hypothesis, p’ has a strategy that guarantees
visibility to e’ is recovered within 7 — 1 steps. O

Following with an invocation of the original induction loop
in procedure InductionLoop, the next theorem proves the
correctness of the whole scheme, which relaxes the result in
Theorem 1 to scenarios with less strict visibility requirements.

Theorem 3. Algorithm 2 decides the discretized game for a
general environment in O(K)QN 3), tolerating arbitrary inter-
ruptions in visibility of d = O(N) steps.

Proof. By invoking the DuallnductionLoop (Line 2), S[p, ] =
1 iff e has a strategy to hide out of sight for at least d
steps as established in Lemma 2. Then, the InductionLoop
is invoked (Line 3) starting at ¢ter = 0 with S as returned
from DuallnductionLoop. For iter = 4 in the InductionLoop,
S|[p, €] is assigned 1 (Line 14) iff e has a neighbor ¢’ such that
for all neighbors p’ of p we have that S’[p’, €] = 1. By the
induction hypothesis, it follows that for any such p’, it must be
the case that by iter =i — 1, €’ has found an escape strategy
to stay out of p’’s sight for at least d steps.

The bound on the running time follows by Theorem 1.
Observe that for large values of d, the overhead of running
the DuallnductionLoop cannot be greater than the worst case
for running InductionLoop itself. Hence, the total running time
has the same bound. O



Figure 1 shows a pursuer with all evader locations it cannot
keep in sight colored in gray. We compare the traditional
scenario of zero tolerance against allowing broken visibility
for 5 turns. Beyond deciding which initial conditions enable
each player to win, the computed strategy matrix can be used
for trajectory planning as discussed in [1]. Figure 2 shows a
basic example of successful tracking although visibility was
initially broken.

Fig. 1. Pursuer view in the case with d = 0 (left) vs. d = 5 (right).

Fig. 2. A pursuer recovering visibility around an infinite corner.

IV. MOVING OBSTACLES BY ADD/REMOVE

The interplay between the classical game and its dual
as seen in Algorithm 2 yields new insights into computed
strategies as encoded in the matrix S. In the original game,
mutual visibility is established and the evader attempts to
hide altering an entry in the matrix from O to 1. In the dual
game, visibility is broken and the pursuer attempts to recover
it altering an entry in the matrix from 1 to 0.

Using this enhanced understanding, we study the visibility-
based pursuit-evasion game in a dynamic environment where
obstacles can change both shape and location. Naturally, in
a scenario like that, initially established visibility can get
broken by the changes in the environment, rather than the
actions of the agents. It follows that the agents need to update
their strategies to match the current environment. To keep
the presentation simple, we do not tolerate interruptions in
visibility in this section. However, the same method from
Section III can be applied to relax visibility tests.

In this section, we present a procedure to maintain the
optimality of precomputed strategies that can offer consid-
erable savings compared to recomputing a strategy matrix

from scratch. We use a slightly modified version of the dual
induction as listed in the ConservativeDuallnductionLoop pro-
cedure. This ensures that dual updates do not enable pursuers
to chase after evaders they do not see directly.

Procedure ConservativeDuallnductionLoop(S, M)

Input : A strategy matrix S, grid map M.
Data: A secondary (w X h) X (w x h) binary matrix S’.

1 begin

2 iter «+ 0;

3 while S # S do

4 S+ S,

5 foreach p € w x h do

6 foreach e € w x h do

7 if ~M.vis(p,e) then

8 ‘ continue;

9 hasExit < False;

10 foreach ¢’ € N(e) do

11 isExit < True;

12 foreach p’ € N'(p) do
13 if S’[p’,¢’'] =0 then
14 ‘ isExit < False;
15 if isExit = True then
16 | hasExit < True;
17 if hasExit = False then

18 | Slp,e] « 0;

19 iter < iter + 1;

20 return S;

We use a simple diff model to capture the motion of
obstacles. We keep track of all grid cells that witness a change
in occupancy. It is clear that any change in the environment
resulting from a change in the shape or location of obstacles
can be expressed as introducing new obstacles at a subset of
grid cells and removing existing obstacles from another subset.

To remove obstacles, we first need to establish line-of-
sight visibility only between those pairs of positions that
were blocked by the removed obstacles. Eventually, some of
these pairs may terminate with the evader finding an escape
strategy. This means we need to run the original induction
loop to find such strategies, if any. The updated strategies
propagate to other pairs that may use the newly found routes to
improve their outcomes. Adding obstacles is slightly trickier
as the added obstacles block both visibility and mobility. For
example, an added obstacle may not necessarily help an evader
if it does not provide a shorter escape trajectory and instead
requires that the evader move around it to reach a more secure
exit while a faster pursuer is getting closer which makes it
harder for the evader to win.

Both adding and removing obstacles, can be performed in
one shot as shown in Algorithm 3. The algorithm simply
updates line-of-sight visibility to the limited set of player
positions dictated by the updates. Once these updates are
established, new strategies are computed and propagated by
consecutive invocation of the induction procedures.



Algorithm 3: Updates strategies by a diff of the grid map.

Input : A strategy matrix S, grid map M, map diff
(M*+,M™).

1 begin

2 M—M+Mt—M—;

3 foreach p € w x h do

4 foreach e € w x h do

5 if M.vis(p,e) and ~M~.vis(p,e) then

6 | Slp,e] + 0;

7 else if =M+ .vis(p,e) then

8 | Sp.e] + 1;

9 InductionLoop(.S);

10 ConservativeDuallnductionLoop(.S, M);

11 return S,

Note that some of the decisions applied by the first invo-
cation will need to be corrected by the second one. In fact,
the order of invocation does not matter in the correctness
of the result. Depending on the required updates, it can be
more efficient to start with one type of induction or the other.
The order shown here proved to be faster in our experiments
moving obstacles by small offsets. For larger shifts, it is more
efficient to compute a new matrix from scratch.

Figure 3 shows an initial map with two square obstacles.
In Figure 4, the two obstacles have moved diagonally in two
opposite directions. Figures 5 and 6 show the difference in
occupancy between the initial and final maps. Locations that
are no longer occupied by obstacles are denoted by M~ and
those that receive new obstacles are denoted by M ™.

Fig. 3. Initial map M. Fig. 4. Updated map M’.

-
-

L

Fig. 5. Removed diff M . Fig. 6. Added diff M.

The correctness of Algorithm 3 is established in the next
theorem.

Theorem 4. Algorithm 3 correctly updates the strategy matrix
in a discretized game given a diff map of the environment.

Proof. We argue that the returned strategy matrix is correct,
i.e., for any pair (p,e) in the returned matrix, S[p,e] = 1 iff
the evader has an escape strategy.

Keeping in mind that the input strategy matrix S was
correct and that the visibility constraints of the updated map
were enforced (Lines 2-8), it follows that after invoking
InductionLoop (Line 9) any pair (p,e) where the evader has
an escape strategy will have S[p,e] = 1. By the assumption
that e has an escape strategy, there will eventually be neighbors
e’ € N(e) with S[p’, ¢'] = 1¥p’ € N (p) that satisfy the escape
conditions for e, which InductionLoop detects correctly.

It remains to show that for all pairs where the evader does
not have an escape strategy, S[p,e] = 0. This is achieved
by the invocation of ConservativeDuallnductionLoop (Line
10). Similar to the preceding argument, by the assumption
that p can keep e in sight indefinitely, there will eventu-
ally be a neighbor p’ € N(p) for each ¢/ € N(e) with
S[p’, €] = 0 that satisfies the recovery conditions for p, which
ConservativeDuallnductionL.oop detects correctly. Otherwise,
if e does have an escape strategy, the recovery conditions for
p must fail eventually. O

V. CONTINUOUSLY MOVING OBSTACLES

Unlike the case in the previous section where obstacles
move unexpectedly, it might be the case that their motion
trajectories can be estimated in advance. In that case, line-of-
sight visibility between pairs of locations becomes a function
of time, and the players need to plan their motions taking this
into account.

In our discrete setting, assuming a time horizon of 7" steps,
we only need access to vis(p,e) at each step ¢. This can be
encoded as a sequences of matrices {M;} with t = 1...T.
This can be computed efficiently for obstacles with nice shapes
as in [15]. Working backwards from the last step 7', we can
easily identify terminal states either directly by a visibility test.
Given these terminal states, we run backward induction on ¢.
We say that an evader wins at time ¢ if line-of-sight visibility
is broken at ¢ or if the evader is guaranteed an exit at a later
time step. Introducing a step index to capture the dependence
on time, the recurrence relation for this case can be written
as:

Speet] =—v(pet)v \/ N\ SW.et+1. @)
e’€N(e) p’eN(p)
Algorithm 4 implements the induction for this case. Next,
we establish its correctness.

Theorem 5. Algorithm 4 decides the discretized game for a
sequence of maps {M;}, with t =1...T, in O(k>N>T).

Proof. For the base case, at t = T, we have that S’ = 0.
It follows that S[p,e,T] = 1 only if Je’ € N(e) such that
Vp' € N(p) we have ~Myp.vis(p’,e’) and the condition in
(Line 11) is never satisfied for €’.



Then, at iteration ¢t = i, if S[p,e,t] is set to 1, it must be
the case that all pursuer actions p’ failed the test in (Line 11)
for at least one evader action ¢/, i.e., either visibility is already
broken and M;.vis(p, e) is false or S[p’, ¢, j + 1] = 1, which
by the induction hypothesis means that an escape strategy for
e at a later step is available through e’.

Observing that the algorithm performs exactly T iterations,
the bound on the running time follows. O

Algorithm 4: Decides the game for a dynamic map.

Input : A sequence of maps {M;}, t=1...T.
Data: A secondary (w X h) X (w x h) binary matrix S’.

1 begin

2 S« 0;

3 t<« T,

4 while ¢ > 0 do

5 S' + S,

6 foreach p € w x h do

7 foreach ¢ € w x h do

8 foreach ¢’ € N (e) do

9 isExit < True;

10 foreach p’ € N (p) do

1 if M;.vis(p,e) and S'[p',e'] =0
then

12 | isExit < False;

13 if isExit = True then

14 Slp,e] + 1;

15 break;

16 t+—t—1;

17 return S,

Assuming the environment does not change after the time
horizon 7', we may wish to let the game proceed on this fixed
situation. This can easily be accommodated by replacing (Line
2) in Algorithm 4 with an invocation of Algorithm 1 on Mr.
Looking at the proof for Theorem 5, this would only change
the base case in an obvious way.

It is also possible to tolerate limited interruptions in visi-
bility in this case as well. However, this requires the use of
counters rather than boolean values in the strategy matrices.
By incrementing the counter for each step the evader stays
out of the pursuer’s sight, we can detect when it completes d
steps or when the counter should be reset. A similar technique
was applied in [1] to compute the fastest escape trajectory and
the corresponding optimal pursuit trajectory, where the original
recurrence relation is written as a min-max over such counters,
rather than an or-and of booleans.

VI. CONCLUSION AND FUTURE WORK

We presented a novel dual formulation to the standard
visibility-based pursuit-evasion game that allows an easy way
to relax the visibility constraints. To the best of our knowledge,
this is the first algorithm to compute optimal pursuit-evasion
strategies that accommodate recovering visibility once it is
lost. Combined with the original formulation, we derived a

competitive update procedure to maintain the optimality of the
computed strategies in dynamic environments where obstacles
change both shape and location. We proved the correctness
of our algorithm and presented basic experimental results for
simple maps to demonstrate the contribution.

To make the discretized model more practical, it would be
interesting to consider state space reduction such that only
few game states are represented explicitly. For a fixed initial
position, the approach in [11] seems promising.

REFERENCES

[1] Ahmed Abdelkader and Hazem EI-Alfy. Visibility induction for
discretized pursuit-evasion games. In AAAI Conference on Artificial
Intelligence. AAAI Press, 2012.

[2] Sourabh Bhattacharya and Seth Hutchinson. On the existence of
nash equilibrium for a two player pursuit-evasion game with visibility
constraints. In Algorithmic Foundation of Robotics VIII, pages 251-265.
Springer, 2010.

[3] Kenny Daniel, Alex Nash, Sven Koenig, and Ariel Felner. Theta*: Any-
angle path planning on grids. Journal of Artificial Intelligence Research,
pages 533-579, 2010.

[4] Brian P Gerkey, Sebastian Thrun, and Geoff Gordon. Visibility-based
pursuit-evasion with limited field of view. The International Journal of
Robotics Research, 25(4):299-315, 2006.

[5] Genia Hahn and Gary MacGillivray. A note on k-cop, l-robber games
on graphs. Discrete mathematics, 306(19):2492-2497, 2006.

[6] Volkan Isler, Dengfeng Sun, and Shankar Sastry. Roadmap based
pursuit-evasion and collision avoidance. In Robotics: Science and
Systems, volume 1, pages 257-264, 2005.

[7]1 Kyle Klein and Subhash Suri. Complete information pursuit evasion in
polygonal environments. In Tienty-Fifth AAAI Conference on Artificial
Intelligence, 2011.

[8] Manfred Lau and James J. Kuffner. Precomputed search trees: Planning
for interactive goal-driven animation. In Proceedings of the 2006
ACM SIGGRAPH/Eurographics Symposium on Computer Animation,
SCA ’06, pages 299-308, Aire-la-Ville, Switzerland, Switzerland, 2006.
Eurographics Association.

[9] Steven M Lavalle and James J Kuffner Jr. Rapidly-exploring random

trees: Progress and prospects. In Algorithmic and Computational

Robotics: New Directions. Citeseer, 2000.

Rafael Murrieta-Cid, Raul Monroy, Seth Hutchinson, and Jean-Paul Lau-

mond. A complexity result for the pursuit-evasion game of maintaining

visibility of a moving evader. In Robotics and Automation, 2008. ICRA

2008. IEEE International Conference on, pages 2657-2664. IEEE, 2008.

Valentin Polishchuk, Esther M Arkin, Alon Efrat, Christian Knauer,

Joseph SB Mitchell, Guenter Rote, Lena Schlipf, and Topi Talvitie.

Shortest path to a segment and quickest visibility queries. Journal of

Computational Geometry, 7(2):77-100, 2016.

Eric Raboin, Ugur Kuter, and Dana Nau. Generating strategies for multi-

agent pursuit-evasion games in partially observable euclidean space. In

Proceedings of the 11th International Conference on Autonomous Agents

and Multiagent Systems-Volume 3, pages 1201-1202. International Foun-

dation for Autonomous Agents and Multiagent Systems, 2012.

Eric Raboin, Dana Nau, Ugur Kuter, Satyandra K Gupta, and Petr Svec.

Strategy generation in multi-agent imperfect-information pursuit games.

In Proceedings of the 9th International Conference on Autonomous

Agents and Multiagent Systems: volume 1-Volume 1, pages 947-954.

International Foundation for Autonomous Agents and Multiagent Sys-

tems, 2010.

Samuel Rodriguez, Jory Denny, Takis Zourntos, and Nancy M Amato.

Toward simulating realistic pursuit-evasion using a roadmap-based ap-

proach. In Motion in Games, pages 82-93. Springer, 2010.

Y-HR Tsai, L-T Cheng, Stanley Osher, Paul Burchard, and Guillermo

Sapiro. Visibility and its dynamics in a pde based implicit framework.

Journal of Computational Physics, 199(1):260-290, 2004.

Dmitry S Yershov and Emilio Frazzoli. Asymptotically optimal feed-

back planning: Fmm meets adaptive mesh refinement. In Algorithmic

Foundations of Robotics XI, pages 695-710. Springer, 2015.

Dmitry S Yershov and Steven M LaValle. Simplicial Dijkstra and Ax

algorithms: From graphs to continuous spaces. Advanced Robotics,

26(17):2065-2085, 2012.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]



