Lock Inference for Atomic Sections

Michael Hicks Jeffrey S. Foster Polyvios Pratikakis
University of Maryland, College Park University of Maryland, College Park University of Maryland, College Park
mwh@cs.umd.edu jfoster@cs.umd.edu polyvios@cs.umd.edu
Abstract interact well with 1/O, which cannot always be rolled back. While

f performance can be quite good [12], optimistic concurrency perfor-
mance can also be quite a bit slower than traditional techniques due
to the costs of logging and rollback [9].

Software transactions allow the programmer to specify sections o
code that should be serializable, without the programmer needing
to worry about exactly how atomicity is enforced. Recent research - . N .
proposes using optimistic concurrency to implement transactions,, ! this short paper, we explore using pessimistic techniques
In this short paper, we propose a pessimistic lock-based technique?@sed on the results of a static program analysis to implement
that uses the results of static whole-program analysis to enforce l0MIC sections. We assume a program contains occurrences of
atomicity. The input to our analysis is a program that contains fork e for creating multiple threads and programmer-annotated

programmer-specified atomic sections and calls to fork. We presentatomic SeCt'oni&tO’.‘tl;C € ftor pr?tec”tmg sh?reotl data.tF(?rl S“kCh ad
a sharing inference algorithm that uses the results of points-to anal-Pro9ram, our aigorithm automatically Constructs a set ot locks an

ysis to determine which memory locations are shared. Our analy- NS€'ts the necessary lock acquires and releases before and after
sis usecontinuation effectto track the locations accessed after a Statéments in to enforce atomicity while avoiding deadlock. An

point in the program. This allows data to be thread-local before a MPOrtant goal of our algorithm is to maximize parallelism. A triv-

fork and thread-shared afterward. We then present a mutex infer- 12! implementation would be to begin and end all atomic sections
ence algorithm that determines a sufficient set of locks to guard ac- PY: réspectively, acquiring and releasing a single global lock. We
cesses to shared locations. After mutex inference, a compiler addg’’ésentan improved algorithm that uses much finer locking but still
the appropriate lock acquires and releases to the beginning and eng"forces atomicity. We present an overview of our algorithm next,
of atomic sections. Our algorithm is efficient, and provides paral- and describe itin detail in the rest of the paper.
lelism according to precision of the alias analysis while minimizing)
the number of required locks. 11 Overview
The main idea of our approach is simple. Suppose we perform a
1. Introduction points-to analysis on the program. This maps each pointer_in the
: program to an abstract name that represents the memory pointed to

Concurrent programs strive to balansafetyand liveness Pro- at run time. Then we can create one mutual exclusion lock for each
grammers typically ensure safety by, among other things, using abstract name from the alias analysis and use it to guard accesses
blocking synchronization primitives such as mutual exclusion locks to the corresponding run-time memory locations. At the start of
to restrict concurrent accesses to data. Programmers ensure livenessach atomic section, the compiler inserts code to acquire all locks
by reducing waiting and blocking as much as possible, for exam- that correspond to the abstract locations accessed within the atomic
ple by using more mutual exclusion locks at a finer granularity. section. The locks are released when the section concludes. To
Thus these two properties are in tension: ensuring safety can re-avoid deadlock, locks are always acquired according to a statically-
sultin reduced parallelism and at worst in deadlock, compromising assigned total order. Since atomic sections might be nested, locks
liveness, while ensuring liveness could permit concurrent access tomust also be reentrant. Moreover, locations accessed within an
an object (a data race), potentially compromising safety. Balancing inner section are considered accessed in its surrounding sections,
this tension manually can be quite difficult, particularly since tradi- to ensure that the global order is preserved.
tional uses of blocking synchronization are not modular, and thus ~ This approach ensures that no locations are accessed without
the programmer must reason about the entire program’s behavior. holding their associated lock. Moreover, locks are not released

Software transactionspromise to improve this situation. A during execution of an atomic section, and hence all accesses to
transaction is a programmer-designated section of code that shouldocations within that section will be atomic with respect to other
be serializable, so that its execution appears atomic with re- atomic sections [4]. Our algorithm assumes that shared locations
spect to the other atomic sections in the program. Assuming all are only accessed within atomic sections; this can be enforced with
concurrently-shared data is accessed within atomic sections, thea small modification of our algorithm, or by using a race detection
compiler and runtime system guarantee freedom from data racestool such as Locksmith [10] as a post-pass.
and deadlocks automatically. Thus, transactions are composable— The algorithm we present here performs two optimizations over
they can be reasoned about in isolation, without worry that an the basic approach sketched above. First, we reduce our consider-
ill-fated combination of atomic sections could deadlock. This frees ation to only those abstract locations that may be shared between
programmers from many low-level concerns. threads, since thread-local locations need not be protected by syn-

Recent research proposes to implement atomic sections usingchronization. Second, we observe that some locks may be coa-
optimistic concurrency techniques [5, 7, 13, 6, 12]. Roughly speak- lesced. In particular, if lock is always held with lock’, then lock
ing, memory accesses within a transaction are logged, and the log¢’ can safely be discarded.
must be consistent with the current state of memory at the con- We implement this approach in two main steps. First, we use
clusion of the transaction; if not, the transaction is rolled back and a context-sensitive points-to and effect [8] analysis to determine
restarted. The main drawback with this approach are that it does notthe shared abstract locations as well as the locations accessed

1 2006/4/14

This means that in type environmeht expressiore has effect
type 7X given constraintg”. Effect typesrX consist of a simple
type r annotated with the effegt, which approximates the effect
of evaluatinge at run time. Within the type rules, the judgment

expressions e u= T |vleiex|ref eflefer:=e; C 1 <!’ indicates that < I’ can be proven by the constraint set
| if0eo thene; else ep C. In an implementation, such judgments cause us to “generate”
| fork' e|atomic’ e constraint! < I’ and add itC. Because we assume a call-by-
values von= nlAze value semantics, all of the assumptions in type environfieafer
types T u= ant|ref? 7| (r,e) =X (7€) to values, and thus are given simple types. Simple types include
labels I == plelx standard integer types; updatable reference tygle’s 7, which is
constraints C' u= O [{I<U}|CUC decorated with a location labgt and function types of the form
) . (1,e) =X (7',€'), wherer andr’ are the domain and range types,
Figure 1. Source Language, Types, and Constraints andy is the effect of calling the function. We explaifi ande on

function types momentarily.

The judgment; ;T F e : 7X;€ is standard for effect infer-
ence except for ande’, which expresgontinuation effectsHere,
e is theinput effect which denotes locations that may be accessed
during or after evaluation ofe. The output effect’ contains loca-
tions that may be accessaftier evaluation ot (thus all locations in
¢’ will be in €). We use continuation effects in the rule ftwrk e
to determine sharing. In particular, we infer that a location is shared
if it is in the input effect of the child thread and the output effect
of the fork (and thus may be accessed subsequently in the parent

within an atomic section (Section 2). The points-to analysis is flow-
insensitive, but the effect analysis calculates per-program point
continuation effectshat track the effect of the continuation of an
expression. Continuation effects let us model that only locations
that are usedfter a call tofork are shared. This sharing infer-
ence is also used by Locksmith, a race detection tool for C pro-
grams [10]. The sharing analysis presented here is essentially un
changed from Locksmith's sharing analysis, which has not been
presented formally before.

Second, given the set of shared locations, we perforrtex in- thread). . . .
ferenceto determine an appropriate set of locks to guard accesses , Returning to the explan_atlon of function types, the effect label
to the shared locations (Section 3). This phase includes a straight-° qenotes the set of Iocat[ons accessed after the func.t|on. retums,
forward algorithm that performs mutex coalescence, to reduce theWh'Ie? denotes tho_se Io_ce}tlons accessed after the functionis called,
number of locks while retaining the maximal amount of paral- including any locations ie".
lelism. Our algorithm starts by assuming one lock per shared lo- Example Consider the following program:
cation and iteratively coarsens this assignment, dropping unneeded
locks. The algorithm runs in tim@(mn?), wheren is the number ~ let z =ref 0in
of shared locations in the program andis the number of atomic lety=ref 1in
sections. We show that the resulting locking discipline provides ex- ¥ = 4;
actly the same amount of parallelism as the original, non-coalesced fork' (a;!y);
locking discipline, while at the same time potentially uses many /* (1) * /

fewer locks. y:=35
The remainder of the paper describes our lock inference algo-
rithm in detail. In this program two variables andy refer to memory locations:
is initialized and updated, but then is handed off to the child thread
2. Shared Location Inference and no longer used by the parent thread. Hencan be treated as

))) thread-local. On the other hangl,is used both by the parent and
Figure 1 shows the source language we use to illustrate our infer- child thread, and hence must be modeled as shared.

ence system. Our language is a lambda calculus extended with inte- Because we use continuation effects, we model this situation

gers, comparisons, Updéti_lb'e references, thread cremiq’i e, precisely. In particular, the input effect of the child thread is to read
and atomic sectionatomic® e; in the latter two cases theis an « andy. The effect of the output effect of the fork (i.e. starting at
index used to refer to the analysis results. The expresgiok’ e (1)) is to writey. Thus we determine that onlyis shared. If instead

creates a new child thread that evaluatesd discards the result, e had used regular effects, and we simply intersected the effect of
continuing with normal evaluation in the parent thread. Our ap- the parent thread with the child thread, we would think thatas
proach can easily be extended to support polymorphism and poly-shared even though it is handed off and never used again by the
morphic recursion in a standard way [11], as Locksmith does [10], parent thread.
but we omit rules for polymorphism because they add complication
but no important issues. 2.1 Type Rules

We use a type-based analysis to determine the set of abstract lo—. . . N

. .~ Figure 2 gives the type inference rules for sharing inference. We
cationsp, created byref, that could be shared between threads in . : - .

X . o) discuss the rules briefly. [Id] and [Int] are straightforward. Notice
;2{2&8ri%aguy\gggr?]pﬁéggﬁgi:Eg:OT%%mﬁlo?ﬂgbaqu that since neither accesses any locations, the input and output
P . . effects are the same, and their effgds unconstrained (and hence

andeff_ectSE andy, \.Nh'Ch represent those chatlopsiereferenced will be empty during constraint resolution). In [Lam], we pick some
or assigned to during a computation. Typing a program generates

: / : labelse;, ande,.: for the input and output effects of the function,
label flow constraintd = ! and afte_rward these con_stralrllt_s ar'® " and bind them in the type. Notice that the input and output effects of
solved to learn the desired information. The constrairt [’ is

read “labell flows to labell’.” For example ifx has typeref * 7, Az.e are both just, since the definition itself does not access any

and we have constraintg < p andp” < p, thenx may point to locations—the code ia will only be evaluated when the function
the locationg’ or p” =P Pz y P is applied. Finally, the effect of the function is drawn from the

T . effect ofe.
The typing judgment has the following form In [App], the output effect; of evaluatinge; becomes the input
CieiTke: %€ effect of evaluating.. This implies a left-to-right order of evalua-

2 2006/4/14

id]

Ciglyo:7hx:7%¢

[Int]

Ci;e;TEncintX;e

o . CoX
Ciein; Tz min b e T Eout

[Lam]

Cie;T'Fey: T}‘un;el
Tfun = (Tin7 Ein) —X (Toutagout)
- Ciey;Thex: i€
PP CiesT'keyex: 7)€
PRSE) « Touty cout

C;e;T'F ep @ intX;e0
Cieo;T ey 7% €

Cieo;T Feg: %€
[Cond] ;- T2 T

Cie;T F Ax.e: (Tiny €in) =X (Tout, Eout); €

C;e;T' - if0 eg then e else e : 7X; €’

Cie;TkHe:7mX¢€

[Ref] ;
Cie;T Fref e: (ref?)% ¢

Cie;T ke (ref? r)X; ¢
CkFp<e Crkp<x
Cie;THle:m%¢

[Deref]

Cie;TFeq: (ref? 7)%5eq
Cier;TEeq: 7560
Fp<es Chkp<x

Cie;T'Fepi=e2: 7552

[Assign]

Cie;TFe:rX ¢
Ckr<nn Ckx<xy1 Cre&<¢

Sub]

[Subl Cig;Tke: e

CieliTke:1¥5el
Che.<e Che<e
[Fork] - —
C;e;T'F fork® e: mntX ;&'

) C’;a;F}—e:TXi;e/

[Atomic]

C;e;T I~ atomic’ e: 17X ;¢

Figure 2. Type Inference Rules

tion: Any locations that may be accessed during or after evaluating
ez also may be accessed after evaluatingrhe function is invoked
aftere, is evaluated, and heneg’s output effect must be;,, from

the function signature. [Sub], described below, can always be used
to achieve this. Finally, notice that the effect of the application is
the effecty of evaluatinge, evaluatinge2, and calling the func-
tion. [Sub] can be used to make these effects the same.

[Cond] is similar to [App], where one of; or e is evaluated
aftereg. We require both branches to have the same output effect
¢’ and regular effect, and again we can use [Sub] to achieve this.

[Ref] creates and initializes a fresh location but does not have
any effect itself. This is safe because we know that locagion
cannot possibly be shared yet. In an actual implementation we
always pick location labeb to be a fresh label. [Deref] accesses
locationp aftere is evaluated, and hence we require thé in the
continuation effect’ of e, expressed by the judgmeft p < ¢’.

In addition we require < x. Note that [Sub] can be applied before

Sub-Intl———F——F——
[] Ctnt < int
CFp1§p2 CFT1§T2 CFT2§T1

Sub-Ref}
[! Crrefft i <reff2 r,

CkFrn<n Ckr <7
Clhei<es CrFeh<el CrFxi1<xe2

<eg
[Sub-Fun} — -
CF (11,e1) =X (71,€1) < (T2,€2) =X2 (75,€3)

Figure 3. Subtyping Rules

applying [Deref] so that this does not constrain the effeet. dfhe
rule for [Assign] is similar.

Notice that the output effect d& is the same the effeet of e.
This is conservative becaugemust be included ir’ but may not
be accessed again following the evaluation @fHowever, in this
case we can always apply [Sub] to remove it.

[Sub] introduces sub-effecting to the system. In this rule, we
implicitly allow 1 ande” to be fresh labels. In this way we can
always match the effects of subexpressions, e.ge; aindes in
[Assign], by creating a fresh variable and lettingx: < x and
x2 < x by [Sub], wherex: and x2 are effects ofe; and es.
Notice that subsumption on continuation effects is contravariant:
whatever output effeat” we give toe, it must be included in its
original effecte’. [Sub] also introduces subtyping via the judgment
C' 7 < 7/, as shown in Figure 3. The subtyping rules are standard
except for the addition of effects in [Sub-Fun]. Continuation effects
are contravariant to the direction of flow of regular types, similarly
to the output effects in [Sub].

[Fork] models thread creation. The regular effgét of the
fork is unconstrained, since in the parent thread there is no effect.
The continuation effect, captures the effect of the child thread
evaluatinge, and the effect® captures the effect of the rest of
the parent thread’s evaluation. To infer sharing, we will compute
e.Ne’; thisis the set of locations that could be accessed by both the
parent and child thread after the fork. Notice that the input effect
e’ of the child thread is included in the input effect of therk
itself. This effectively causes a parent to “inherit” its child’s effects,
which is important for capturing sharing between two child threads.
Consider, for example, the following program:

let x =ref Oin
fork! (1z);
/(1) =/

fork? (z :=2)

Notice that whilez is created in the parent thread, it is only ac-
cessed in the two child threads. Lebe the location ofc. Thenp

is included in the continuation effect at point (1), because the effect
of the child threadfork® = := 2 is included in the effect of the
call at (1). Thus when we compute the intersection of the input ef-
fect of fork® !z with the output effect of the parent (which starts
at (1)), the result will contaip, which we will hence determine to
be shared.

Finally, [Atomic] models atomic sections, which have no effect
on sharing. During mutex inference, we will use the solution to the
effecty* of each atomic section to infer the needed locks. Notice
that the effect ohtomic® e is the same as the effect efthis will
ensure that atomic sections compose properly and not introduce
deadlock.

Soundness Standard label flow and effect inference has been
shown to be sound [8, 11], including polymorphic label flow in-

2006/4/14

ference. We believe it is straightforward to show that continuation

Given the dominates relationship, we can then compute a set of

effects are a sound approximation of the locations accessed by arlocks to guard shared locations using the following algorithm:

expression.

2.2 Computing Sharing

After applying the type inference rules in Figures 2 and 3, we are
left with a set of label flow constraints'. We can think of these

constraints as forming a directed graph, where each label forms a 3.

node and constraints< " is represented as a directed edge fiom
to!’. Then for each labd| we can compute the s8(!) of location
labelsp that “flow” to I by transitively closing the graph. This can
be done by performing one depth-first search for each node in the
graph. The total time i©(n?), wheren is the number of nodes

ALGORITHM 2 (Mutex Selection)Computes a mapping : p —

£ from locationsp to lock namedg.

1. For eachp € shared, sef.(p) = ¢,
2. For eachp € shared
If there exist®’ > p, then
For eachp” such thatZ(p")
L(p") ==L,
In each step of the algorithm, we pick a locatieand replace all
occurrences of its lock by a lock of any of its dominators. Notice

4, ‘,

in the graph. (Given a polymorphic inference system, we could that the order in which we visit the set of locks is unspecified, as is
compute label flow using context-free language reachability in time the particular dominator to pick. We prove below that this algorithm

cubic in the size of the type-annotated program.)

Once we have computefi(!) for all labels!, we visit each
fork® in the program. Then the set of shared locations for the
programsharedis given by

shared= U(S(si) N S(eeh))

In other words, any locations accessed in the continuation of a
parent and its child threads afark are shared.

3. Mutex Inference

Given the set of shared locations, the next step of our algorithm is
to compute a set of locks to use to guard all of the shared locations.
A simple and correct solution is to associate a légkwith each
shared locatiorp € shared Then at the beginning to a section
atomic’ e, we acquire all locks associated with locationginTo
prevent deadlock, we also impose a total ordering on all the locks,
acquiring the locks in that order.

This approach is sound and in general allows more parallelism
than the naive approach of using a single lock for all atomic sec-
tions! However, a program of size may haveO(n) locations,
and acquiring that many locks would introduce unwanted over-
head, particularly on a multi-processor machine. To improve this
basic approach while retaining the same level of parallelism, we
can exploit the following observation: if two locations are always

accessed together, then they can be protected by the same mutexX

without any loss of parallelism.

DerINITION 1 (Dominates)We say that accesses to locatipn
dominateaccesses to locatiop’, written p > o', if every atomic
section containing an accesstbalso contains an access o

We write p > p’ for strict domination, i.e.p > p’ andp # p'.
Thus, whenevep > p’ we can simply acquirg’s mutex in

an atomic section, since doing so will implicitly protegt as
well. Notice that the dominates relationship is not symmetric. For
example, we might have a program containing two atomic sections,
atomic (!z;!y) andatomic !z. In this program, the location of

« dominates the location a@f but not vice-versa. Domination is
transitive, however.

Computing the dominates relationship is straightforward. For
each locatiorp, we initially assumep > p’ for all locationsp’.
Then for eachatomic’ e in the program, ifp’ € S(x*) but
p & S(x*), then we remove our assumptign> p’. This takes
time O(m|shared), wherem is the number of atomic sections.
Thus in total this takes tim@ (m|shared?) for all locations.

11f we had a more discerning alias analysis, or if we acquired the locks
piecemeal within the atomic section, rather than all at the start [9], we would
do better. We consider this issue at the end of the next section.

gives us an optimal result, no matter the ordering. Mutex selection

takes timeD(|shared?), since for each locatiopwe must examine

L for every other shared location.

The combination of computing the dominates relationship and
mutex selection yields mutex inference. We pick a total ordering on
all the locks inrangg(L). Then we replace eacitomic’ e in the
program with code that first acquires all the locksZifiS(x*)) in
order, performs the actions in and then releases all the locks. Put

together, computing the dominates relationship and mutex selection
takesO (m|shared?) time.

Examples To illustrate the algorithm, consider the set of accesses
of the atomic sections in the program. For clarity we simply list
the accesses, using English letters to stand for locations. For illus-
tration purposes we also assume all locations are shared. For a first
example, suppose there are three atomic sections with the following
pattern of accesses

{a} {a,b} {a,b,c}

Then we haver > b, a > ¢, andb > c. Initially L(a) = £,
L(b) = f, and L(c) = (.. Suppose in the first iteration of
the algorithm locatiore is chosen, and we pick > c¢ as the
dominates relationship to use. Then after one iteration, we will have
L(c) = 4. Then eventually we will pick locatioh with a > b,
and setL(b) = L(c) = L(a) = {,. It is easy to see that this
same solution will be computed no matter the choices made by the
algorithm. And this solution is what we want: Singeand ¢ are
always accessed along with we can eliminaté’s lock andc’s
lock.

As another example, suppose we have the following access
pattern:

{a} {a,bc} {b}
Then we haver > c andb > c. The only interesting step of the
algorithm is when it visits node. In this case, the algorithm can
either setl.(c) = ¢, or L(c) = ¢». However/, and/, are still kept
disjoint. Hence upon entering the left-most sectfgris acquired,
and upon entering the right-most secti@nis acquired. Thus the
left- and right-most sections can run concurrently with each other.
Upon entering the middle section we must acquire lethnd{,—
and hence no matter what choice the algorithm madé.fey, the
lock guarding it will be held.

This second example shows why we do not use a naive approach
such as unifying the locks of all locations accessed within an atomic
section. If we did so here and we would chods@) = L(b) =
L(c). This answer would be safe but we could not concurrently
execute the left-most and right-most sections.

3.1 Correctness and Optimality

It should be clear that the algorithm for computing the dominates
relationship is correct. Recall that the goal of mutex selection is to

2006/4/14

ensure that no shared location can be accessed without at least ond. Discussion
lock consstently held. We.can define thi's formallyia_ls follows, with One restriction of our analysis is that it always produces a finite
respect to the alias analysis. 1%t = S(x"), wherex"isthe effect ot of |ocks, even though programs may use an unbounded amount
of atomic sectioratomic® e. of memory. Consider the case of a linked list in which atomic
sections only access the data in one node of the list at a time. In
this case, we could potentially add per-node locks plus one lock
P={(i,j7)|S:nS; =0} for the list backbone. In our current algorithm, however, since
))) . all the lock nodes are aliased we would instead infer only the
In other words, the parallelism of a program is all possible pairs of i hackbone lock and use it to guard all accesses to the nodes.
atomic sections that could execute completely in parallel because| ocksmith [10] provides special support for the per-node lock case
they access no common locations. We defiis;) = {L(p) | p € by using existential types, and we have found it improves precision
Si}. in a number of cases. It would be useful to adapt our approach
DEFINITION 4 (Parallelism ofL). The parallelismof a mutex se- to infer these. kindg of !opks within datg structures. One challenge
lection functionL : p — ¢, written P(L), is defined as in this case is maintaining lock _orderlng, since locks would _be
dynamically generated. One choice would be to use the run-time
P(L) ={(3,5) | L(S:) N L(S;) = 0} address of the lock as part of the order.
Our algorithm is correct only if all accesses to shared locations
occur within atomic sections [4]. Otherwise, some location could
- X Sbe accessed simultaneously by concurrent threads, creating a data
_ Let L be the mutex selection function calculated by our algo- 5ce and violating atomicity. We could address this problem in two
rithm. ways. The simplest thing to do would be to run Locksmith on the
—7, / generated code to detect whether any races exist. Alternatively,
LEMMA 1. If L(p) = £,/, thenp” > p. we could modify the sharing analysis to distinguish two kinds of
PROOF. We prove this by induction on the number of iterations effects: those within an atomic section, and those outside of one. If
of step 2 of the algorithm. Clearly this holds for the initial mutex some locatiorp is in the latter category, and € shared then we

DEFINITION 3 (Parallelism).The parallelism of a program is a set

In words, P(L) is all possible pairs of atomic sections that could

selection functionLo(p) = £,. Then suppose it holds fok, have a potential data race we can signal to the programmer.
the selection function afték iterations of step 2. For an arbitrary We are currently building an implementation of our algorithm
p1 € shared there are two cases: as part of Locksmith. Our approach is good fit for handling con-

currency in Flux [1], a component language for building server ap-
plications. Flux defines concurrency at the granularity of individual
components, which essentially a kind of function. The programmer

1. If Lp(pr) = €, thenLyi1(p1) = £,. By inductionp >
p1, and sincep’ > p by assumption, we have’ > p; by

transitivity. _ can then specify which components (or compositions of compo-
2. Otherwise, there exists somesuchthatx (p1) = Lrk+1(p1) = nents) must execute atomically, and our tool will do the rest. Right
£p,, and hence by inductiop, > p. now, programmers have to specify locking manually.

Our work is closely related to McCloskey et al's Autolocker
[9], which also seeks to use locks to enforce atomic sections. There
LEMMA 2 (Correctness and Optimality)Ve claimP(L) = P. In are two main differences between our work and theirs. First, Au-
other words, the algorithm will not let more sections execute in tolocker requires programmers to annotate potentially shared data
parallel than allowed, and it allows as much parallelism as the Wwith the lock that guards that location. In our approach, such alock
uncoalesced, one-lock-per-location approach. is inferred automatically. However, in Autolocker, programmers

may specify per-node locks, as in the above list example. Second,
PROOF. We prove this by induction on the number of iterations of = Autolocker may not acquire all locks at the beginning of an atomic
step 2 of the algorithm. For the base case, the initial mutex selectionsection, as we do, but rather delay until the protected data is actu-
function Lo (p) = ¢, clearly satisfies this property, because there is ally dereferenced for the first time. This admits better parallelism,
a one-to-one mapping between each location and each lock. For theput makes it harder to ensure the lack of deadlock. Our approaches

O

induction step, assume = P(Ly) and for step 2 we have > p. are complementary: our algorithm could generate the needed locks
Let L1 be the mutex selection function after this step. Pickany and annotations, and then use Autolocker for code generation.
andj. Then there are two directions to show. Flanagan et al [3] have studied how to infer sections of Java

(Correctness) Suppos® N S; # 0. Then clearly there is a programs that behave atomically, assuming that all synchroniza-
p" € S;NS;, and so triviallyLy1(S:) N Li41(S;) # 0. tion has been inserted manually. Conversely, we assume the pro-

(Optimality) Otherwise supposg; N.S; = 0. ThenLy(S;) N grammer designates the atomic section, and we infer the synchro-
Li(S;) = 0, and we havely1(S:) = Li(S:)[(, — £,], and nization. Later work by Flanagan and Freund [2] looks at adding
similarly for Ly, 1(S;). Suppose that, ¢ Lx(S;) and{, ¢ missing synchronization operations to eliminate data races or atom-
Li(S5). Then clearlyLy11(S;) N Lr41(S;) = 0. Otherwise icity violations. However, this approach only works when a small
suppose without loss of generality thgt € L;(S;). Then by number of synchronization operations are missing.

assumptior?, ¢ Lx(S;). So clearly the renamin{f, — ¢,/]
cannot add,,; to Li+1(S;). Thus in order to show.;1(S;) N .
Ly+1(S;) = 0, we need to show,, & L (S;). 5. Conclusion

Sincel, € Li(S:), we know there exists &’ € S; suchthat \we have presented a system for inferring locks to support atomic
Ly (p") = £,, which by Lemma 1 impliep > p”. Butthen since sections in concurrent programs. Our approach uses points-to and
p' > p, we havep’ € S;. ButsinceS; N S; = 0, we havep’ ¢ S;. effects analysis to infer those locations that are shared between
So suppose for a contradiction that € Ly.(S;). Thenthere must threads. We then use mutex inference to determine an appropriate
be ap” € 5, such thatLy,(p") = £,/ Butthen by Lemma 1, we gt of locks for protecting accesses to shared data within an atomic
havep’ > p”. Butthenp” € 5;, a contradiction. Hence we must section. We have proven that mutex inference provides the same
havel,, & Lk(S;), and thereford.i11(S;) N Li+1(S;) = 0. O amount of parallelism as if we had one lock per location.

5 2006/4/14

In addition to the aforementioned ideas for making our approach
more efficient, it would be interesting to understand how optimistic
and pessimistic concurrency controls could be combined. In partic-
ular, the former is much better and handling deadlock, while the lat-
ter seems to perform better in many cases [9]. Using our algorithm
could help reduce the overhead and limitations (e.g., handling 1/O)
of an optimistic scheme while retaining its liveness benefits.

References

[1] B. Burns, K. Grimaldi, A. Kostadinov, E. D. Berger, and M. D. Corner.
Flux: A Language for Programming High-Performance Servers. In
In Proceedings of the Usenix Annual Technical Confere866. To
appear.

[2] C. Flanagan and S. N. Freund. Automatic synchronization correction.
In Synchronization and Concurrency in Object- Oriented Languages
(SCOOL) Oct. 2005.

[3] C. Flanagan, S. N. Freund, and M. Lifshin. Type Inference for
Atomicity. In TLDI, 2005.

[4] C. Flanagan and S. Qadeer. A Type and Effect System for Atomicity.
In PLDI, 2003.

[5] T. Harris and K. Fraser. Language support for lightweight transac-
tions. INOOPSLA ‘O3 pages 388—402, Oct. 2003.

[6] T. Harris, S. Marlow, S. P. Jones, and M. Herlihy. Composable
memory transactions. I[RPoPP ‘05 June 2005.

[7] M. Herlihy, V. Luchangco, M. Moir, and W. N. S. lll. Software
transactional memory for dynamic-sized data structures?ODC
‘03, pages 92-101, July 2003.

[8] J. M. Lucassen and D. K. Gifford. Polymorphic Effect Systems. In
POPL, 1988.

[9] B. McCloskey, F. Zhou, D. Gay, and E. Brewer. Autolocker:
synchronization inference for atomic sections. ROPL '06:
Conference record of the 33rd ACM SIGPLAN-SIGACT symposium
on Principles of programming languagesages 346—358, New York,
NY, USA, 2006. ACM Press.

[10] P.Pratikakis, J. S. Foster, and M. Hicks. Locksmith: Context-Sensitive
Correlation Analysis for Race Detection. Rroceedings of the 2006
PLDI, Ottawa, Canada, June 2006. To appear.

[11] J. Rehof and M. Bhndrich. Type-Based Flow Analysis: From
Polymorphic Subtyping to CFL-Reachability. ROPL, 2001.

[12] M. F. Ringenburg and D. Grossman. Atomcaml: First-class atomicity
via rollback. InICFP ‘05, pages 92-104, Sept. 2005.

[13] A. Welc, S. Jagannathan, and A. L. Hosking. Transactional monitors
for concurrent objects. IECOOP ‘O4 Oslo, Norway, 2004.

2006/4/14

