
Research Statement Polyvios Pratikakis

My research revolves around programming languages. I aspire to use techniques from the field of program-
ming languages to improve the quality of software. My current research concentrates on static (compile-time)
analysis of programs. In my dissertation, I developed novel static analyses and applied them to several prob-
lems including to detect races in C programs, to compile programs with atomic sections into programs
using locks, and to provide compile- and run-time support for transparent futures and asynchronous method
invocations in Java.

I am fascinated by many areas in programming languages, like type theory, static analysis, formal proofs
and semantics, and also the elegance of the logic and mathematics behind them. I believe one can directly
apply the recent theoretical results and advancements in these fields to solve real-world problems. Conversely,
one can draw motivation from practical issues rising in software, to formulate interesting theoretical problems.
My aim is to employ techniques from theoretical programming languages research to attack current, actual
problems with software; back my solutions with strong theoretical reasoning and proofs; and try to generalize
the resulting techniques into novel theoretical results. The remainder of this document presents in more detail
the research that I have done so far, and considers future directions I plan to pursue.

Data race detection for C

The increased availability of multi-core processors tends to make concurrency the norm even for the aver-
age programmer. Currently, locks constitute a very widely used synchronization mechanism in concurrent
programs. Errors in using locks can lead to data races, with possibly catastrophic consequences.

Working with my advisors Michael Hicks and Jeffrey Foster, I developed Locksmith [4], a tool that uses
both well-known and novel techniques in static analysis to find races in C programs. Locksmith aims to
be a practical tool requiring no or minimal annotations from the programmer, and is able to handle all the
commonly used patterns in concurrent programming, producing verbose warnings. To test the practicality of
Locksmith, I used a wide range of benchmarks, totalling more than 200,000 lines of code, and found many
races, several of which were actual bugs. I formalized the novel context-sensitive correlation analysis used
to infer “guarded-by” relations between locks and memory locations in Locksmith, and proved it sound.

Transparent proxies in Java

A proxy object is a surrogate or placeholder that controls access to another object. Proxies can be used
to support distributed programming, lazy or parallel evaluation, access control, and other simple forms of
behavioral reflection.

Working with Michael Hicks and Jaime Spacco, I developed ProxyC [6], a tool that adds transparent
proxies to Java. ProxyCallows the programmer to treat a proxy as the actual object, tracks the flow
of proxy objects in the program, and automatically inserts a “claim” (unwrapping of the proxy) at every
concrete use of the object. We used ProxyC to, among other applications, add asynchronous method
invocations to Java, where a method call is evaluated in a separate thread, while the caller continues using a
transparent proxy of the result (called a future), until the result becomes available. At the core of ProxyC
is a type-qualifier inference framework, which we use to track the flow of proxies in the program, and insert
the necessary claims (or synchronization, in the case of futures) wherever necessary. We formalized the
system for a subset of Java and proved its soundness.

Inferring locks for atomic sections

The notion of atomic sections is a mechanism for limiting concurrency in a program. Namely, an atomic
section is a section of code that is guaranteed to appears to be executed atomically, in isolation from other
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threads. In comparison to code using locks, atomic sections are easier to use, and provide a higher-level
approach to synchronization. Atomic sections are traditionally implemented using transactional memory,
although in some cases that is not feasible, especially in the presence of I/O and other side-effects that
cannot be rolled back.

Together with Michael Hicks and Jeffrey Foster, I have developed a tool called Lockpick [2] that compiles
C programs with atomic{} blocks of code into programs that use locks for synchronization. Lockpick uses
the same analysis engine as Locksmith to infer the shared locations in the program and the minimum
number of locks needed to protect them, without sacrificing any parallelism. I proved that the general
problem of lock allocation for atomic sections is NP-complete, and presented a fast heuristic algorithm as
an approximating solution. Lockpick does not require annotations (other than atomic sections) to infer
locking, but does not use dynamic locks in data structures.

Static analysis of data structures

In Locksmith, it is necessary to reason about the aliasing of lock variables that occur in the program.
Motivated by that and the occurence of locks in recursive data structures that is somewhat common in C
programs, I worked with Michael Hicks and Jeffrey Foster on a novel context-sensitive label-flow analysis
with increased precision for recursive data structures [3]. The analysis is formalized as a constraint-based
type system with existential and universal polymorphism, used to encode context sensitivity for function
calls and data structure elements. I worked on proving the soundness of this generalized alias analysis, and
reduced it into a context-free language (CFL) reachability problem, known to be solved in sub-cubic time.

Contextual effects

A very important part of Locksmith and Lockpick is a sharing analysis that infers memory locations
accessed by more than one threads in the program. At the core of that analysis is the computation of
continuation effects, the effects of the program after a given point. Generalizing that idea, I worked with
Iulian Neamtiu, Michael Hicks and Jeffrey Foster on a type-and-effect system for contextual effects, the effects
of the program before and after any given expression. I formalized the system and proved its soundness, and
also encoded the proofs using the Coq proof assistant.

Program verification

Proof-carrying code is the technique of annotating untrusted code with a formal, machine-checkable proof
that it is safe to execute. Proof-carrying code is mostly used to verify simple properties like type- or memory-
safety, but can also be used to verify more complex properties.

During an internship at Microsoft Research in 2006, I worked with Chris Hawblitzel and the Singularity
Group on a proof verifier for proofs that annotate bytecode [1]. We used the calculus of inductive construc-
tions extended with linear types as the proof language. I developed a type-checker for the proof language,
which, by the Curry-Howard isomorphism, is also a proof-verifier for proofs in that language. I then used
that checker on small programs to verify hand-written proofs that every array access is within bounds.

Mechanized proofs

Recently, there have been several attempts for mechanizing the metatheory of programming languages.
Systems and proofs found in programming languages literature are usually large and complex. Therefore,
the mechanization and machine-verification of interesting properties in programming languages strengthens
the validity of a proof, by ensuring the absense of small mistakes that often arise in complex proofs.
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Moving in that direction, I encoded the type system of contextual effects and its proof of soundness in
the Coq proof assistant [5]. The statement of soundness for contextual effects has the unusual property
that it depends on the position of an evaluation inside the evaluation derivation for the whole program.
Mechanizing the formalism and proof of soundness for contextual effects emphasized that property, clarified
the reason behind it, and highlighted what I believe are the unusual and interesting aspects of the proof.
Finally, engineering the formalization and proof of soundness for the non-trivial type-and-effect system with
contextual effects, lead to my deeper understanding of mechanized proofs and working with Coq.

Conclusions

In my dissertation, I developed several novel techniques in static analysis and type systems and applied
them in several projects aimed to improve the quality of software. I developed several tools that assist the
programmer in writing correct multi-threaded software, or aid them in fixing problems with existing software.
In the process, I encountered and tackled interesting problems in the general fields of static analysis, type
systems and verification, producing general solutions, backed up with rigorous proofs.

I consider my background in type systems, static analysis, formal proofs and programing languages in
general, a strong asset in achieving the goal for better software. I aim to develop efficient and practical
solutions to existing software problems, while also reasoning about their correctness with formal proofs of
soundness.

I am interested in continuing to pursue my dissertation goal, towards safer, reliable, more efficient, easy
to develop, quality software. At the same time, I am looking forward to discovering challenging problems
that will motivate further study and research in related areas, expanding my research horizons in the field
of programming languages and computer science in general.
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