
AMSC/CMSC 661 Scientific Computing II
Spring 2005

Solution of Sparse Linear Systems
Part 3: Preconditioning and multigrid

Dianne P. O’Leary
c©2005

The plan:

So far:

• Iterative methods:

– Basic (slow) iterations: Jacobi, Gauss-Seidel, SOR.

– Krylov subspace methods: the algorithms

Next:

• Krylov subspace methods: convergence theory

• Preconditioning (where direct meets iterative)

• A special purpose method: Multigrid

The practical form of GMRES

First, how the algorithm is used to solve Ĝx∗ = c, given a positive
integer m (the restart parameter) and with B = I.

Initially, x(m) = 0 and k = m.
Until termination,

• Set k = k + 1. If k = m + 1, then set k = 1 and x(0) = x(m).

• Increase the dimension of the Krylov subspace to dimension k using the starting
vector c − Ĝx(0) and the matrix Ĝ, giving a matrix Pk of directions and Hk of
coefficients.

• Solve HT
k Hky(k) = HT

k PT
k+1c, and set x(k) = x(0) + Pky(k).

• If ‖Ĝx(k) − c‖ is small enough, set xfinal = x(k) and terminate.

Note: Ideally, m = n, but since the storage is O(mn), and the time to solve
the systems involving H1, . . . Hm is O(m3) (using matrix updating
techniques and Cholesky decomposition), in practice we keep m to 20 or
100 at most.

1

Convergence results for GMRES(m)

• Convergence on positive definite matrices. (Saad p.205, Thm
6.30) If (Ĝ + ĜT)/2 is positive definite, then GMRES(m) converges for
any m ≥ 1.

• Convergence on diagonalizable matrices. (Saad p.206, Prop 6.32)
If Ĝ = XΛX−1 where Λ is the matrix of eigenvalues, then for
k = 1, . . . , m,

‖r(k)‖2 ≤ κ(X)εk‖r(0)‖2,

where
r(i) = c − Ĝx(i) is the residual,
κ(X) is the square-root of the ratio of the largest eigenvalue of XT X to
the smallest,
and

εk = min
ρ∈Pk

max
j=1,...,n

|ρ(λj)|.

where Pk is the set of all polynomials of degree at most k satisfying
ρ(0) = 1.

• For normal matrices: If ĜĜT = ĜT Ĝ, then Ĝ is normal and
κ(X) = 1. Otherwise the bound is not very useful.

• (Saad p.206, Cor 6.33) If all of the eigenvalues of Ĝ are in an
ellipse that doesn’t contain the origin, and the ellipse is centered at
(c, 0) in the complex plane, with focal distance d (pure real or
pure imaginary) and semimajor axis a, then

εk ≤
(
a/d +

√
(a/d)2 − 1

)k

+
(
a/d +

√
(a/d)2 − 1

)−k

(
c/d +

√
(c/d)2 − 1

)k

+
(
c/d +

√
(c/d)2 − 1

)−k

Convergence result for CG

(Saad, p.205, eqn (6.128)) In the energy norm,

‖x(k) − x∗‖Ĝ ≤ 2

√
κ(Ĝ) − 1√
κ(Ĝ) + 1

k

‖x(0) − x∗‖Ĝ

where κ(Ĝ) is the ratio of the largest and smallest eigenvalues of Ĝ.

2

Preconditioning GMRES and CG

• For fast iterations, we need to be able to solve linear systems involving M
very quickly, since this must be done once per iteration.

• To make the number of iterations small, we want M to be a good
approximation to A so that the eigenvalues are in a small ellipse (GMRES)
or a small interval (CG).

• For CG, we need to require that M be symmetric and positive
definite.

• Note that the linear system
Mz = r

is typically solved using a direct method, so the better M is, the closer
we are to solving Ax = b using a direct method.

Some common choices of preconditioning matrices M

• M = the diagonal of A.

• M = a banded piece of A.

• M = an incomplete factorization of A, leaving out inconvenient elements
(the ILU preconditioner).

• M−1 = a sparse approximation to A−1. (the sparse approximate
inverse preconditioner (SAIP))

• M = a related matrix; e.g., if A is a discretization of a differential
operator, M might be a discretization of a related operator that is easier to
solve. Or M might be the block diagonal piece of the matrix after ordering
for nested dissection.

• M might be the matrix from any stationary iterative method (SIM) or
from multigrid (to be discussed).

• In some situations, it is a good idea to let M change at each iteration.
The resulting algorithm is called flexible-GMRES. It is sometimes
useful, but we won’t discuss it here.

How to form M−1r for an SIM preconditioner

3

Consider your favorite stationary iterative method (Jacobi, Gauss-Seidel, SOR,
etc.),

Mx(k+1) = Nx(k) + b

or
x(k+1) = M−1Nx(k) + M−1b.

Manipulating this a bit, we get

x(k+1) = x(k) + (M−1N − I)x(k) + M−1b

= x(k) + M−1(N − M)x(k) + M−1b

= x(k) + M−1(b − Ax(k))
= x(k) + M−1r(k) .

Therefore, we compute the “preconditioned residual” by taking one step of the
SIM starting from the latest CG or GMRES iterate, and returning ∆x for
M−1r(k). It is this matrix M−1, that represents the multiple of the residual that
we add on to x, that preconditions CG or GMRES.

Multigrid methods

The idea behind multigrid methods

(Idea: Fedorenko 1964, Brandt 1977, Nicolaides, Hackbusch, ...)
Consider our simplest problem

−u′′ = f(x)

on the interval x ∈ (0, 1), with u(0) = u(1) = 0.

There are three ingredients to the idea.

• If we use a very coarse grid for finite elements, with h = .25, for
example, then

– The linear system of equations is very small (n = 3) so we can solve
it fast using either a direct or an iterative method.

– We expect our computed solution uh to have the same overall shape
as the true solution u but to lose a lot of local detail.

• If we use a very fine grid, then

– The linear system of equations is much more expensive to solve.

– We expect our computed solution uh to be very close to u.

• If an iterative method is started with an initial guess that is close to the
true solution, we hope to need a very small number of iterations.

4

– In particular, if we consider Jacobi, Gauss-Seidel, or SOR, we adjust
the solution based on very local information, so these methods are
good at filling in the fine details once the overall shape of the solution
is known.

Making use of multiple grids

An idea: Nested iteration

Set k = 0, h = 1, and uh = 0.
While the approximation is not good enough,

Set k = k + 1, n = 2k − 1, and h = 1/(n + 1).

Form the matrix Ah and the right-hand side bh, and solve the matrix prob-
lem for the finite element approximation uh using GS, with the initial guess
formed from u2h evaluated at the mesh points.

The termination tolerance for the residual on grid h should be proportional to h2,
since that is the size of the local error.

This algorithm runs from coarse grid to finest and is useful (although rather silly
for 1D problems).

The V-Cycle

We can do better if we run from finest grid to coarsest grid and then back to
finest.

This algorithm has 3 ingredients:

• An iterative method that converges quickly if most of the error is high
frequency – oscillating rapidly – which happens when the overall shape of
the solution is already identified.

• A way to transfer values from a fine grid to a coarse one – restriction.
We let Rh be the operator that goes from grid h to grid 2h.

• A way to transfer values from a coarse grid to a fine one – interpolation
or prolongation.
We let Ih be the operator that goes from grid 2h to grid h.

Gauss-Seidel gives us the first ingredient, while our finite element formula for the
solution as a sum of basis function components gives us the last two. (For

5

technical reasons, though, restriction should be the adjoint of interpolation,
rather than using the finite element choices for both.)

For finite differences, interpolation and restriction can also be defined.

We’ll define the V-Cycle idea recursively.

vh = V-Cycle(vh,bh, η1,η2)

1. Perform η1 GS iterations on Ahuh = bh using vh as the initial guess, obtaining
an approximate solution that we still call vh.

2. If h is not the coarsest grid parameter,

Let v2h = V-Cycle(0,Rh(bh − Ahvh), η1,η2).

Set vh = vh + Ihv2h.

3. Perform η2 GS iterations on Ahuh = bh using vh as the initial guess, obtaining
an approximate solution that we still call vh.

The standard multigrid algorithm is to solve Ahuh = bh by repeating the V-Cycle
until convergence.

Cost per V-Cycle

A GS iteration on a grid of size h costs about nz(h) multiplications, where nz(h)
is the number of nonzeros in Ah. Note that nz(h) ≈ 2nz(2h) since A2h has
about half as many rows as Ah.

So performing 1 GS iteration on each grid h, h/2, . . . , 1 costs less than
nz(h)(1 + 1/2 + 1/4 + . . .) ≈ 2nz(h) multiplications ≡ 2 work-units.

So the cost of a V-Cycle is at most 2 times the cost of η1 + η2 GS iterations on
the finest mesh.

Unquiz: Convince yourself that the storage necessary for all of the matrices and
vectors is also a modest multiple of the storage necessary for the finest grid. []

Convergence rate for multigrid

We know that standard iterative methods like GS are very slow (take many
iterations), but on our simple problem, we need only a few iterations on each
grid, and the total amount of work to solve the full problem to a residual of size
O(h2) is a small number of work-units.

6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Blue coarse grid

Multigrid for 2-d problems

Develop a sequence of nested grids.

If the PDE is elliptic, it is not to hard to achieve convergence in a small number
of work-units.

Multigridders would say that if you don’t achieve it, then you have chosen either
your iteration or your interpolation/restriction pair “incorrectly”.

For the domain (0, 1) × (0, 1), we might use the three grids shown here:

7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Red fine grid

8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Black finest grid

9

